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ABSTRACT

Monoidal logic, ML for short, which formalized the fuzzy logics of

continuous t-norms and their residua, has arisen great interest, since

it has been applied to fuzzy mathematics, artificial intelligence, and

other areas. It is clear that fuzzy logics basically try to represent

imperfect or fuzzy information aiming to model the natural human

reasoning. On the other hand, in order to deal with imprecision in

the computational representation of real numbers, the use of inter-

vals have been proposed, as it can guarantee that the results of nu-

merical computation are in a bounded interval, controlling, in this

way, the numerical errors produced by successive roundings. There

are several ways to connect both areas; the most usual one is to con-

sider interval membership degrees. The algebraic counterpart of ML

is ML-algebra, an interesting structure due to the fact that by adding

some properties it is possible to reach different classes of residuated

lattices. We propose to apply an interval constructor to ML-algebras

and some of their subclasses, to verify some properties within these

algebras, in addition to the analysis of the algebraic aspects of them.
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Chapter 1

Introduction

Everyday natural language contains a lot of inexact and vague information, or in other words,

fuzzy information. In order to represent and manipulate this kind of data, we need more

than the classical logic, which only admits truth or falseness. The mathematical modeling of

fuzzy concepts was presented by Lofti Zadeh in [Zad65] considering that meaning, in natural

language, was a matter of degree. A proposition was no longer simply true or false; instead,

a real value in the interval [0, 1] was considered to indicate how much that proposition was

believed to be true.

This led to the development of many studies concerning the fuzzy logics. In the domain

of engineering and applied sciences, for instance, they have been studied as a tool to deal with

the natural uncertainty of knowledge and to represent the uncertainty of human reasoning.

In this way, fuzzy systems try to reason in a similar way human beings do by attempting

to transform vague information into adequate solutions to given problems or by making

decisions and taking actions using this imprecise knowledge. In a different direction of

study, fuzzy logics, in a certain way, enrich classical logic. They act as a symbolic logic with

a comparative notion of truth, having as a base the classical logic, once the connectives must

behave as in the classical logic on the extremes values (0 and 1). Some examples of fuzzy

logics are: Monoidal Logic (ML, for short) introduced by Höhle in [Höh95]; Monoidal t-

norm based Logic (MTL) introduced by Esteva and Godo in [EG01]; Basic Logic, (BL,
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presented by Hájek in [Háj98]); Gödel Logic (G, in [Göd32]); and Łukasiewicz Logic (Ł, in

[ŁT30]).

In systems with the approach that not only the available information is vague or uncer-

tain, but also the membership degrees, it is common to use the interval fuzzy logics. Once

the membership degrees are uncertain, they are represented by intervals in the unit interval

[0, 1]. Interval-valued fuzzy sets were introduced independently by Zadeh [Zad75] and oth-

ers authors (e.g., [GG75], [Jah75], [Sam75]) in the 70’s. The connection between the fuzzy

theory and interval mathematics has been studied concerning different points of view like,

for example, in [CDK06], [DP91], [DP05], [GWW96], [KY95], [KM00], [ML03], [NW00],

[NKZ97], [Tur86] and [YMK99]. And a good contribution for the formal study of interval

fuzzy logics was done by Bedregal et. al. in [BT06] where an interval t-norm was seen as

an interval representation of t-norms in the sense of [SBA06]. This work was extended in

[BSCB06] for the bounded lattice context. Moreover, from a categorical point of view, it was

proved in [BCBS07] the agreement between the interval generalization of automorphisms

and this t-norm generalization, in the sense that the interval constructor of automorphisms

and t-norms could be seen as a functor preserving the action of automorphisms on t-norms.

Thus, it was obtained the best interval representation (in the sense of [BT06]) of any t-norm

and automorphism leading to handle with the optimality of interval fuzzy algorithms.

Recently, fuzzy logics based on t-norms and their residua have been widely investigated.

In particular, Höhle’s Monoidal Logic (ML), whose algebraic counterpart is the complete

class of residuated lattices (namely a ML-algebra), seems quite interesting due to the possi-

bility of reaching other logics just by adding some axioms. Moreover, it is also possible to

add properties to ML-algebras and get different classes of residuated lattices, i.e. a prelinear

ML-algebra is a MTL-algebra.

In this way, our work seeks to introduce the interval constructor to ML-algebras and some

of their subclasses. Besides, it verifies some properties within these algebras, in addition to

the analysis of the algebraic aspects of them. Our motivation has emerged from some related

works that will be discussed in the following section.
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1.1 Motivation and Related Works

Much work had already been done within interval fuzzy logics. The interval-valued fuzzy

set theory (introduced independently in the mid-seventies by Grattan-Guinness [GG75], Jahn

[Jah75], Sambuc [Sam75] and Zadeh [Zad75]) is an increasingly popular extension of fuzzy

set theory where traditional [0, 1]-valued membership degrees were substituted by intervals

in the unit interval [0, 1], attempting to approximate the imprecise degrees.

In this way, not only vagueness of information was being dealt with, but also a feature

of uncertainty on the membership degree, that could be addressed intuitively through the

intervals. Interval-valued fuzzy sets (IVFSs) are considered to have a great potential, espe-

cially to approximate reasoning applications. However, a formal treatment of interval fuzzy

logics is still lacking. According to [CDK06], two main reasons for that can be stressed: an

underestimation of the richness of the associated algebraic structure and a certain preference

for prelinear algebraic structures.

Nowadays, there is an important research field on fuzzy logics focused on prelinear resid-

uated structures. And we can state that the algebraic counterpart of the logics mentioned

above (ML, MTL, BL, G, Ł) are bounded lattices, which guarantee a more general view.

Then, the partial ordering of a bounded lattice L serves to compare the truth values of for-

mulas which can be true to some extent. And considering the examples given, all those

logics presuppose the prelinearity property, which is held in every residuated lattice. How-

ever, when we deal with closed intervals of a bounded lattice, this property is not necessarily

preserved [GCDK07].

Van Gasse et al., in [GCDK07], presented Triangle Logic (TL), a system of many-valued

logic which captured the tautologies of interval-valued residuated lattices (IVRLs). To do

so, they also introduced triangle algebras, proving soundness and completeness of TL con-

cerning those algebras. The importance of their work lies in the axiomatic formalization of

residuated t-norm based logics on the lattice of closed intervals of [0, 1].

Our work differs from the investigations shown above in the sense that we are using the
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interval constructor on some classes of ML-algebras and, based on the results, we are going

to add properties which end up on very known extensions of ML-algebras.

In order to fulfill the motivations presented above we have studied fuzzy logics and pro-

posed some generalizations of t-norms.

We had introduced, for instance, one extension of t-norms to arbitrary complete lattices

in [BS05]. That work was a monograph presented to the Federal University of Rio Grande

do Norte to obtain the degree of Bachelor in Computer Sciences. We had showed that the

classic logical connectives, some t-norms and interval t-norms, and the triangular versions of

the other connectives were functions on specific lattices satisfying certain properties. Thus,

we could generalize the propositional classic connectives, as well as the fuzzy and interval

fuzzy connectives using the lattice theory, which is a more general concept.

Since then, some other papers were published to carry on that study. For instance, in

[BSCB06], we considered a well known generalization of the t-norm notion for arbitrary

bounded lattices and introduced two generalizations of the automorphism notion for arbi-

trary bounded lattices. We also showed some basic constructions on those notions, based

on similar constructions for lattices. Besides, we could see that although the category intro-

duced there was not Cartesian, it had several properties similar to the interval category of

[CBB01] and, considering an interval constructor based on the Scott partial order [Sco70],

that category was also similar to an Acióly-Scott interval category in [CBB04].

Moreover, in the introductory paper entitled “Bounded Lattice T-Norms as an Interval

Category”, [BCBS07], we also considered a well known generalization of the t-norm notion

for arbitrary bounded lattices. We introduced the t-norm morphism, which is a generalization

of the automorphism notion for t-norms on arbitrary bounded lattices. Those two general-

izations were considered a rich category having t-norms as objects and t-norm morphism

as morphism. We proved that putting together that category, a natural transformation intro-

duced there, and the interval constructor on bounded lattice t-norms and t-norm morphisms

resulted in an interval category in the sense of [CBB01].
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Finally, the same generalization mentioned above (done in [BSCB06] and [BCBS07])

was also taken into account in [BSCB07]. However, in this paper we proved that such cat-

egory was Cartesian and whenever its subcategory whose objects were strict t-norms, we

proved that it was a Cartesian closed category. Moreover, we showed that the usual interval

construction on lattices was a functor on those categories.

Since t-norms play an important role in fuzzy logics, a good generalization of them is

extremely important in interval fuzzy logics. In [BT06], an interval t-norm was seen as

an interval representation of t-norms according to the interval fuzzy approach where the

interval membership degree was considered inaccurate in the belief degree of an expert, or

in other words, a representation or an approximation of the exact degree. Even though, other

approaches took no account of that fact. In addition, from a categorical point of view, it was

proved that the interval generalization of automorphisms agrees with that generalization of

t-norms, in the sense that the interval constructor of automorphisms and t-norms could be

seen as a functor preserving the action of automorphisms on t-norms. Therefore, the best

representation of any t-norm and automorphism was achieved, which means that it can be

used to deal with optimal interval fuzzy algorithms.

Considering the areas of study that have just been mentioned, the main purpose of this

work is to continue part of the investigations shown above. As stated before, we intend to use

the interval constructor on classes of ML algebras verifying some properties which still hold.

Besides, we are also willing to extend the ML logic considering the interval constructor.

1.2 Chapters Summary

This document is divided into six chapters, where the first one was a brief outline of our work.

The other chapters proceed as follows: chapter 2 is a collection of definitions used, explain-

ing some basic, but important concepts which will be used throughout our work. Advanced

readers should skip to chapter 3, where the fuzzy connectives on lattices are presented, as
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well as the interval constructor. The forth chapter discusses a little bit of ML logic and its

extensions and ML-algebras. Finally, our proposal of applying the interval constructor on

ML-algebras and some of their subclasses can be found in the fifth chapter. The sixth, and

last, chapter contains the concluding remarks and possible future works.



Chapter 2

Background

The idea of doing a self contained document requires a chapter explaining some basic con-

cepts. Advanced readers should skip to the following chapter.

