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Interval Representations
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Matemática Aplicada – DIMAp, Universidade Federal do Rio Grande do Norte –
UFRN, Natal, RN, Brazil
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Abstract. This paper presents the concept of interval representation and shows
some of its properties. The concept is often applied in interval mathematics and
captures the essence of that theory; namely: Interval analysis is a language that
designates computations with real numbers. The idea of interval objects as repre-
sentation of real objects is defined and its relation with some aspects of interval
analysis is showed. Some of these relations are concerned with the topological
aspects of intervals (Scott topology).

1. Introduction

One of the ideas behind interval analysis is that it is a kind of language which
designates real computations, in the sense that an interval [a, b] represents any real
number r ∈ [a, b]3. The quality of this representation coded by interval width – i.e.
b − a. Good interval functions F : I(R) → I(R) used to designate real functions
f : R → R are those which preserve the order of set inclusion and consequently the
error quality. Those functions, F : I(R) → I(R), have the following property:

x ∈ [a, b] ⇒ f(x) ∈ F ([a, b]). (1.1)

This property capture the main requirement of interval analysis; the correctness
of interval methods; namely it is enough to compute with intervals to obtain the
resulting real number f(x) ∈ F ([a, b]). This required property can be observed in
Moore [5] theorem 3.1, p.21: “If F is inclusion monotonic interval extension of f ,
then f(X1, . . . ,Xn) ⊆ F (X1, . . . ,Xn)”4.

In this paper we study functions which satisfies (1.1) and their relation with
Scott continuity. We close the work with a brief result (Proposition 4.1) about the
incompatibility between Scott/Moore continuity and computability.
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3A concrete example of the field where interval computations are applied can be see in Loh and

Walster [3].
4Where f(X) = f(X) = {f(x) : x ∈ X}.
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2. Intervals

A set I ⊆ R is an interval 5 if whenever x, y ∈ I and x < y, then every z ∈ R which
satisfies x ≤ z ≤ y also belongs to I. In what follows we show some required results
on connectedness.

Lemma 2.1. A subset of A ⊆ R is connected iff A is an interval.

Lemma 2.2. Continuous functions preserves connectedness; i.e. if (A,Ω1) and

(B,Ω2) are topological spaces and f : A → B is a continuous function, then for all

connected subset C ⊆ A, f(C) ∈ Ω2 is also connected (see [4]).

Straightforward from Lemmas 2.1 and 2.2, we derive the following corollary.

Corollary 2.1. If f : R → R is continuous and I ⊆ R is an interval, then f(I) is

also an interval.

This corollary does not guarantee that any kind of interval is mapped on an
interval of the same kind, e.g., it does not mean that f([a, b]) = [c, d]. However,
there are some conditions such that closed intervals are mapped to closed intervals
by continuous functions. We trivially derive the following lemma.

Lemma 2.3. If f : R → R is continuous and I ⊆ R is a closed interval and there

exist x0, x1 ∈ I such that for each z ∈ I, f(x0) ≤ f(z) ≤ f(x1), then f(I) is also a

closed interval.

Proof. Since x0, x1 ∈ I, then, trivially, f(x0), f(x1) ∈ f(I) and by hypothesis for
all z ∈ I, f(x0) ≤ f(z) ≤ f(x1), so by corollary 2.1, f(I) is a closed interval.

From now on we use the word “interval” to designate just closed intervals, i.e.,
sets of the form [a, b] ⊆ R.

3. Aspects of Continuity

3.1. Metrics and Moore topology

On the set of real numbers and on the set of intervals the notion of distance be-
tween two real numbers and two intervals, is given, respectively, by the functions:
dr(r, s) =| r − s | and di([a, b], [c, d]) = max(dr(a, c), dr(b, d)). Those metrics are
called euclidean metric and Moore metric[5], respectively. The pairs (R, dr) and
(I(R), di) are called, respectively, the metric spaces of real numbers and Moore in-
tervals. Given a metric space (A, d) it is possible to define a topological space (A,Ω)
induced by d, where the basic open sets are open balls B(r, ǫ) = {s ∈ A : d(r, s) < ǫ}.
The metric of real numbers defines exactly the Euclidean topology, and the basic
open sets can be open intervals (r − ǫ, r + ǫ) for all r ∈ Q. The set of degenerated
intervals endowed with the metric di coincides with the topology of real numbers6.

5An interval can be a set of the form (a, b), [a, b], (a, b], [a, +∞), etc.
6Or in the topological language: They are homeomorphic spaces.
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A function f : A → B, where (A, d) and (B, d′) are metric spaces, is called
continuous at a ∈ A if, for every ǫ > 0, there is δ > 0, such that for every
x ∈ A, if d(x, a) < δ, then d′(f(x), f(a)) < ǫ. f is a continuous function if it is
continuous in every a ∈ A. This notion of continuity coincides with the topological
notion mentioned above.

