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Abstract

In this work, from the category sight, we will give a generalized interval theory
which makes possible, among other things, to study generic properties of datas which
are “intervals” of another datas. In doing so we could obtain some properties which
holds for real intervals, complex intervals, interval vectors, interval matrizes, and so
on. We introduce a categorical interval constructor on POSET for this purpose and
we study the categorical properties that this constructor satisfies in order to define
the notion of interval category. We prove also that TOP and severeal subcategories
of POSET are interval categories.

1 Introduction

The category theory studies, as primitive concepts, “objects” and “morphisms” between
them. The morphisms establish relationships between the objects: any use of the inner
structure of the objects is forbidden. It means that every property of the objects must be
specified through the properties of the morphisms (existence of particular morphisms, its
unicity, some equations which are satisfied by them, etc.). From this point of view, the
objects should be considered as an abstract data.

Categories gives an strongly formalized language which is adequated in order to es-
tablish abstract properties of mathematical structures.

On the other hand, R. Moore [10, 11] developed an interval mathematic in order to
proporcionate a controle of the computational errors resulting of numeric computations



involving real numbers. The Moore theory not only comprehend real intervals, but also
complex intervals, matrix and array of real and complex intervals.

Thus, it is reasonable to generalize the interval theory, in such a way that include the
above kind of intervals and any other possible type of intervals. Since real intervals are
defined through a partial order on the real set, we might define intervals on any partially
order set.

In this work we propose a general interval theory, based on the POSET category and
an interval constructor introduced in [4]. We study the categorical properties that this
constructor satisfies in order to define the notion of interval category. We prove also that
TOP and several subcategories of POSET are interval categories. This is an interesting
result since TOP is not a subcategory of POSET.

2 Some Basic Results on Category Theory

Definition 2.1

Let A and B be objects of a category C. A cartesian product of A and B is an
object A x B of C together with two projection morphisms 75 : A x B — A and
m : A X B — B satisfying the following universal property: for all object C of C and all
morphisms f : C' — A and g : C' — B there exist a unique morphism h: C — A x B
making the following diagram

7o ™

A Ax B B

commutative.

Definition 2.2
We say a category C is a category with cartesian product if for every ordered pair
A, B of objects of C the cartesian product A X B exist in C.

Lemma 2.1
Let C be a category with product. Let f : A — B and ¢ : C' — D be morphisms of C.
Then there is a unique morphism

fxg:AxC—BxD

which makes commutative the following diagram

o YS!

A AxC C
f fxg g
B pBxp-" . D,




Proof: Follows from the universal property of the cartesian product. |
Remark: The lemma 2.1 guarantees that we have a covariant functor

Prod:C — C

defined by Prod(A) = A x A for each object A of C and if f : A — B is a morphism
then

Prod(fy)=fxf:AxA— BxB

Definition 2.3

Let ¥ : C — D and G : C — D be functors. A collection of morphisms
o0 ={o4: F(A) — G(A) / A is an object of C}, 04 : F(A) — G(A) of D, indexed by
objects A of C is called a natural transformation from F' to G if the diagram

F(B) —2+ G(B)

commutes for all morphism f: A — B in C.

Moore information on category theory could be found in [3, 2].

3 The Interval Mathematic

We will denote by I(R) the set {[r,s] / r,s € Rer <g s} called the real intervals set. Each
interval could be seen as an ordered pair or as a set ([r,s] = {r € R / r <g x <g s}). The
Moore theory, guarantees that all interesting constructions on intervals can be obtained
through their extremes.

There are several orders which can be defined on I(R):

1. The Kulish-Miranker order [8, 9]:
[a,b] C [e,d] & Vz € [a,b] Ty €c,d], 2 <gyandVy€ [c,d] Iz € [a,b], 2 <py
& a<gcand b <pd
2. The Moore order [10, 11]:

[a,b] <ur [c,d] & Vz €la,b] Yy €le,d], z<ry
& b<ge

Thus, [a,b] <u [c,d] < [a,b] <u [c,d] or [a,b] = [c,d].
3. The set-theoretical order:

[a,b] <g [c,d] & [a,b] Cle,d]
& c<gpaand b<pd



4. The information order [12, 1]:

[a,b] <1 [e,d] & [e,d] Cla,b]
S a<pc<pd<gb

In this work we will take in account the order of Kulish-Miranker since it is compatible
with the order of the cartesian product.