2.1 Fuzzy Logics

Fuzzy set theory was first introduced by Lofti Zadeh in [Zad65]. The initial idea was to

consider a belief degree, i.e. a real value in the interval [0, 1], which indicated how much a

given element was believed to belong to a set. Then, each element of the fuzzy set (repre-

sented here by X) was mapped to [0, 1] by a membership function µ : X → [0, 1], where

[0, 1] meant real numbers between 0 and 1. Otherwise, classical logic only admits true or

false statements, not both. So, if you are tall in the classical logic, you can not belong to

the group of people who are short. However, in fuzzy logics if your height is considered not

so tall, you can belong to the group of short people with a certain degree of membership.

Thus, this theory is appropriate to deal with non-precise information. The subjacent logic

to the fuzzy set theory is named fuzzy logic, or fuzzy logics, since there has been a great

variety of interpretations and studies underneath this logic. However, it is important to bear

in mind that fuzzy logics constitute an important tool to deal with the natural uncertainty of
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knowledge and to represent the uncertainty of human reasoning. They guarantee that even

having uncertain data, we can use them to infer conclusions and convey solutions to our

problems. Fuzzy systems can be said to reason in a similar way human beings do because

human reasoning also involves inference mechanisms to convert available information into

adequate solutions. It is also allowed to say that fuzzy logics generalize the classical logic,

despite using intermediate values of truth, since they behave exactly in the same way on the

extreme values 0 and 1.

Fuzzy logics can be distinguished in two main directions: in a broader sense they can be

considered an apparatus to analyze uncertain notions, for instance, in natural languages and

control systems or, in other words, their main goal is to develop computational systems based

on fuzzy reasoning. In a narrower sense, they act as a symbolic logic with a comparative

notion of truth, having as a base the classical logic, once the connectives must behave as in

the classical logic on the extreme values (0 and 1).

2.1.1 T-norms, T-conorms and Other Connectives

Willing to model probabilistic metric spaces, Menger introduced the notion of triangular

norms, t-norms in short, in [Men42]. However, the axiomatic definition for t-norms was

only proposed in [SS61] by Schweizer and Sklar in 1961 and the dual notion of the t-norm,

called t-conorm, appeared with the work of Alsina, Trillas and Valverde in [ATV80]. In that

work, t-norms and t-conorms were used to model the conjunction and disjunction connec-

tives in fuzzy logics, generalizing several definitions for fuzzy logics provided by Zadeh in

[Zad65]. Other usual connectives can be fuzzy extended as well from a t-norm or defined

after an independent given axiomatization. In [BC06], the fuzzy extension of propositional

connectives was called propositional fuzzy semantics, or simply, fuzzy semantics. Thus,

each fuzzy semantics can determine a different set of true formulas (1-tautologies) and false

formulas (0-contradictions) and, therefore, different (fuzzy) logics. For example, it is pos-

sible to obtain a fuzzy canonical interpretation for the implication and negation connectives
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from a t-norm. Each t-norm determines a different set of tautologies and contradictions, and

consequently, distinct fuzzy logics [BT06].

The following topics present the general definitions of t-norm, t-conorm, implication and

negation, taken from [Met05] and [NW00].

2.1.1.1 T-norms

A t-norm is a binary operation, generally used to represent the conjunction, or the intersec-

tion. It was defined as a function T : [0, 1]× [0, 1] → [0, 1] (or T : [0, 1]2 → [0, 1]) such that,

for all x, y, z ∈ [0, 1], the following properties are satisfied:

1. Commutativity: T (x, y) = T (y, x);

2. Associativity: T (x, T (y, z)) = T (T (x, y), z);

3. Monotonicity: x ≤ y implies T (x, z) ≤ T (y, z);

4. Identity: T (x, 1) = x.

Note that we are using the prefix notation T (x, y) for the t-norms, but the infix notation

(x ∗ y) is often used in the literature to emphasize the interpretation of a logical connective.

We will freely use both notations during this work and, eventually, the ∗ symbol may be

substituted by a different symbol.

There are several (in fact, uncountable) types of t-norms, each one having certain proper-

ties and usually arranged into families. And this variety of interpretations leads to different

classes of logics. Some properties of t-norms are:

Definition 2.1 Idempotency : T : [0, 1]2 → [0, 1] is idempotent iff T (x, x) = x, for all

x ∈ [0, 1].

That property means if we repeat something, it doesn’t make it more or less true.



2. Background 10

Definition 2.2 Continuity : T : [0, 1]2 → [0, 1] is continuous iff for all x, y ∈ [0, 1], given a

sequence (xi)i≥0, xi ∈ [0, 1] such that x = limi→∞ xi, then also limi→∞T (xi, y) = T (x, y).

Continuity ensures the value of the function is not too sensitive to changes in the values

of its arguments. Besides, there is also the property of left-continuity, defined below:

Definition 2.3 Left-Continuity : T : [0, 1]2 → [0, 1] is left-continuous iff for all x, y ∈

[0, 1], given a sequence (xi)i≥0, x > xi ∈ [0, 1] such that x = limi→∞ xi, then also

limi→∞ T (xi, y) = T (x, y).

Some of the fundamental (continuous) t-norms are ([Met05]):

• Gödel t-norm : G(x, y) = min(x, y);

• Product t-norm: P (x, y) = x · y ;

• Łukasiewicz t-norm: Ł = max(0, x+ y − 1).

Other non-continuous t-norms:

• Weak t-norm (W), where:

W (x, y) =

 min{x, y} , if max{x, y} = 1

0 , otherwise.
(2.1)

• Nilpotent minimum t-norm (N):

N(x, y) =

 min{x, y} , if x+ y > 1

0 , otherwise.
(2.2)

For two given t-norms, T1 and T2, we can define if one is stronger or weaker than the

other one. We say that T1 is weaker than T2 (or, equivalently, T2 is stronger than T1), written

T1 ≤ T2, if T1(x, y) ≤ T2(x, y), for all x, y ∈ [0, 1]. An interesting result is that:
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Proposition 2.1 W ≤ T ≤ G , for any t-norm T .

Proof: By the monotonicity and commutativity properties, we have: T (x, y) ≤ T (x, 1) ≤

x, T (x, y) = T (y, x) ≤ T (y, 1) ≤ y. This means that: T (x, y) ≤ min(x, y). Thus, T ≤ G.

On the other hand, if max(x, y) 6= 1, then W (x, y) = 0 and so, W (x, y) ≤ T (x, y). If

max(x, y) = 1, then x = 1 or y = 1. Suppose x = 1 (analogous for the case where

y = 1), then W (x, y) = min(x, y) = y = T (y, 1) = T (y, x) = T (x, y). Consequently,

W (x, y) ≤ T (x, y). �

2.1.1.2 T-conorms

A triangular conorm, t-conorm in short, is used to represent the disjunction. It was defined

as a function S : [0, 1]2 → [0, 1], such that, for all x, y, z ∈ [0, 1], the properties below are

held:

1. Commutativity: S(x, y) = S(y, x);

2. Associativity: S(x, S(y, z)) = S(S(x, y), z);

3. Monotonicity: x ≤ y implies S(x, z) ≤ S(y, z);

4. Identity: S(x, 0) = x.

There is also the infix notation for the t-conorm, that would be x ⊕ y. However, the

symbol can vary a lot in the literature, and it will be specified along this work, whenever

necessary.

A t-norm can be used to define a t-conorm and vice versa. So, we can call ST the dual

t-conorm of the t-norm T , where ST (x, y) = 1− T (1− x, 1− y).

In this way, the dual t-conorms of the fundamental t-norms are as showed below ([Met05]):

• Maximum t-conorm: SG(x, y) = max(x, y);
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• Probabilistic sum t-conorm: SP (x, y) = x+ y − x · y;

• Łukasiewicz t-conorm: SŁ(x, y) = min(1, x+ y).

And the dual notion of the weak t-norm is:

• Strong t-conorm:

SW (x, y) =

 max{x, y} , if min{x, y} = 0

1 , otherwise.

Analogously, for two given t-conorms, S1 and S2, we can define if one is stronger or

weaker than the other one. We say that S1 is weaker than S2 (or, equivalently, S2 is stronger

than S1), written S1 ≤ S2, if S1(x, y) ≤ S2(x, y), for all x, y ∈ [0, 1]. And it is also easily

proved that SG ≤ S ≤ SW , for any t-conorm S.

2.1.1.3 Implication

In the literature, we can find many different definitions of fuzzy implications, as well as

several representations of the infix and prefix notations (which will be freely used throughout

this work). A lot of properties for implication can also be required to achieve x ⇒ y or

P (x, y) . For instance, Fodor and Roubens in [FR94] define a fuzzy implication as a function

P : [0, 1]2 → [0, 1], which satisfies the following properties:

• x ≤ z implies P (x, y) ≥ P (z, y), for all x, y, z ∈ [0, 1];

• y ≤ z implies P (x, y) ≤ P (x, z), for all x, y, z ∈ [0, 1];

• P (0, y) = 1, for all y ∈ [0, 1];

• P (x, 1) = 1, for all x ∈ [0, 1];

• P (1, 0) = 0.
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Nevertheless, it seems reasonable to seek an implication which can be connected to our

notion of conjunction, obtained as a dual notion of the t-norm T .

Definition 2.4 Let T be a t-norm. Then, IT (x, y) = sup{z ∈ [0, 1] : T (x, z) ≤ y}, for all

x, y ∈ [0, 1], defines a fuzzy implication called R-implication or residuum of T .

The name R-implication comes from the term residual implication, once this implication

is related to a residuation concept from the Intuitionistic logic. Actually, it has been shown

that, in this context, this name is proper only for left-continuous t-norms. The acronym sup

is the supremum, which will be explained on the following chapter.

It is important to emphasize that an R-implication is well defined only if the t-norm is

left-continuous, that is, if T satisfies the residuation condition shown below:

T (x, y) ≤ z iff y ≤ IT (x, z), for all x, y, z ∈ [0, 1].

We usually say that T and IT form and adjoint pair , represented by (T, IT ).

According to [BJ07],[FR94], among others, if T is any t-norm (not necessarily left-

continuous), then IT satisfies the following properties:

i. IT (1, y) = y, y ∈ [0, 1] (left neutrality property);

ii. IT (x, x) = 1, x ∈ [0, 1] (identity principle);

Besides, if IT is an R-implication based on a left-continuous t-norm, then it satisfies i.,

ii. and these two other properties:

iii. IT (x, IT (y, z)) = IT (y, IT (x, z)), x, y, z ∈ [0, 1] (exchange principle);

iv. x ≤ y iff IT (x, y) = 1, x, y ∈ [0, 1] (ordering property).
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The residua for the fundamental t-norms are [Met05]:

• Gödel implication:

PG(x, y) =

 1 , if x ≤ y

y , otherwise.