3.2. Scott-continuity and ord-continuity

The theory of partially ordered sets has been used along the time for semantics of
programming languages (see Stoy [8]). A partially ordered set is a pair (A,≤)
where ≤ is a reflexive, transitive, and antisymmetric binary relation on A called
partial order on A. The ideas of information applied to the semantics of program-
ming languages are modelled by partial orders; where the concepts of converging
sequences can be extended by directed sets, ∆, which are non-empty sets such
that for every pair x, y ∈ ∆, there is z ∈ ∆ such that x ≤ z and y ≤ z. The limits are
modelled by supremums,

⊔

∆, which are defined by (1)
⊔

∆ is an upper bound

of ∆7 and (2) for any upper bound u of ∆,
⊔

∆ ≤ u. A partially ordered set where
every directed set has supremum is called directed complete partial order, or
just dcpo, those partial orders abstract the well known property of real numbers
which every convergent sequence has limit. The idea of continuous function on real
numbers, where the limits of convergent sequences are preserved, is also extended
to dcpos in the following sense: A function f : A → B, where A and B are dcpos is
an ord-continuous function if for every directed set ∆, f(

⊔

∆) =
⊔

f(∆). The
monotonicity8 of any continuous function is trivially derived from ord-continuity.

In what follows we show how the idea of continuity on dcpos can be applied
on the set of closed intervals, and how it is related with the standard notion of
continuity which belongs to the field of topology.

In the set of closed intervals I(R) = {[a, b] : a ∈ R, b ∈ R and a ≤ b} the fol-
lowing partial order makes the pair (I(R),⊑) an ω-continuous dcpo [7, 2]: Given
[a, b], [c, d] ∈ I(R), [a, b] ⊑ [c, d] iff a ≤ c ≤ d ≤ b. This dcpo is a richer structure9

such that its element can be viewed as partial information of real numbers. The
intuition is that any interval [a, b] is a partial information of a degenerated inter-

val10 [r, r], whenever r ∈ [a, b], and [r, r] only informs about itself. In the language
of domain theory it means that a degenerated interval is a totally defined object.
It is also possible to define a relation which captures the notion of approximation
for intervals, in the sense that an interval [a, b] is strongly below another interval
[c, d], [a, b] ≪ [c, d], whenever a < c ≤ d < b. This relation, which is called interval

way-below associated with the order “⊑”, is such that it is possible to define a
topology where the continuity of functions coincides with the preservation of the
supremums. We will use ↑↑[a, b], to denote the set {[c, d] : [a, b] ≪ [c, d]}.

A monotonic function F : I(R) → I(R) is a function such that if [a, b] ⊑ [c, d]
then F ([a, b]) ⊑ F ([c, d]). Interval monotonic functions have an important role with

7
⊔

∆ ∈ A and for every d ∈ ∆, d ≤
⊔

∆.
8A function f : A → B, where A and B are partially ordered sets is monotonic if x ≤ y implies

f(x) ≤ f(y).
9Called continuous Scott-domain. We will not show it in detail.

10An interval with the same endpoints.
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respect to the preservation of the error estimative; namely since an interval can
be used to represent a real number with an estimative of error (its width), the
monotonicity guarantees that as shorter is the error of the input interval as shorter
will be the error of the resulting interval.

On any dcpo (A,≤) it is possible to define a topology called Scott-topology,
ΩS(A) whose open sets have the following properties: For all O ∈ ΩS(A), (1) if
x ∈ O and x ≤ y, then y ∈ O11, and (2) if ∆ is a directed set and

⊔

∆ ∈ O, then
∆ ∩ O 6= ∅.

According to Acióly and Bedregal [1]:

“. . . the interval space with the Scott topology, 〈I(R),ΩS(I(R))〉, is
a nice environment to do computation in the functional language sense.
A denumerable basis for this topology is the set {↑↑[p, q] : [p, q] ∈ I(Q)}.

Any topological space endowed with a Scott topology gives rise to an
information theory whose non-total elements are seen as partial objects.
The order which is compatible with this topology is an information
order that allows us to do qualitative comparisons between the elements
of the space. Therefore in those spaces the mathematics developed are
essentially qualitative, differently from that derived from a Hausdorff
topology whose mathematics is mainly quantitative. This, however,
does not mean that we cannot develop quantitative mathematics with
dcpo’s.”

Lemma 3.1. If D is a dcpo, then the set Ux = {z ∈ D : z 6≤ x}12 is a Scott open

set.