4 The Interval Constructor on POSET

Notice that both the real intervals and the order on the set of real intervals depend upon
the usual real order. Thus, we can generalize this constructions by considering, instead
of the real set with its usual order, any partially order set, it means that we can think of
intervals as a constructor on the category POSET.

Definition 4.1
Let D = (D, <) be a poset. The poset I(D) = (I(D),C), where
e I(D)={la,b] / a,b € D and a < b}

e [0, Clc,d| ©@a<cand b<d

is called the poset of intervals of D [4].
There are two natural functions from I(D) to D, which are the left and right projec-
tions [ : I(D) — D and r : I(D) — D respectively, defined by
l([a,b]) = a and r([a,b]) = b

Clearly the functions [ and r are monotonics, therefore they are morphisms from the
poset I(D) to the poset D.

Lemma 4.1

Let D; = (D1,<;) and Dy = (D9, <5) be posets. Then D; x Dy = (D; X Dy, <) is a
poset and I(D; x Dy) is isomorphic to I(D;) x I(Ds), where (a,b) < (¢,d) < a <; ¢ and
b <, d.

Proof: Since POSET is a cartesian closed category, D; x D5 is a poset. Let

f : I(Dl X D2) — I(Dl) X I(DQ)
be defined by f([(a,b), (¢,d)]) = ([a, c], [b,d]). Clearly f is monotonic and bijective, whose

inverse is also monotonic. Hence f is an isomorphism. |

Lemma 4.2
Let D = (D, <) be a poset. There is a unique monomorphism m(D) : I(D) — D x D
which makes the following diagram



l m(D r
7r s
D ® DxD—-D
commutative.
Proof: Follows from the universal property of the cartesian product. |

Proposition 4.1

Let D; = (D4,<;) and Dy = (Dy, <5) be posets. Let f : D; — Dy be a monotonic
function. The function I(f) : I(D,) — I(Dy), defined by I(f)([a,b]) = [f(a), f(b)], is
the unique monotonic function which makes the following diagram

D, f DP

l l
10y LY 1p,)

, ,

D —f . p,

commutative.

Proof: Clearly I(f) is monotonic and makes the above diagram commutative.
If G : I(D;) — I(D,) is another monotonic function such that lo G = f ol and
roG = for then,

G([a,b]) = [c,d] <« U(G([a,b])) = I([c,d]) and r(G([a, b])) = r([c, d])
since m(Dy) : I(Dy) — Dy X Dy is injective)

(

< f(I([a,0])) = U([c,d]) and [(r([a,b])) = r([c, d])
(by commutativity)

< fla) =cand f(b) =d

Thus G([a,b]) = [f(a), f(b)] = I(f)([a,b]). Therefore I(f) is unique. [

Remark: The above proposition guarantees that we have a covariant functor
I : POSET — POSET.



Lemma 4.3
The collection
m = {m(D) : I(D) — Prod(D) / D is a poset }

of morphisms is a natural transformation from I : POSET — POSET to
Prod : POSET — POSET.

Proof: Let f : Dy — D, be a monotonic function of posets. We must prove that the
following diagram

(D) mDy) | p o« p,
I(f) fxf
1(Ds) mDa) b,

commutes.
In fact, if [a,b] € I(D;) then

fx f(m(Dy)([a,0])) =

Thus, (f x f) om(D1) = m(Ds) o I(f). [

5 Interval Categories

Definition 5.1
An interval category is a triple (C,I,m) such that

1. C is a category with product

2. I: C — C is a covariant functor such that I(A x B) is isomorphic to I(A4) x I(B)
for all pair of objects A and B of C

3. m is an injective natural transformation from I: C — C to Prod : C — C

4. There exists a covariant functor F': C — POSET such that for each A, B € Objc
and for each f: A — B morphism we have that



Proposition 5.1
(POSET, I, m) is an interval category.

Proof: Properties 1), 2) and 3) of the above definition follow from what we had discussed
before. To prove property 4) it is enough to take F' : POSET — POSET as the iden-
tity functor. [

In the next section we will give a non-trivial example of an interval category.

6 TOP as an Interval category

In this section we will show that the category TOP, of topological spaces as objects
and continuous maps as morphisms, is an interval category. For more information on
topological spaces see [5, 13].

6.1 The functor I
Let X be a topological space. We define the set I(X) by

I(X)=A{[z,y] / z,y € X and y € U for each U C X open set such that z € U}

where [z, y] must be understood as an ordered pair.

Definition 6.1
U C I(X) is open if there exist V, W C X open sets such that W C V and

U=A{[z,y e (X)/xz €V and y € W}.
Let T ={U CI(X) /U is open in I(X)}.