• Product implication:

PQ(x, y) =

 1 , if x ≤ y

y
x

, otherwise.

• Łukasiewicz implication: PŁ(x, y) = min(1, 1− x+ y).

2.1.1.4 Bi-implication

A fuzzy bi-implication was defined in [BC06] as follows. A function B : [0, 1]2 → [0, 1] is

a bi-implication, if it satisfies the following properties, for all x, y, z ∈ [0, 1]:

• B(x, y) = B(y, x);

• If x = y, then B(x, y) = 1;

• B(0, 1) = 0;

• If x ≤ y ≤ z, then B(x, y) ≥ B(x, z) and B(y, z) ≥ B(x, z).

2.1.1.5 Negation

A function N : [0, 1] → [0, 1] can model a negation if it is non-increasing (if x ≥ y, then

N(x) ≤ N(y), for all x, y ∈ [0, 1]), N(0) = 1 and N(1) = 0 [Met05].

We call a negation function strict if, and only if, it is strictly decreasing and continuous.

N is strong if, and only if, it is an involution i.e.: N(N(x)) = x, for all y ∈ [0, 1]. Observe

that strong negations are strict. If N is not strong, then N is called weak.
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2.2 Groups

A group G is an algebra 〈G, ∗, −1, 1〉 with a binary, a unary, and nullary operation, in which

the following properties hold:

• G1: x ∗ (y ∗ z) = (x ∗ y) ∗ z;

• G2: x ∗ 1 = 1 ∗ x = x;

• G3: x ∗ x−1 = x−1 ∗ x = 1.

A group G is Abelian (or commutative) if, in addition, the forth property is satisfied:

• G4: x ∗ y = y ∗ x.

A semigroup is an algebraic structure on a set, with a binary operator 〈G, ∗〉, in which

the multiplication operation (∗) is associative. And, a monoid is an algebra 〈M, ∗, 1〉, with a

binary operation satisfying G1 and G2. Or, on the other hand, a monoid can also be thought

as a semigroup with an identity element.

A commutative (or Abelian) semigroup is defined in [Háj98] as follows:

Definition 2.5 A semigroup 〈G, ∗〉 is commutative if it satisfies the axiom of commutativity:

x ∗ y = y ∗ x (for all x, y).

The concepts explained above are somehow linked to the following chapter, where the

fuzzy connectives on lattices are introduced, as well as the interval constructor.



Chapter 3

Fuzzy Connectives on Lattices and the

Interval Constructor

The lattice theory is the study of sets of objects called lattices. Although the origin of the

lattice concept can be traced back to Boole’s analysis of thought, the study of it was given a

great boost by a series of papers and a textbook [Bir67] written by Birkhoff.

3.1 The Lattice Theory

We can define lattice in two standard ways: as an algebraic structure or as a partial ordered

set. However, we can say that there is a biunivocal correspondence between them (for more

details refer to [BS81], [Joh82]). Both constructions can be considered equivalent and when-

ever we mention the word lattice throughout the text, it will mean, in general, lattice by the

first definition. But we can also use the second definition according to its convenience.

Concerning the algebraic definition, a nonempty set L can be defined as a lattice together

with two operations ∨ and ∧ named join and meet, respectively, if it satisfies the following

identities:
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• L1 Commutativity: x ∧ y = y ∧ x, and x ∨ y = y ∨ x;

• L2 Associativity: x ∧ (y ∧ z) = (x ∧ y) ∧ z, and x ∨ (y ∨ z) = (x ∨ y) ∨ z;

• L3 Idempotency: x ∧ x = x, and x ∨ x = x;

• L4 Absorption: x ∧ (x ∨ y) = x, and x ∨ (x ∧ y) = x.

An interesting example can be given if we let L be a set of propositions, ∧ denote the

conjunction and ∨ denote the disjunction. It’s well known that L1 to L4 are properties from

propositional logic which still hold in a lattice framework.

Explaining the other definition of a lattice requires a bit understanding of a partial order

on a set. Thus, we say that a binary relation ≤ on a set A is a partial order on the set A if the

reflexivity, anti-symmetry and transitivity conditions hold, where:

• Reflexivity means: a ≤ a;

• Anti-symmetry: a ≤ b and b ≤ a imply a = b; and,

• Transitivity: a ≤ b and b ≤ c imply a ≤ c.

We say ≤ is a total order on the set A if, in addition, for every a, b ∈ A, it satisfies either

a ≤ b or b ≤ a.

So, a nonempty set, with a partial order on it, is called a partially ordered set, poset for

short, and if the relation is a total order, then we call it a totally ordered set, or a linearly

ordered set, or simply a chain.

Now, let A be a subset of a poset P . We say an element p, in P , is an upper bound for A

if a ≤ p, for every a ∈ A. Besides, we say that p is the least upper bound of A, or supremum

of A (sup A), if p is an upper bound of A, and if b is another upper bound of A, then p ≤ b

(in other words, p is the smallest element among the upper bounds of A). Similarly, we can

understand the infimum as the greatest lower bound of A.
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A poset L is an ordered lattice if, and only if, for every a, b in L, both the supremum and

infimum exist. Each ordered lattice determines a lattice and vice versa.

Proposition 3.1 Let L = 〈L,≤〉 be an ordered lattice. Then, L = 〈L,∧,∨〉, where x ∧ y =

inf{x, y} and x ∨ y = sup{x, y}, is a lattice.

Proof: See [Joh82]. �

Examples: B = 〈{0, 1},≤〉, F = 〈[0, 1],≤〉 and IF = 〈I[0, 1],≤KM〉 are lattices, where

I[0, 1] = {[a, b] : 0 ≤ a ≤ b ≤ 1} and [a, b] ≤KM [c, d] iff a ≤ c and b ≤ d (note that ≤KM

is the Kulisch-Miranker order).

The algebraic lattices associated to B, F and IF are 〈{0, 1},∧B,∨B〉, 〈[0, 1],∧F ,∨F 〉

and 〈I[0, 1],∧IF ,∨IF 〉, respectively, where ∧B and ∨B are the classical conjunction and

disjunction, respectively; ∧F and ∨F are Gödel t-norm and t-conorm, respectively; and,

finally, ∧IF and ∨IF are defined by: [a, b] ∧IF [c, d] = [a ∧F c, b ∧F d] and [a, b] ∨IF [c, d] =

[a ∨F c, b ∨F d].

We can define an inherent order in a lattice L = 〈L,∧,∨〉, represented by ≤L. So, for all

x, y ∈ L, x ≤L y iff x ∧ y = x. Or, analogously, x ≤L y iff x ∨ y = y.

Proposition 3.2 If L = 〈L,∧,∨〉 is a lattice, then 〈L,≤L〉 is an ordered lattice, where

x ≤L y iff x = x ∧ y (or y = x ∨ y).

Proof: See [Joh82]. �

Observe that if 〈L,≤〉 is an ordered lattice, then the lattice, obtained as in proposition

3.1, has as an inherent order (≤L) the ≤ order itself. That is, if we apply proposition 3.1

to an ordered lattice 〈L,≤〉 and then, if we apply proposition 3.2 to the lattice obtained in

that way, we will get again the same ordered lattice 〈L,≤〉. Similarly, if L = 〈L,∧,∨〉

is a lattice, then, after applying proposition 3.2, we have an ordered lattice 〈L,≤L〉, which

after applying proposition 3.1, result in the same original lattice. With these results we can
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highlight the correspondence between a lattice and an ordered lattice, justifying the treatment

that a lattice and an ordered have the same structure. Therefore, from now on, we will call

both as lattices.

3.1.1 Classes of Lattices

A bounded lattice is an algebraic structureL = 〈L,∧,∨, 0, 1〉 such that 〈L,∧,∨〉 is a lattice,

and the constants 0 and 1 ∈ L satisfy the following properties:

• For all x ∈ L, x ∧ 1 = x and x ∨ 1 = 1;

• For all x ∈ L, x ∧ 0 = 0 and x ∨ 0 = x.

The constant 1 is called upper bound, or top of L, and 0 is the lower bound, or bottom

of L.

Some examples:

1. LT = 〈{1},∧,∨, 1, 1〉, where 1 ∧ 1 = 1 ∨ 1 = 1.

2. B = 〈B,∧,∨, 0, 1〉, where B = {0, 1} and ∧, ∨ are as in the Boolean algebra.

3. I = 〈[0, 1],∧,∨, 0, 1〉, where x ∧ y = min(x, y) and x ∨ y = max(x, y).

4. IQ = 〈[0, 1]∩Q,∧,∨, 0, 1〉, whereQ is the set of rational numbers, x∧y = min(x, y)

and x ∨ y = max(x, y).

A bounded lattice L is said complete if every subset M of L has both a least upper

bound and a greatest lower bound. In other words, a poset L is complete if both supremum

and infimum of L exist for each subset.

Note that all complete lattices are bounded (where the constant 0 equals the supremum

on the empty set and 1 equals the infimum on a given set L), but not all bounded lattices are
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complete, for example, the set IQ, since the set {x ∈ [0, 1] ∩ Q : x < 2 n
√

2 − 1} does not

have the supremum in Q.

The algebraic structure L = 〈L,∧,∨, ∗,⇒, 0, 1〉 is named residuated lattice if:

i. 〈L,∧,∨, 0, 1〉 is a bounded lattice;

ii. 〈L, ∗, 1〉 is a commutative monoid;

iii. ⇒ is a function L2 → L such that, for all x, y, z ∈ L : (x ∗ y) ≤L z iff y ≤L (x⇒ z),

where ≤L is the lattice usual order.

The second property tells us that given an associative and commutative function ∗ : L2 →

L, then x ∗ 1 = x, for all x ∈ L.