Lemma 3.2. Let f : A → B be a function, where A and B are dcpo’s, if f is

continuous with respect to Scott topology (i.e. f is Scott-continuous), then f is

monotonic.

Lemma 3.3. A function f : A → B, where A and B are dcpo’s, is ord-continuous

iff it is Scott-continuous.

The proposition above tell us that the notion of topological continuity can be
expressed in terms of order, i.e. in terms of mononoticity and the preservation
the supremums. We close this section with the result that euclidean topology is
extended to Scott-topology and any continuous function in the euclidean topology
can be represented13 by a Scott-continuous function on I(R).

Lemma 3.4. The set ↑ I(R) = {↑ [a, b] : [a, b] ∈ I(R)} where ↑ [a, b] = {[c, d] : a <

c ≤ d < b} is a basis of ΩS(I(R)).

Lemma 3.5. Let Tot(I(R)) be the set of degenerated intervals, ΩS(Tot(I(R))) the

relative topology of ΩS(I(R)) restricted to Tot(I(R)). Then, the set B = {([x, x], [y, y]) :
x, y ∈ R and x < y}, where ([x, x], [y, y]) = {[z, z] : x < z < y}, is a base for

ΩS(Tot(I(R))).

11i.e. O is upper closed.
12i.e. the collection of all points that either lie above x or is incomparable with x.
13This notion of interval representation is informal for a while, but it will be formalized in the

sequel.
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Theorem 3.1. Let Tot(I(R)) be the set of degenerated intervals, ΩS(Tot(I(R)))
the relative topology of ΩS(I(R)) restricted to Tot(I(R)), and U the usual Euclidean

topology on R. Then, there is an homeomorphism f : Tot(I(R)) → R.

Proof. Let f : Tot(I(R)) → R be defined by f([x, x]) = x. If O ∈ ΩS(Tot(I(R)))
then, by lemma 3.5, O =

⋃

i
([xi, xi], [yi, yi]). So, f(O) = {f([z, z]) : [z, z] ∈

([xi, xi], [yi, yi]) ⊆ O} =
⋃

i
(xi, yi) ∈ U . Trivially, f−1 : R → Tot(I(R)) is defined

by f−1(x) = [x, x]. If O ∈ U then O =
⋃

i
(xi, yi). So, f−1(O) = {f−1(z) : z ∈

(xi, yi) ⊆ O} =
⋃

i
([xi, xi], [yi, yi]) ∈ ΩS(Tot(I(R))). So, f and f−1 are continuous.

Since f ◦f−1 = id and f−1◦f = id then f is bijective. Therefore, f−1 is continuous.
Thus, f is an homeomorphism.

4. Interval extentions vs. interval representations

Moore arithmetics brings to intervals some of the properties of real arithmetic,
mainly the continuity of the operations. In other words, the continuity of real
arithmetics is preserved and “hidden” in interval arithmetic. However, the exten-
sion of real functions to interval functions 14 does not guarantee that continuity
is preserved. For example, let f : R → R be the constant function f(x) = 5, the
function

F ([a, b]) =

{

[5, 5], if a = b,
[0, 1], otherwise,

is trivially an extension of f , but it is not Moore-continuous, since given the basic
open set B([5, 5], 1) = {[a, b] ∈ I(R) : d([a, b], [5, 5]) < 1}, F−1(B([5, 5], 1)) =
{[x, y] ∈ I(R) : x = y}, is not an open set, otherwise it would be the union of basic
open sets B([r, s], ǫ), for every real number ǫ > 0. However, no basic open set is
contained in it. For example, clearly [r, s + ǫ

2
] ∈ B([r, s], ǫ) but B([r, s], ǫ) is not a

subset of F−1(B([5, 5], 1)) = {[x, y] ∈ I(R) : x = y}. It is not also Scott-continuous,
because it is not monotonic with respect to the information order.

There are interval functions which extend real functions, but with a lost of
information, for example: The function F [a, b] = [mid([a, b]),mid([a, b])]15 extends
the identity function Id(x) = x. However it would be expected that for all x ∈ [a, b],
f(x) ∈ F ([a, b]), which is not true. Therefore it is important that if an interval A

represents a real numbers r and a real function maps r into s, then the interval
function used to represent f , should map A into B such that s ∈ B. This intuition
induces the notion of interval representation, which will mean that an interval
object (an interval or an interval function) can be used to represent a real object
(a real number or a real function). In the sequel, we propose a canonical interval
representation of a real function f , CIR(f), which always returns the best interval
containing the image of f .