Lemma 6.1
The pair (I(X),7) is a topological space.

Proof: If {U,}.ca is a family of elements of 7 then for each o € A, there are open sets
Vs Wa € X such that W, CV, and U, = {[z,y] € I(X) / z € V, and y € W, }.

Let U = UpealUar V = Upes Vo and W = [J,cy Wa. Clearly W C V and
U ={z,y] € (X)/ z € Vandy € W} are open sets in X. Thus, 7 is closed un-
der arbitrary unions.

Analogously 7 is closed under finite intersections. [ |

Let X and Y be topological spaces and f : X — Y be a continuous function. Define
I(f) : 1(X) — I(Y) by

L(F)([z,9]) = [f (), £ (y)].



Lemma 6.2
I(f) is a continuous function.

Proof: We must prove first that I(f) is a well defined function, i.e. if [z, y] € [(X) then
[f(z), f(y)] € I(Y). In fact, let U C Y be an open sets such that f(z) € U.

Since Y C Y is open and f : X — Y is continuous we have that f~1 (i) C X is open.

Since f(z) € U,z € f*(U) and therefore y € f(U) because [z,y] € I(X). Therefore
[f(x), f(y)] € I(Y) as we wanted.

We will prove next that I(f): I(X) — I(Y) is continuous.

Let U C I(Y) be an open set. Then, there exists V, W C Y open sets such that W C V
and U = {[a,b] €e I(Y) /a € V and b € W}.

Therefore
[z,y] € I()~'U) < I(f)([z,y]) €U
& [f(z), fly) el
< f(x) €eVand f(y) e W
szeftV)andye fIW).
Thus,

I(f) "U) ={lz,yl e LX) /z € f (V) and y € f (W)}
Since f is continuous, f~'(W) C f~!(V) are open sets in X. Hence, I(f) (i) is open
in I(X). Therefore I(f) is a continuous map. |
What we had proved so far is that I: TOP — TOP is a covariant functor.

Lemma 6.3
Let X and Y be topological spaces. Then I(X x Y) is isomorphic to I(X) x I(Y).

Proof: Let f: I(X xY) — I(X) x I(Y) be defined by

f([(a,0), (¢, d)]) = ([a, ], [b, d]).

It is easy to show that f is a well defined continuous isomorphism. [

6.2 The Natural Transformation
Let X be a topological space. Define m(X) : I(X) — X x X by

m(X)([z,y]) = (z,y).

Lemma 6.4
m(X) : I[(X) — X x X is continuous.

Proof: Let Y C X x X be a basic open set. Then there exist V, W C X open sets such
that Y =V x W.
Notice that if [z, y] € I(X) then



[z,y] € m(X)"'U) & (z,y) €U
SzreVandyeW.

Thus,

m(X)7'U) = {[z,y] € I(X) /z € V and y € W}.
Notice that if [z, y] € m(X)~'(U) then y € VN W. Thus,

m(X) N U) = {[z,y] € (X) /z € Vand y € VN W}.
Therefore m(X) ' (U) C I(X) is open. Hence m(X) is continuous. |

Lemma 6.5
Let X and Y be topological spaces. Let f : X — Y be a continuous map. Then the
following diagram

1(X) mY) L xwx
I(f) fxf
1(Y) m) vy
commutes.
Proof: Let [z,y] € I(X). Then
fx fm(X)([z,y])) = (f(z), f(y))
=m(Y)([f(z), f(y)])

Hence, (f X f) om(X) =m(Y) o I(f).
Therefore the above diagram commutes. |

The above lemmas proved that m is a natural transformation from the functor I to
the functor Prod.

6.3 The Functor F
Let X be a topological space. Define the poset F(X) = (X, <x) where

r<xy<yelUfor each Y C X open set such that z € U.
It is well known that this order is a partial order on X [13].
Lemma 6.6

If f: X — Y is a continuous map then f is monotonic with respect to the above partial
order.



Proof: Let z,y € X such that x <x y. Let  C Y be an open set such that f(x) € U.
Hence f~'(i4) C X is open and = € f~1(U).

Since z <x v, y € f~'(U). Hence, f(y) €U.

Therefore, f(z) <y f(y)- |

Let f : X — Y be a continuous map. Define F(f) = f. The above lemma
guarantees that F'(f) is a morphism from the poset F(X) to the poset F(Y). Thus
F : TOP — POSET is a covariant functor.

Proposition 6.1
(TOP,I,m) is an interval category.