In [GCDK07], it is seen that the following properties are valid, for all x, y, z in the

residuated lattice L, where the notations ¬x and x⇔ y mean, respectively, x⇒ 0 and (x⇒

y) ∧ (y ⇒ x):

1. x ⇒ y is equal to the largest element z in L that satisfies x ∗ z ≤L y, so, we have

x⇒ y = sup{z ∈ L : x ∗ z ≤L y};

2. x ≤L ¬¬x;

3. If x ≤L y, then ¬y ≤L ¬x;

4. x ≤L y iff x⇒ y = 1;

5. x = y iff x⇔ y = 1;

6. x ≤L y ⇒ (x ∗ y);

7. x ∗ (x⇒ y) ≤L y (in particular: x ∗ ¬x = 0);

8. x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z);
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9. ¬(x ∨ y) = ¬x ∧ ¬y;

10. ¬(x ∗ y) = x⇒ ¬y.

Moreover, in residuated lattices with involutive negation (¬¬x = x), for every x, y ∈

L:

11. ¬(x ∧ y) = ¬x ∨ ¬y;

12. x⇒ y = ¬y ⇒ ¬x;

13. ¬(x⇒ y) = x ∗ ¬y.

Properties 9 and 11 are best known as the de Morgan laws .

The most well known residuated lattices are those on the unit interval [0, 1], with the

usual ordering. Besides, it is easily observed that ∗ is a t-norm on [0, 1] if 〈[0, 1],min,max,

∗,⇒, 0, 1〉 is a residuated lattice [GCDK07].

Although in literature, e.g. [Höh95], the name residuated lattice is often used for more

general structures, there is a different terminology, namely bounded integral commutative

residuated lattice, or BIC-lattice for short, which refers to more specific structures (e.g.

[GMO04] and [GCDK07]). We understand both terminologies refer to the same structure

and, from now on, we will conveniently substitute the term BIC-lattice for residuated lattice.

Residuated lattices are called complete if the algebra L = 〈L,∧,∨, ∗,⇒, 0, 1〉 satisfies

the following property:

iv. 〈L,∧,∨, 0, 1〉 is a complete lattice.

A structure 〈L,∧,∨,′ , 0, 1〉 is named a complemented lattice if 〈L,∧,∨, 0, 1〉 is a com-

plete lattice and it also satisfies the condition below:

v. For all x ∈ L, x ∨ x′ = 1 and x ∧ x′ = 0.
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In this case, x′ is called the complement of x.

Finally, a lattice is said to be distributive if both properties below are true:

vi. For all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

vii. For all x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Some algebras can be defined using some of the classes shown above. Hence, a comple-

mented and distributive lattice can define a Boolean algebra, which is a structure 〈L,∧,∨,′ ,

0, 1〉 such that, for all x, y, z ∈ L:

1. (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z);

2. x ∨ y = y ∨ x and x ∧ y = y ∧ x;

3. x ∨ x = x and x ∧ x = x;

4. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x;

5. For all x ⊆ L, sup x exist;

6. For all x ∈ L, x′ ∈ L exist such that x ∨ x′ = 1 and x ∧ x′ = 0;

7. For all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

8. For all x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

It can be seen that the four first properties indicate 〈L,∧,∨〉 as a lattice. The fifth one

indicates that (L,∧,∨, 0, 1) is complete. A complemented lattice 〈L,∧,∨,′ , 0, 1〉 is assured

by the sixth condition. Finally, conditions 7 and 8 guarantee a distributive lattice.

At last, a De Morgan algebra is a distributive complemented lattice L = 〈L,∧,∨,¬,

0, 1〉 such that the following properties are held:

• ¬(x ∨ y) = ¬x ∧ y and ¬(x ∧ y) = ¬x ∨ ¬y;

• ¬(¬x) = x.
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3.2 A Semantic for Fuzzy Logic using the Lattice Theory

Since t-norms are a relevant issue in fuzzy logics, a good generalization of them is undoubt-

edly important. In [BS05], we obtained a lattice interpretation of the classic propositional

connectives by generalizing some t-norms to bounded lattices. In this way:

Definition 3.1 The quintuple TL = 〈T,N, S, P,B〉 is a fuzzy generalization of the classic

propositional connectives to the bounded lattice framework, or L-interpretation for short.

Nevertheless, we concluded that given a lattice L = 〈L,∧,∨, 0, 1〉 and a fuzzy general-

ization TL:

i. T models the conjunction;

ii. N models the negation;

iii. S models the disjunction;

iv. P models the implication; and

v. B models the bi-implication.

Their definitions will be seen on the next subsections.

3.2.1 Lattice T-norm

In [BCBS07], we defined a lattice t-norm as follows:

Definition 3.2 Let L be a bounded lattice. A binary operation T on L is a triangular norm

on L, t-norm in short, if for each x, y, z ∈ L the following properties are satisfied:

1. Commutativity: T (x, y) = T (y, x);
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2. Associativity: T (x, T (y, z)) = T (T (x, y), z);

3. Neutral element: T (x, 1) = x; and

4. Monotonicity: If y ≤L z, then T (x, y) ≤L T (x, z).

The class of t-norms on a same bounded lattice can be partially ordered. Let T1 and T2

be t-norms on a bounded lattice L. Then, T1 is weaker than T2 or, equivalently, T2 is stronger

than T1, denoted by: T1 ≤L T2, if for each x, y ∈ L, T1(x, y) ≤L T2(x, y).

3.2.2 Lattice Negation

In order to obtain a lattice negation, N , on a bounded lattice L, we have:

Definition 3.3 Let L be a bounded lattice. A unary operation N on L is a negation on L if,

for each x, y ∈ L, the following properties are satisfied:

1. N(0) = 1 and N(1) = 0;

2. If x ≥L y, then N(x) ≤L N(y).

A negation can be called strong lattice negation if it also satisfies a third property:

N(N(x)) = x, for all x ∈ L.

3.2.3 Lattice T-conorm

Analogously, we can define a triangular conorm on a bounded lattice L.

Definition 3.4 LetL be a bounded lattice. A binary operation S on L is a triangular conorm

on L, t-conorm in short, if for each x, y, z ∈ L, the following properties are satisfied:
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1. Commutativity: S(x, y) = S(y, x);

2. Associativity: S(x, S(y, z)) = S(S(x, y), z);

3. Neutral element: S(x, 0) = x; and

4. Monotonicity: If y ≤L z, then S(x, y) ≤L S(x, z).

Proposition 3.3 Let L be a bounded lattice, T a t-norm on L and N a strong negation on L.

Then, ST (x, y) = N(T (N(x), N(y))) is a t-conorm on L.

Proof: For all x, y, z ∈ L,

Commutativity:

ST (x, y) = N(T (N(x), N(y))), by the definition of ST .

= N(T (N(y), N(x))), by the commutativity of T.

= ST (y, x), by the definition of ST .

Associativity:

ST (x, ST (y, z)) = N(T (N(x), N(ST (y, z)))), by the definition of ST .

= N(T (N(x), N(N(T (N(y), N(z)))))), by the definition of ST .

= N(T (N(x), T (N(y), N(z)))), by the strong negation.

= N(T (T (N(x), N(y)), N(z))), by the associativity of T.

= N(T (N(N(T ((N(x), N(y)), N(z)))))), by the strong negation.

= ST (N(T (N(x), N(y))), z), by the definition of ST .

= ST (ST (x, y), z), by the definition of ST .

Neutral element:

ST (x, 0) = N(T (N(x), N(0)))

= N(T (N(x), 1)), by the negation definition.

= N(N(x)), by the neutral element property of T.

= x
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Monotonicity:

We know that ST (x, y) = N(T (N(x), N(y))) and ST (x, z) = N(T (N(x), N(z))), and

by the monotonicity of T , such that y ≤L z, we can conclude that N(T (N(x), N(y)))

≤L N(T (N(x), N(z))), that is ST (x, y) ≤L ST (x, z).

Or, in a different way, we can see that: y ≤ z ⇒ N(y) ≥ N(z);

T (N(x), N(y)) ≥ N(T (N(x), N(z));

N(T (N(x), N(y))) ≤ N(T (N(x), N(z)));

ST (x, y) ≤ ST (x, z). �

3.2.4 Lattice Implication

A lattice implication can also be defined in a bounded lattice. As there are a lot of definitions

for fuzzy implication, together with the related properties, we emphasize the ones listed

below.

Definition 3.5 Let L be a bounded lattice. A binary operation P on L is an implication on

L if, for each x, y, z ∈ L:

1. x ≤L z implies P (x, y) ≥L P (z, y), for all x, y, z ∈ L;

2. y ≤L z implies P (x, y) ≤L P (x, z), for all x, y, z ∈ L;

3. P (0, y) = 1, for all y ∈ L;

4. P (x, 1) = 1, for all y ∈ L;

5. P (1, 0) = 0.

In [GCDK07, prop.2] (proof in [Tur99]), it was stated that:
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Proposition 3.4 Let 〈L,∧,∨, ∗,⇒, 0, 1〉 be a residuated lattice. Then the following property

is valid, for every x, y and z ∈ L:

(1) x⇒ y = sup{z ∈ L : x ∗ z ≤L y}.

This proposition shows that the ⇒ operation (or P ) in a residuated lattice is completely

determined from the ∗ operation (or T ).

Proposition 3.5 Let 〈L,∧,∨, ∗,⇒, 0, 1〉 be a residuated lattice. Then the following property

is valid, for every x, y and z ∈ L:

(1) x ∗ y = inf{z ∈ L : x ≤L (y ⇒ z)}.

Proof: This follows from the fact that the relation between ∗ and ⇒ is based on Galois

connection [GHK+80]. �

Proposition 3.6 Let 〈L,∧,∨, ∗,⇒, 0, 1〉 be a residuated lattice. Then ∗ is a t-norm on L.

Proof: Once 〈L, ∗, 1〉 is a monoid, then it only remains to prove that it is monotonic. Let

y ≤L y′, then, by the first property of definition 3.5, we have y ⇒ z ≥L y′ ⇒ z. So,

{z ∈ L : x ≤L y ⇒ z} ⊇ {z ∈ L : x ≤L y′ ⇒ z}. Therefore, inf{z ∈ L : x ≤L y ⇒

z} ≤L inf{z ∈ L : x ≤L y′ ⇒ z}, and by proposition 3.5, x ∗ y ≤L x ∗ y′. �

Note that the residuum of a t-norm ∗ is indeed an implication, thus it satisfies the proper-

ties on definition 3.5.

Proposition 3.7 Let L = 〈L,∧,∨, 0, 1〉 be a bounded lattice and ∗ a t-norm on L. Then,

L = 〈L,∧,∨, ∗,⇒∗, 0, 1〉 is a residuated lattice.

Proof: We know L = 〈L,∧,∨, ∗,⇒∗, 0, 1〉 is bounded and, from definition 3.2, it is clear

the associativity and the neutral element guarantee that 〈L, ∗, 1〉 is a commutative monoid.
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According to the definition of residuated lattice, it only remains to prove that (∗,⇒∗) form

an adjoint pair. So, x∗y ≤ z iff y ∈ {u ∈ L : x∗u ≤L z} iff y ≤L sup{u ∈ L : x∗u ≤L z}

iff y ≤L x⇒∗ z. �

Corollary 3.1 Let L = 〈L,∧,∨, 0, 1〉 be a bounded lattice. Then L = 〈L,∧,∨, ∗,⇒, 0, 1〉

is a residuated lattice iff ∗ is a t-norm on L and ⇒ = ⇒∗.

Proof: Straightforward from propositions 3.4, 3.6 and 3.7. �

In case⇒ is a lattice R-implication based on a left-continuous t-norm on L, then proper-

ties i. to iv. hold for ⇒, where iii. and iv. are seen below:

iii. x⇒ (y ⇒ z) = y ⇒ (x⇒ z), x, y, z ∈ L (exchange principle);

iv. x ≤L y iff x⇒ y = 1, x, y ∈ L (ordering property).

3.2.5 Lattice Bi-Implication

The lattice bi-implication, in the bounded lattice L, can be defined as well:

Definition 3.6 Let L be a bounded lattice. A binary operation B on L is a bi-implication on

L if, for each x, y, z ∈ L:

1. B(x, y) = B(y, x);

2. If x = y, then B(x, y) = 1;

3. B(0, 1) = 0;

4. If x ≤L y ≤L z, then B(x, y) ≥L B(x, z) and B(y, z) ≥L B(x, z).
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3.3 The Interval Constructor on Lattices

The pursue of dealing with uncertainty, aiming the control of errors in a computation, has

contributed to the growing interest on interval mathematics, IM for short, whose main goal

is to give a mathematical foundation to interval computations. It was firstly introduced by

R. E. Moore in [Moo59] and, in this context, real values (completely known or not) are

represented by closed intervals (containing their values), instead of being represented by

floating-point numbers. IM can guarantee, through the maximum exactness principle (di-

rected rounding) and the optimal scalar product, that the resulting interval, obtained after

the process of interval computation, contains the punctual result - meaning it is an ap-

proximation of the exact result - [Kul99],[Hay03], [BDR04], where the diameter of the

interval is an indication of the maximum error that could have been occurred. In this

way, the interval computation permits an automatic and rigid control of errors in numer-

ical computation. For instance, errors of initial data modeling, as well as rounding and

errors of the computational process [Moo59], [Moo79],[Kul99],[Hay03]. Besides, IM has

been extensively used to represent uncertain data or qualitative values in different areas,

such as Scientific and Technological Computation, Artificial Intelligence, Soft Computing,

etc. ([KK96],[KNDB03],[ADC04], [BDR04], [DC04]). Many applications of the IM can be

found at the address: http://www.cs.utep.edu/interval-comp/, or in the work of Kearfott and

Kreinovich [KK96].

The compatibility of IM and fuzzy logics seems reasonable, once the uncertainty can

also be in the membership degree. If an expert, for example, is uncertain about something,

he can also be uncertain about the degree of belief. Hence, we can understand the relevance

of the interval-valued fuzzy set theory, introduced by [Jah75], [Zad75], among other authors,

where the traditional [0, 1]-valued membership degrees were replaced by intervals in [0, 1].
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3.3.1 Interval Constructor

It is not difficult to see that an interval has a dual nature. It can be seen as a set of real

numbers, but also, it can be understood as an ordered pair of real numbers.

Let IR be the set of intervals with real numbers as end points, where IR = {[x, y] : x, y ∈

R and x ≤ y}. IR is associated with two projections: πa : IR→ R and πb : IR→ R. The

projections πa and πb are defined as follows:

πa([a, b]) = a and πb([a, b]) = b

For any interval variable X , πa(X) and πb(X) will be denoted, as a convention, by x and

x, respectively. Thus, X = [x, x].

Despite real numbers have a natural total order, the usual order on IR are all non-total

orders. These partial orders can be defined taking into account the different natures of in-

tervals, for instance, if it is seen as a set of R, the natural partial order is the inclusion

(introduced in [Sun58]). Then, formally, for each X, Y ∈ IR, X ⊆ Y ⇔ y ≤ x ≤ x ≤ y.

When an interval is considered as ordered pair of real numbers, then the natural order is the

one inherited from the Cartesian product order, first considered by Kulisch and Miranker in

[KM81]. Formally, for each X, Y ∈ IR: X ≤ Y ⇔ x ≤ y and x ≤ y. Finally, if an

interval is dealt as a representation of an unknown real number, or simply information, the

natural order is the one introduced by Scott in [Sco70], and also used by Acióly in [Aci91]

to provide interval mathematics with a computational foundation. So, for each X, Y ∈ IR:

X v Y ⇔ x ≤ y ≤ y ≤ x.

Observe that the real intervals and also the order on the set of real intervals depend on

the usual order in R. In [CBB00], the interval constructor was formalized (considering any

partially ordered set) on the category POSet, as follows:

Definition 3.7 Let L = 〈L,≤〉 be a poset. The poset I(L) = 〈I[L],≤I〉, where
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• I[L] = {X : x, x ∈ L and x ≤ x}

• X ≤I Y ⇔ x ≤ y and x ≤ y

is called the poset of intervals of L.

There are also two natural functions from I[L] to L, the left and right projections πa :

I[L] → L and πb : I[L] → L, respectively. They were also defined by: πa(X) = x and πb(X)

= x.

It is clear that, despite of their dual nature, the intervals have quite similar definitions.

And we will use the second point of view, as we are mostly dealing with Kulisch and Mi-

ranker order. So, from now on, our interval constructor will be represented by I.

3.3.2 Interval Constructor on Classes of Lattices

In order to obtain the desired idea of an interval residuated lattice, I[L] for short, we

need definition 3.7, where I[L] is our interval constructor I applied to a residuated lattice

L. Hence, we firstly must introduce our interval constructor on the classes of lattices seen on

the previous chapter.

Proposition 3.8 Let L = 〈L,∧,∨〉 be a lattice. Then, I[L] = 〈I[L],uI,tI〉, where:

• I[L] = {X : x, x ∈ L and x ≤L x},

• X uI Y = [x ∧ y, x ∧ y] and

• X tI Y = [x ∨ y, x ∨ y],

is also a lattice.
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Proof:

Commutativity:

X uI Y = Y uI X

= [y, y] uI [x, x], by proposition 3.8.

= [y ∧ x, y ∧ x], by proposition 3.8.

= [x ∧ y, x ∧ y], by the commutativity of L.

= [x, x] uI [y, y], by proposition 3.8.

= X uI Y, by proposition 3.8.

and

X tI Y = Y tI X

= [y, y] tI [x, x], by proposition 3.8.

= [y ∨ x, y ∨ x], by proposition 3.8.

= [x ∨ y, x ∨ y], by the commutativity of L.

= [x, x] tI [y, y], by proposition 3.8.

= X tI Y ;

Associativity:

X uI (Y uI Z) = (X uI Y ) uI Z

= [x, x] uI ([y, y] uI [z, z])

= [x, x] uI [y ∧ z, y ∧ z]

= [x ∧ (y ∧ z), x ∧ (y ∧ z)]

= [(x ∧ y) ∧ z, (x ∧ y) ∧ z], by the associativity of L.

= ([x, x] uI [y, y]) uI [z, z]

= (X uI Y ) uI Z

and
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X tI (Y tI Z) = (X tI Y ) tI Z

= [x, x] tI ([y, y] tI [z, z])

= [x, x] tI [y ∨ z, y ∨ z]

= [x ∨ (y ∨ z), x ∨ (y ∨ z)]

= [(x ∨ y) ∨ z, (x ∨ y) ∨ z], by the associativity of L.

= ([x, x] tI [y, y]) tI [z, z]

= (X tI Y ) tI Z;

Idempotency:

X uI X = X

= [x, x] uI ([x, x]

= [x ∧ x, x ∧ x]

= [x, x], by the idempotency of L.

= X

and

X tI X = X

= [x, x] tI ([x, x]

= [x ∨ x, x ∨ x]

= [x, x], by the idempotency of L.

= X;

Absorption:

X uI (X tI Y ) = X

= [x, x] uI ([x, x] tI [y, y])

= [x, x] uI [x ∨ y, x ∨ y]

= [x ∧ (x ∨ y), x ∧ (x ∨ y)]

= [(x, x], by the absorption of L.

= X

and
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X tI (X uI Y ) = X

= [x, x] tI ([x, x] uI [y, y])

= [x, x] tI [x ∧ y, x ∧ y]

= [x ∨ (x ∧ y), x ∨ (x ∧ y)]

= [(x, x], by the absorption of L.

= X. �

Remark 3.1 The order of the lattice I[L] coincides with the interval constructor order on

the lattice 〈L,≤〉, that is: ≤I[L] = ≤I.

Proposition 3.9 Let L = 〈L,∧,∨, 0, 1〉 be a bounded lattice. Then, I[L] = 〈I[L],uI,tI,

[0, 0], [1, 1]〉 is also a bounded lattice, where: [1, 1] is the top of L and [0, 0] is the bottom

of L.

Proof: Since, by proposition 3.8, I[L] = 〈I[L],uI,tI〉 is a lattice, then we only must prove

that I[L] also satisfies the following two properties:

• For all X ∈ I[L], X uI [1, 1] = X and X tI [1, 1] = [1, 1];

• For all X ∈ I[L], X uI [0, 0] = [0, 0] and X tI [0, 0] = X .

Thus, let X ∈ I[L], then:

X uI [1, 1] = [x, x] uI [1, 1]

= [x ∧ 1, x ∧ 1]

= [x, x]

= X;

X tI [1, 1] = [x, x] tI [1, 1]

= [x ∨ 1, x ∨ 1]

= [1, 1];
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X uI [0, 0] = [x, x] uI [0, 0]

= [x ∧ 0, x ∧ 0]

= [0, 0]

and

X tI [0, 0] = [x, x] tI [0, 0]

= [x ∨ 0, x ∨ 0]

= [x, x]

= X. �

Lemma 3.1 Let 〈L, ∗, 1〉 be a commutative monoid on a poset L, then 〈I[L], I[∗], [1, 1]〉 is

a commutative monoid on the poset I[L], where the operation I[∗] is defined as follows:

X I[∗] Y = [x ∗ y, x ∗ y].