Proof: Properties 1), 2) and 3) of definition 5.1 follows from the above discussions.
Property 4) follows straightforward from the definition of ', m and I. We will only show
that F/(I(X))= I(F (X)) for all topological space X.

Notice that

[z,y] <1(x) [u,v] € [u,v] €U for all i C I(X) open set such that
[z,y] €U
SueVYand v e W forall V, W C X open sets
such that W CV, z € Vandye W
Sr<xyuandy<ywv
& [z,y] C [u,v] in I(F(X)).

7 Some Others Interval Categories

In this section we study some domains categories which are interval categories.

Lemma 7.1

Let (C,I,m) be an interval category. If D is a subcategory of C with cartesian product,
which is closed under the functor I, then (D,I’,m') is an interval category, where I’ and
m' are the restrictions of I and m to D.

Proof: Straightforward. |

Corollary 7.1
The following subcategories of POSET are interval categories:

1. DCPO with dcpos as objects and continuous functions as morphisms.

2. CCDCPO with consistently complete dcpos as objects and continuous functions
as morphisms.

3. ADCPO with algebraic dcpos as objects and continuous functions as morphisms.

4. SDom with Scott domains as objects and continuous functions as morphisms.



5. CDCPO with continuous dcpos as objects and continuous functions as morphisms.

6. CDom with continuous domain as objects and continuous functions as morphisms.

Proof: It is enough to show that all those categories are closed under the functor 7. This
follows straightforward from the definition of those categories (more information about
those categories could be found in [6, 7]) and from the definition of the functor I in
POSET. [ |

8 Conclusions

We defined interval categories in order to generalize usual results of the Moore interval
theory to other kind of categories. We showed that some important categories are interval
categories, such as the category TOP of topological spaces with continuous functions, and
several domain categories. This is an interesting result since TOP is not a subcategory
of POSET. As a biproduct we define an interval constructor I on the POSET category
which generalizes the interval constructor on the real set. This result is important in order
to have a formal treatment of parametric interval data type. Therefore, we are given a
theoretical foundations to develop programming languages which have the parametric
interval data type as primitive type.
Further works:

1. To consider interval categories based on the other orders.
2. To define interval categories in an intrinsic way
3. To prove that the interval functor is well behaved under other domain constructors.

4. To extend the interval arithmetic to the POSET category.

Acknowledgement

This work is one of the results of the “A Logic and Computational Approach to Interval
Mathematics”, project founded by PPPg of the Federal University of Rio Grande do
Norte, Brazil. Paul Taylor’s diagram macros have been used in this paper.

References

[1] B.M. Acidly. Computational Foundation of Interval Mathematics (in portuguese).
Ph.D. thesis, CPGCC of the UFRGS, Porto Alegre, 1991.

[2] A. Asperti and G. Longo. Categories, Types and Structures: An introduction to
category theory for the working computer scientist. Foundation of Computing Series,
Massachusetts Institute of Technology, 1991.



[3] M. Barr and C. Well (1990). Category Theory for Computing Scientist. Prentice Hall
International (UK) Ltda., 1990

[4] R. Callejas-Bedregal and B. R. Callejas Bedregal. Intervals as a Domain Constructor.
To appear in Seletas do XXIII CNMAC in Tendencias da Matematica Aplicada e
Computacional (TEMA), 2001.

[5] J. Dugundji. Topology. Allyn and Bacon, New York, 1966.

6] C.A. Gunter. Comparing categories of domains. In LNCS 239, pages 101-121.
Springer-Verlag, 1985.

[7] A. Jung. Cartesian Closed Categories of Domains. Volume 66 of CWI Tracts. Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1989

[8] U.W. Kulish and W.L. Miranker. Computer arithmetic in theory and practice. Tech-
nical Report 33658, IBM Thomas L. Watson Research Center, 1979.

9] U.W. Kulish and W.L. Miranker. Computer Arithmetic in Theory and Practice. Aca-
demic Press, 1981.

[10] R.E. Moore. Interval Analysis. Prentice Hall Inc., Englewood Cliffs, N.J., 1966.

[11] R.E. Moore. Methods and Applications for Interval Analysis. STAM Studies in Ap-
plied Mathematics, Philadelphia, 1979

[12] D.S. Scott. Outline of a Mathematical Theory of Computation. In: 4** Annual Prince-
ton Conference on Information Sciences and Systems, pp. 169-176, 1970.

[13] M. Smyth. Topology. In: Handbook of Logic in Computer Science. Vol. 1. Clarendon
Press - Oxford, 1992