Proof: Straightforward from definition of I[∗] and the fact that 〈L, ∗, 1〉 is a commutative

monoid, we know I[∗] is commutative and it has [1, 1] as neutral element. However, the

associativity of I[∗] deserves a bit of attention:

X I[∗] (Y I[∗] Z) = X I[∗] [y ∗ z, y ∗ z]

= [x ∗ (y ∗ z), x ∗ (y ∗ z)]

= [(x ∗ y) ∗ z, (x ∗ y) ∗ z]

= ([x ∗ y, x ∗ y]) I[∗] Z

= (X I[∗] Y ) I[∗] Z. �

Proposition 3.10 LetL = 〈L,∧,∨, ∗,⇒, 0, 1〉 be a residuated lattice. Then, I[L] = 〈I[L],uI,

tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also a residuated lattice, where X I[⇒] Y = [x ⇒ y, x ⇒ y].

Moreover, I[∗] and I[⇒] form an adjoint pair.

Proof: By proposition 3.9, I[L] = 〈I[L],uI,tI, [0, 0], [1, 1]〉 is a bounded lattice and by

lemma 3.1, 〈I[L], I[∗], [1, 1]〉 is a commutative monoid. Then, it would only remain to prove

that I[⇒] is a function I[L]2 → I[L] such that, for all X, Y, Z ∈ I[L] : (X I[∗] Y ) ≤I Z iff

Y ≤I (X I[⇒] Z). However, this proof is analogous to the one used to prove proposition

3.7, as L is a residuated lattice. �
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3.3.3 The Interval Constructor on Fuzzy Connectives

In [BCBS07], we obtained an important result showing how to transform an arbitrary t-norm,

on a bounded lattice, into a t-norm on its interval bounded lattice.

Proposition 3.11 Let ∗ be a t-norm on the bounded lattice L. Then I[∗] : I[L]2 → I[L]

defined by

X I[∗] Y = [x ∗ y, x ∗ y]

is a t-norm on the bounded lattice I[L].

Proof: It is easy to see that the commutativity, monotonicity and neutral element ([1, 1])

properties of I[∗] follow straightforward from the same properties of the t-norm ∗. Then, it

only remains to prove the associativity property, which is shown below:

X I[∗](Y I[∗] Z) = X I[∗] [y ∗ z, y ∗ z]

= [x ∗ (y ∗ z), x ∗ (y ∗ z)]

= [(x ∗ y) ∗ z, (x ∗ y) ∗ z]

= ([x ∗ y, x ∗ y]) I[∗] Z

= (X I[∗] Y ) I[∗] Z. �

So, if ∗ is a t-norm on the bounded latticeL, then I[∗] is an interval t-norm on the bounded

lattice I[L].

Using the same idea, we are going to introduce here some other definitions, in order

to obtain an interval t-conorm on a bounded lattice, as well as the interval implication and

negation. Thus, to define how to transform an arbitrary t-conorm on a bounded lattice into a

t-conorm on its interval bounded lattice, we have the following proposition:

Proposition 3.12 Let S be a t-conorm on the bounded lattice L. Then I[S] : I[L]2 → I[L]

defined by
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I[S](X, Y ) = [S(x, y), S(x, y)]

is a t-conorm on bounded lattice I[L].

Proof: It is also easy to see that the commutativity, monotonicity and neutral element ([0, 0])

properties of I[S] follow straightforward from the same properties of the t-conorm S. We

must observe though, the associativity property, which is shown below:

I[S](X, I[S](Y, Z)) = I[S](X, [S(y, z), S(y, z)])

= [S(x, S(y, z)), S(x, S(y, z))]

= [S(S(x, y), z), S(S(x, y), z)]

= I[S]([S(x, y), S(x, y)], Z)

= I[S](I[S](X, Y ), Z). �

So, if S, or analogously ⊕ (infix notation), is a t-conorm on the bounded lattice L, then

I[S], or I[⊕], is an interval t-conorm on the bounded lattice I[L].

An arbitrary implication ⇒, on a bounded lattice, can be transformed as well, into an

implication on its interval bounded lattice, represented here by I[⇒]. Despite of the many

different definitions for fuzzy implications and their related properties, we will only consider

some of them. The following proposition shows us how to achieve I[⇒], based on the work

of Bedregal et. al. ([BSDR07]):

Proposition 3.13 A function I[⇒] : I[L]2 → I[L] is an interval fuzzy implication if the

following conditions are satisfied, for all X,Y, Z ∈ I[L]:

1. X ≤I Z implies X I[⇒] Y ≥I Z I[⇒] Y ;

2. Y ≤I Z implies X I[⇒] Y ≤I X I[⇒] Z;

3. [0, 0] I[⇒] Y = [1, 1];

4. X I[⇒] [1, 1] = [1, 1];
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5. [1, 1] I[⇒] [0, 0] = [0, 0].

Proof: See [BSDR07]. �

Another implication on the bounded lattice I[L], proposed in [BSDR07], can be seen

below:

Proposition 3.14 Let I[⇒] be an implication on the bounded lattice I[L]. Then I[⇒], defined

by

X I[⇒] Y = [x⇒ y, x⇒ y]

is an implication on the bounded lattice I[L] such that the following properties are satis-

fied:

1. Y ≤I Z implies X I[⇒] Y ≤I X I[⇒] Z;

2. X I[⇒] (Y I[⇒] Z) = Y I[⇒] (X I[⇒] Z);

3. X I[⇒] Y = [1, 1], iff x ≤I y.

Proof: See [BSDR07]. �

Proposition 3.15 Let ∗ be a t-norm on a bounded lattice L, then (X ⇒I[∗] Y = sup{Z ∈

I[L] : X I[∗] Z ≤I Y } is a R-implication on I[L]. Moreover, ⇒I[∗] = I[⇒∗]

Proof: Analogous to [BSDR07, Theorem 6.9]. �

Let L = 〈L,∧,∨, ∗,⇒, 0, 1〉 be a residuated lattice. It is clear, by the corollary 3.1, that

(∗,⇒) form an adjoint pair [EG01]. Then, to obtain the adjoint pair, after the addition of the

interval constructor, is straightforward: (I[∗], I[⇒]).



3. Fuzzy Connectives on Lattices and the Interval Constructor 39

Figure 3.1: Commutative diagram relating ∗,⇒, I[∗] and I[⇒].

With these results, one important conclusion, obtained in [BSDR07], was the fact that the

diagram shown in figure 3.1 above commutes. This diagram represents the idea of existing

two possible ways to obtain I[⇒].

On one hand, we can add the interval constructor directly to ⇒. On the other hand, we

can first add it to the t-norm ∗ and then, from I[∗], we can obtain I[⇒]. It was proved I[⇒]

and ⇒I[∗] are equal.

Finally, transforming an arbitrary negation in a bounded lattice into a negation on its

interval bounded lattice is done as follows.

Proposition 3.16 Let N be a negation on the bounded lattice L. Then I[N ] : I[L] → I[L]

defined by

I[N ](X) = [N(x), N(x)]

is a negation on the bounded lattice I[L].

Proof: The properties below are held:

1. Trivially, I[N ]([0, 0]) = [1, 1] and I[N ]([1, 1]) = [0, 0].

2. IfX ≥I Y , then x ≥ y and x ≥ y. So, by the antitonicity of N,N(y) ≥ N(x), N(y) ≥

N(x), N(y) ≥ N(y) and N(x) ≥ N(x). Hence, [N(y), N(y)] ≥I [N(x), N(x)], i.e

I[N ](Y ) ≥I I[N ](X). �

Proposition 3.17 If N is a strong lattice negation, then I[N ] is also a strong negation.
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Proof: From the definition of lattice negation on the bounded lattice I[L], we have:

I[N ](I[N ](X)) = I[N ](N(x), N(x))

= [N(N(x)), N(N(x))]

= [x, x]

= X, for all X ∈ I[L]. �

Most of the definitions and propositions given on this chapter, especially the ones where

the interval constructor I was applied to classes of residuated lattices and fuzzy connectives,

will be fundamental to prove that some classes of ML-algebras are preserved by the inter-

val constructor. Monoidal Logic and its algebraic counterpart, namely ML-algebra, will be

introduced on the next chapter.



Chapter 4

ML logic and ML-algebras

The following sections will discuss a little bit of Monoidal Logic (ML) and ML-algebra.

4.1 Monoidal Logic

Monoidal Logic, ML for short, introduced by Höhle in [Höh95], whose algebraic coun-

terpart is the class of residuated lattices, gave a common framework to several first order

non-classical logics, such as Linear logic, Łukasiewicz logic, among others. This logic was

built up from the following primitive connectives: ∗,→,∧ and ∨, and the truth constant 0 1.

We can note that the connectives ∧ and ∨ can not be defined from the others, and this is the

reason why they were introduced as primitive connectives.

The axioms of ML are listed below:

• ML1 ((α→ β) → ((β → γ) → (α→ γ))), Syllogism Law;

• ML2 (α→ (α ∨ β));

• ML3 (β → (α ∨ β));
1Höhle uses negation as primitive connective, in the original formal system, in [Höh95]. However, we

prefer to use the axiomatic system, given in [Got00], which is equivalent.
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• ML4 ((α→ γ) → ((β → γ) → ((α ∨ β) → γ)));

• ML5 ((α ∧ β) → α);

• ML5a ((α ∗ β) → α);

• ML6 ((α ∧ β) → β);

• ML6a ((α ∗ β) → (β ∗ α));

• ML6b (((α ∗ β) ∗ γ) → (α ∗ (β ∗ γ)));

• ML7 ((γ → α) → ((γ → β) → (γ → (α ∧ β))));

• ML8 ((α→ (β → γ)) → ((α ∗ β) → γ)), Importation Law;

• ML9 (((α ∗ β) → γ) → (α→ (β → γ))), Exportation Law;

• ML10 ((α ∗ ¬α) → β), Duns Scotus;

• ML11 ((α→ (α ∗ ¬α)) → ¬α).

The inference rule of ML is modus ponens. ML1 is also known as the Syllogism Law,

ML8 and ML9 are the Importation and Exportation Laws, respectively, and ML10 is known

as Duns Scotus.

Some extensions of this logic seem quite interesting because there is a sort of interaction

between these extensions and other logics. ML extensions include: MTL (Monoidal T-norm

based Logic), introduced by Esteva and Godo in [EG01] (which is intended to cope with the

tautologies of left-continuous t-norms and their residua); IMTL (Involutive Monoidal t-norm

logic), WNM (Weak Nilpotent Minimum logic) and NM (Nilpotent Minimum logic), which

are extensions of MTL.

In figure 4.1, there is a diagram of logics (and their axioms) and the relationships between

ML and MTL with its extensions, BL (Basic Fuzzy logic, that is the many-valued residuated

logic, introduced by Hájek in [Háj98]), Łukasiewicz logic, and Affine Multiplicative Linear



4. ML logic and ML-algebras 43

logic, AMALL for short, a propositional fragment of Girard’s Linear logic, in [Gir87] and

[Tro92]. The arrows indicate the extensions labeled with the axioms added.

Figure 4.1: Diagram of logics and their relating axioms

Observing the diagram more carefully, we can notice that by adding the prelinearity

axiom (PRL)(ϕ → ψ) ∨ (ψ → ϕ) and axiom (INV), defined by: (INV)¬¬ϕ → ϕ, to

Monoidal logic, we obtain MTL and AMALL, respectively. Analogously, IMTL was ob-

tained either after axiom (PRL) was added to AMALL or axiom (INV) was added to MTL.

Weak Nilpotent Minimum logic resulted by the addition of axiom (WNM) to MTL, where

(WNM)((ϕ&ψ) → 0) ∨ ((ϕ ∧ ψ) → (ϕ&ψ)). Nilpotent Minimum logic (NM) can be seen

as an extension of WNM logic with axiom (INV) or an extension of IMTL logic with axiom

(WNM). Finally, BL was obtained by adding the divisibility axiom (DIV) to MTL, where

(DIV) ϕ&(ϕ→ ψ) ≡ ϕ∧ψ and Łukasiewicz logic resulted by the extensions of IMTL logic

and BL after the axioms (DIV) and (INV) were included, respectively. The following table

(4.1) is a summary of the axiom acronyms introduced so far:
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Table 4.1: acronyms and axioms

Acronym Axiom

PL (ϕ→ ψ) ∨ (ψ → ϕ)

INV ¬¬ϕ→ ϕ

WNM ((ϕ&ψ) → 0) ∨ ((ϕ ∧ ψ) → (ϕ&ψ))

DIV ϕ&(ϕ→ ψ) ≡ ϕ ∧ ψ

4.2 ML-algebra

As stated before, the algebraic counterpart of ML logic is the class of residuated lattices.

Some authors prefer to use the bounded integral commutative lattice terminology (e.g. [GMO04]),

but once both structures are essentially the same [GCDK07], we consider the following def-

inition (based on [GMO04] and [Höh96]) for a ML-algebra:

Definition 4.1 A = 〈L,∧,∨, ∗,⇒, 0, 1〉 is a ML-algebra if:

1. 〈L,∧,∨〉 is a bounded lattice with order ≤L, top element 1 and bottom 0;

2. 〈L, ∗, 1〉 is a commutative semigroup with unit element 1;

3. ∗ and ⇒ form an adjoint pair (i.e. y ≤L x⇒ z iff x ∗ y ≤L z , for all x, y, z ∈ L).

Thus, ML-algebras are residuated lattices.

The unary operation ¬, defined by ¬x =def x→ 0, is called negation. And, we can also

define the operation: x⊕ y =def ¬(¬x ∗ ¬y), called disjunction.

Many classes of ML-algebras can be obtained by including some properties which, in

the end, means that refinements of ML-algebras, suitable for fuzzy logics, are defined by

the addition of specific axioms to the Monoidal Logic. In this way, we have the following

classes of residuated lattices, resulted from the following definitions:
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Definition 4.2 A ML-algebra 〈L,∧,∨, ∗,⇒, 0, 1〉 is

(INV) dualizing iff ¬¬x = x, for all x ∈ L;

(G) idempotent iff x ∗ x = x, for all x ∈ L;

(PRL) prelinear iff (x⇒ y) ∨ (y ⇒ x) = 1, for all x, y ∈ L;

(DIV) divisible iff x ∧ y = x ∗ (x⇒ y), for all x, y ∈ L;

(S) weakly contracting iff x ∧ ¬x = 0, for all x ∈ L;

(
∏

) weakly cancellative iff ¬¬x ≤ (x⇒ (x ∗ y)) ⇒ y, for all x, y ∈ L.

These classes can receive special names, such as the Dualizing ML-algebra, which is

called AMALL-algebra, for short (standing for the affine multiplicative additive fragment of

Linear logic). Other classes are definitely known in the literature, for instance, the second

one, which is also called Prelinear ML-algebra, is the MTL-algebra (introduced in [EG01]),

where ∗ is the left-continuous t-norm and ⇒∗ is the residumm of ∗, forming the adjoint pair

(∗,⇒∗).

Table 4.2: Classes of residuated lattices and their respective names

Name Class of Residuated Lattices Property included

AMALL-algebra Dualizing ML-algebra ML + (INV)

MTL-algebra Prelinear ML-algebra ML + (PRL)

IMTL-algebra Dualizing MTL-algebra MTL + (INV)

SMTL-algebra Weakly contracting MTL-algebra MTL + (S)

BL-algebra Divisible MTL-algebra MTL + (DIV)

Ł-algebra Dualizing BL-algebra BL + (INV)

G-algebra Idempotent BL-algebra BL + (G)∏
-algebra Weakly contracting and weakly BL + (S) + (

∏
)

cancellative BL-algebra
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Different classes of ML-algebras (some of which are very known in the literature) can be

obtained whenever we add one of the above properties. Observe table (4.2) above.

The most famous members of these classes are: MTL-algebra, IMTL-algebra, SMTL-

algebra, each one having the left-continuous t-norm ∗ and its residuum ⇒∗, and BL-algebra,

Ł-algebra, G-algebra,
∏

-algebra, whose t-norms are continuous with the correspondent

residua. More specifically, the continuous t-norm ∗ of Ł-algebra, G-algebra and
∏

-algebra

are the Łukasiewicz, Gödel and Product t-norms, respectively.

Note that we write �L A iff A is valid in all L-algebras.

The understanding of this chapter (and undoubtedly the others) is essential to the follow-

ing one, where we are going to present the interval constructor on ML-algebras. Actually,

the majority of definitions and propositions given throughout the previous chapters is going

to be used (directly or indirectly) during next chapter.



Chapter 5

The Interval Constructor on ML

A more complete diagram of the relationships between fuzzy logics was given in [GMO04],

shown on figure 5.1 below:

Figure 5.1: Relationships between fuzzy logics.

We can observe other logics were included, as well as other axioms. For example, Gödel

Logic (G), obtained after the inclusion of axiom (G) : ϕ→ (ϕ&ϕ) on BL, and SMTL logic,

an extension of MTL after the inclusion of axiom (S) : ϕ ∧ ¬ϕ→ 0.
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Based on this diagram and the one given on chapter 4 (figure 4.1), we will draw new

diagrams to show the relationships between some subclasses of ML-algebras and the interval

constructor I, in order to show the subclasses which are preserved by the interval constructor.

5.1 The Interval Constructor on ML-algebras

On the previous chapter, we saw that a ML-algebra (L,∧,∨, ∗,⇒, 0, 1) is a residuated lattice

such that (∗,⇒) form an adjoint pair. Next, we will prove that the class of ML-algebra is

preserved by the interval constructor. Formally:

Proposition 5.1 Let A = 〈L,∧,∨, ∗,⇒, 0, 1〉 be a ML-algebra. Then I[A] = 〈I[L],uI,tI,

I[∗], I[⇒], [0, 0], [1, 1]〉 is also a ML-algebra.

Proof: By proposition 3.10, I[L] = 〈I[L],uI,tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is a residuated lat-

tice. Thus, by definition of ML-Algebra it only remains to prove that I[∗] and I[⇒] form

an adjoint pair, i.e. that Y ≤I X I[⇒] Z iff X I[∗] Y ≤I Z, for all X,Y, Z ∈ I[L]. So,

X I[∗] Y ≤I Z iff Y ∈ {U ∈ I[L] : X I[∗] U ≤I Z} iff Y ≤I sup{U ∈ I[L] : X I[∗] U ≤I

Z} iff Y ≤I X I[⇒] Z. �

The interval constructor I, on some subclasses of ML-algebras, can also be done by the

addition of some properties to certain classes of residuated lattices. In fact, the different

classes of residuated lattices, seen on the chapter before, are ML-algebras (or other sub-

classes of them) which satisfy a certain property (i.e., involution, prelinearity, divisibility,

etc.). So, for instance, if a ML-algebra satisfies the dualizing property (INV), we say it is an

AMALL-algebra. And the correspondent algebra with the interval constructor is obtained as

follows:

Proposition 5.2 Let AM = 〈L,∧,∨, ∗,⇒, 0, 1〉 be an AMALL-algebra. Then, I[AM] =

〈I[L],uI,tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also an AMALL-algebra.
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Proof: By proposition 5.1, I[AM] is already a ML-algebra. Then, by the definition of

AMALL-algebra, it only remains to prove that: (X I[⇒] [0, 0]) I[⇒] [0, 0] = X , for all

X ∈ I[L].

By the definition of I[⇒]:

(X I[⇒] [0, 0]) I[⇒] [0, 0] = ([x⇒ 0, x⇒ 0]) I[⇒] [0, 0]

= [(x⇒ 0) ⇒ 0, (x⇒ 0) ⇒ 0]

= [x, x]

= X . �

We will start drawing a figure to notice the relationships between the classes of ML-

algebras according to the propositions presented. The first figure is shown below:

Figure 5.2: I[AM]; a dualizing I[A].

Hence, the dualizing condition holds, which means I[AM] is an AMALL-algebra (ob-

serve figure 5.2 above). Besides, by propositions 5.2 and 3.10, and observing table 4.2, we

may conclude the following diagram commutes:

Figure 5.3: I[AM]; a dualizing I[A].

Using a similar idea, if an AMALL-algebra satisfies the following property (PRL): (x⇒

y) ∨ (y ⇒ x), we say it is an IMTL-algebra. Then:
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Proposition 5.3 Let IM = 〈L,∧,∨, ∗,⇒, 0, 1〉 be an IMTL-algebra. Then, I[IM] =

〈I[L],uI,tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also an IMTL-algebra.

Proof: By proposition 5.2, I[IM] is already an AMALL-algebra. So, it only remains to

prove that X I[⇒] Y tI Y I[⇒] X = [1, 1].

X I[⇒] Y tI Y I[⇒] X = [x⇒ y, x⇒ y] tI [y ⇒ x, y ⇒ x]

= [(x⇒ y) ∨ (y ⇒ x), (x⇒ y) ∨ (y ⇒ x)]

= [((x⇒ y) ∨ (y ⇒ x)) ∧ ((x⇒ y) ∨ (y ⇒ x)),

((x⇒ y) ∨ (y ⇒ x)) ∨ ((x⇒ y) ∨ (y ⇒ x))]

= [((x⇒ y) ∧ (x⇒ y)) ∨ ((y ⇒ x) ∧ (x⇒ y))∨

((x⇒ y) ∧ (y ⇒ x)) ∨ ((y ⇒ x) ∧ (y ⇒ x)),

((x⇒ y) ∨ (y ⇒ x)) ∨ ((x⇒ y) ∨ (y ⇒ x))]

= [((x⇒ y) ∧ (x⇒ y)) ∨ 1 ∨ 1 ∨ ((y ⇒ x) ∧ (y ⇒ x)),

1 ∧ 1]

= [1, 1]. �

We can continue drawing figure 5.2 by adding proposition 5.3. In this way we have:

Figure 5.4: I[IM]; a prelinear I[AM].

It is clear I[IM] is an IMTL-algebra. Besides, by propositions 5.3 and 3.10, and observ-

ing table 4.2, we may conclude diagram 5.5 commutes.

If a ML-algebra satisfies the prelinearity (PRL) property, we say it is a MTL-algebra.

Then:
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Figure 5.5: I[AM]; a dualizing I[A].

Proposition 5.4 LetM = 〈L,∧,∨, ∗,⇒, 0, 1〉 be a MTL-algebra. Then, I[M] = 〈I[L],uI,

tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also a MTL-algebra.

Proof: By proposition 5.1, I[M] is a ML algebra, so according to the definition of MTL-

algebra it would only remain to prove that: X I[⇒] Y tI Y I[⇒] X = [1, 1]. But this proof

is analogous to the one on the previous proposition (5.3). So, I[M] is a MTL-algebra indeed.

�

Including proposition 5.4, we have a new figure:

Figure 5.6: I[M]; a prelinear I[A].

Observe that we can also use MTL-algebra I[M] to obtain an IMTL-algebra I[IM].

Analyzing figure 5.1 more carefully, we can see the Involutive MTL is obtained via MTL

after the addition of the (INV) axiom. So, including proposition 5.5 given below, we have

figure 5.7, showing that MTL-algebra plus property (INV) is an IMTL-algebra.

Proposition 5.5 Let IM = 〈L,∧,∨, ∗,⇒, 0, 1〉 be an IMTL-algebra. Then, I[IM] =

〈I[L],uI,tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also an IMTL-algebra.
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Figure 5.7: I[IM]; an involutive I[M].

Proof: By proposition 5.4, I[M] is a MTL algebra, so, according to the definition of IMTL-

algebra, it would only remain to prove that: (X I[⇒] [0, 0]) I[⇒] [0, 0] = X holds. But

this proof is analogous to the one on proposition 5.2. Therefore, I[M] is an IMTL-algebra

indeed. �

Actually, by propositions 5.5 and 3.10, and observing table 4.2, we may conclude the

following diagram commutes:

Figure 5.8: I[AM]; a dualizing I[A].

If a MTL-algebra satisfies the weakly contracting property (S) : X uI (X I[⇒] [0, 0]) =

[0, 0], we say it is a SMTL-algebra. Then:

Proposition 5.6 Let SM = 〈L,∧,∨, ∗,⇒, 0, 1〉 be a SMTL-algebra. Then, I[SM] =

〈I[L],uI,tI, I[∗], I[⇒], [0, 0], [1, 1]〉 is also a SMTL-algebra.

Proof: Considering proposition 5.4, we conclude I[SM] is a MTL-algebra. And, by the

definition of SMTL-algebra, we need to prove that: X uI (X I[⇒] [0, 0]) = [0, 0], for all

X ∈ I[L]. Hence:
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X uI (X I[⇒] [0, 0]) = [x, x] uI [x⇒ 0, x⇒ 0]

= [x ∧ (x⇒ 0), x ∧ (x⇒ 0)]

= [(x ∧ (x⇒ 0)) ∧ (x ∧ (x⇒ 0)),

(x ∧ (x⇒ 0)) ∨ (x ∧ (x⇒ 0))]

= [(x ∧ (x⇒ 0)) ∧ (x ∧ (x⇒ 0)),

(x ∨ x) ∧ ((x⇒ 0) ∨ x) ∧ (x ∨ (x⇒ 0))∧

((x⇒ 0) ∨ (x⇒ 0))]

= [0 ∧ 0, (x ∨ x) ∧ 0 ∧ 0 ∧ ((x⇒ 0) ∨ (x⇒ 0))]

= [0, 0]. �

Therefore, I[SM] is a SMTL-algebra. And by propositions 5.6 and 3.10, and loooking

at table 4.2, we may conclude the following diagram commutes:

Figure 5.9: I[AM]; a dualizing I[A].

The relationships between ML-algebra (I[A]), AMALL-algebra (I[AM]), MTL-algebra

(I[M]), IMTL-algebra (I[IM]) and SMTL-algebra (I[SM]) can be seen on figure 5.10.

Figure 5.10: Relationships between ML-algebra and its subclasses with the interval con-
structor I.
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Summarizing, it is clear that we obtain:

• I[A], from proposition 5.1;

• I[AM], from proposition 5.2;

• I[IM], from proposition 5.3;

• I[M] , from proposition 5.4;

• I[IM] via I[M], from proposition 5.5; and, finally,

• I[SM], from proposition 5.6.

We can also construct another diagram considering all the possible ways to achieve

classes of ML-algebras by the addition of the dualizing (INV), prelinear (PRL) and weakly

contracting (S) properties as showed on figure 5.11.

Figure 5.11: Classes of ML-algebras by including properties INV, PRL and S and the interval
constructor I.

It is possible to draw some conclusions by observing figure 5.11 more carefully. For

instance, it is clear how the following well-known results are achieved: IMTL = AMALL +

(PRL) = MTL + (INV) and SMTL = MTL + (S). Besides, possible new ones may be:

• SIMTL = SMTL + (INV) = IMTL + (S),
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• SMTL = SML + (PRL),

• SAMALL = AMALL + (S) = SML + (INV) and

• SML = ML + (S).

Clearly, SML-algebra, SAMALL-algebra and SIMTL-algebra would be new classes of

ML-algebras after the addition of the properties mentioned previously. Actually, once we

have already proved that the interval constructor I preserves the properties (INV), (PRL) and

(S), propositions 5.2, 5.3 and 5.6, then it is easy to see that these classes are closed on the

interval constructor.



Chapter 6

Concluding Remarks

This work was a first step to apply the interval constructor I on classes of ML-algebras.

In order to do that, we obtained some interesting results in ML theory itself, for instance,

proposition 3.5 and collolary 3.1. Some other related studies, which had been done over the

last three years, namely [BS05], [BSCB06], [BCBS07], [CBB01] and [BSCB07] were also

relevant to achieve some of our goals.

We had introduced a semantic for fuzzy logic using bounded lattices in [BS05], where we

generalized the propositional classic connectives and fuzzy and interval fuzzy connectives

using the lattice theory, that is a more general concept. Other results, not entirely connected

with this work, but also important, were obtained in [BSCB06] and [BCBS07]. The first

one considered a well known generalization of the t-norm notion for arbitrary bounded lat-

tices and introduced two generalizations of the automorphism notion for arbitrary bounded

lattices. The latter introduced the t-norm morphism, which is a generalization of the auto-

morphism notion for t-norms on arbitrary bounded lattices. Besides, those generalizations

were considered a rich category having t-norms as objects and t-norm morphism as mor-

phism. We proved that putting together that category, a natural transformation introduced

there, and the interval constructor on bounded lattice t-norms and t-norm morphisms re-

sulted in an interval category in the sense of [CBB01]. Moreover, in [BSCB07], we proved

that the interval category mentioned previously was Cartesian and, whenever its subcategory
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whose objects were strict t-norms, it was a Cartesian closed category. We showed, as well,

that the usual interval construction on lattices was a functor on those categories.

Within this work we used the t-norm generalization mentioned above and extended to

other fuzzy connectives: I[∗], I[S], I[⇒], I[N ], the t-norm, t-conorm, implication and nega-

tion, respectively. Moreover, we also applied the interval constructor on some classes of

bounded lattices, especially the residuated ones, as we mostly dealt with some classes of

residuated lattices.

Finally, we used most of those results in order to relate ML-algebras with the inter-

val constructor I, namely, ML-algebra I[A], AMALL-algebra I[AM], MTL-algebra I[M],

IMTL-algebra I[IM] and SMTL-algebra I[SM]. In this sense, we proved those algebras

are preserved by the interval constructor.

The importance of these results is that each of them determine important classes of fuzzy

logics, giving us the possibility to deal with membership degrees represented by intervals

in the unit interval [0, 1], which can be used in interval computations allowing an automatic

and rigid control of errors (aiming to decrease them), as well as, whenever we deal with

many expert’s opinions to determine the membership degree without discarding none of

their opinions.

For further works we can suggest the addition of other axioms in order to enrich figure

5.1 and obtain other fuzzy logics and consequently other classes of ML-algebras. Another

future work would be the inclusion of other logics (even modal logic) within this context. We

could also include automorphisms and verify if the classes of ML-algebras are closed on the

action of this automorphism (using automorphisms in a similar way as it was done in [BT06])

and relate it to the interval constructor over these classes. Besides , if we pay more attention

to the diagram of logics and their relating axioms (figure 5.1), there are lacking arrows (with

their respective axioms needed) which would establish other connections between the fuzzy

logics. Moreover, it would also be interesting to analyze the behavior of I on those logics.
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