14A function F : I(R) → I(R) is an extension of a function f : R → R if for all x ∈ R

F ([x, x]) = [f(x), f(x)] [5] p. 21
15mid([a, b]) = b+a

2
, is called the midpoint of [a, b].
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Definition 4.1. An interval A represents every a ∈ A. Given the functions

f : R → R and F : I(R) → I(R), F is an interval representation for f if for all

A ∈ I(R) and a ∈ A, F (A) represents f(a).

Therefore, at least, when we use interval mathematics to compute numerical
functions, it is required to use functions which are interval representations. In what
follows we show some properties of those functions.

Lemma 4.1. Some interval function F : I(R) → I(R) does not represent any real

function f .

Proof. Consider the following interval function:

F ([a, b]) =

{

[5, 5], if a = b,
[0, 1], otherwise.

Suppose that F represents a function f , then since 3 ∈ [2, 4], then f(3) ∈
F ([2, 4]) and f(3) ∈ F ([3, 3]). But F ([2, 4]) = [0, 1] and F ([3, 3]) = [5, 5], and so f

is not a function, what is a contradiction.

Lemma 4.2. Not every real function f admits interval representations.

Proof. Given the function

f(x) =

{

1
x, if x > 0,
1, otherwise,

there is no interval function F such that for all x ∈ [−1, 1], f(x) ∈ F [−1, 1], since
f is asymptotic at point 0.

Observe, however, that if we consider partial interval functions it is still possible
to define the notion of interval representation on the set of intervals {[a, b] : b ≤
0 ∨ a > 0}. Note also that only asymptotic functions f : R → R in some point
x bring this problem on. In other words, asymptotic real functions will obligate
partiality on interval representations. For a while, partial interval representations
theory will not be developed in this paper, instead we will consider only total non-
asymptotic real functions and its interval representations. Some of the following
propositions also hold, vacuously, for total asymptotic real functions.

Lemma 4.3. Every monotonic function F : I(R) → I(R) represents some real

function f .

Proof. Let F : I(R) → I(R) be a monotonic function, with respect to the information
order. Define f : R → R by f(x) = mid(F [x, x]). Suppose that x ∈ [a, b], then
since F is monotonic, F [a, b] ⊑ F [x, x], but mid(F [x, x]) = f(x) ∈ F [x, x]. So,
f(x) ∈ F [a, b], therefore F represents f .

In some sense, this proposition reflects the fact that Moore [5] emphasizes the
importance of monotonicity for interval functions.
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Corollary 4.2. Every Scott-continuous function F : I(R) → I(R) represents some

real function f .

Lemma 4.4. Not every interval representation is a monotonic function, and there-

fore an ord-continuous function.

Proof. Take for, example, the constant f(x) = 5; the representation F (A) = [4, 6]
if [2, 3] ⊑ A or F (A) = [5, 5] otherwise. Observe that [1, 4] ⊑ [2.5, 2.6] but F [1, 4] =
[5, 5] 6⊑ [4, 6] = F [2.5, 2.6].

Corollary 4.3. The set of interval representations is a proper superset of interval

monotonic functions.

The following results show that for every continuous function in R, there exist
an optimum interval representation for that; namely CIR(f).

Theorem 4.1. Let f : R → R be a real function. If f is a total non-asymptotic

real function, then the interval function:

CIR(f)([a, b]) = [min f([a, b]),max f([a, b])]

is well defined and it is an interval representation called canonical interval rep-

resentation for f .

Proof. Straightforward.

Lemma 4.5. If f : R → R is continuous16 then for every [a, b] ∈ I(R), CIR(f)([a, b])
= f([a, b]).

Proof. Suppose that f is continuous, given [a, b] ∈ I(R), by definition
min(f [a, b]),max(f [a, b]) ∈ CIR(f)([a, b]) ∩ f([a, b]), therefore there are x0, x1 ∈
[a, b], such that f(x0) = min(f [a, b]) and f(x1) = max(f [a, b]), thus f(x0) ≤ f(x1)
and for every z ∈ [a, b], f(x0) ≤ f(z) ≤ f(x1). So by lemma 2.3, f(I) is a
closed interval. Clearly, the extreme of f(I) are, respectively, f(x0) and f(x1),
so f(I) = [f(x0), f(x1)] = [min(f [a, b]),max(f [a, b])] = CIR(f)([a, b]).

Corollary 4.4. If f is continuous and y ∈ CIR(f)([a, b]) = f([a, b]), then f−1(y)∩
[a, b] 6= ∅.

Note that if f is an asymptotic real function at x, then for every [a, b], where
x ∈ [a, b], there does not exist [c, d] such that f(x) ∈ [c, d], and therefore f has no
interval representation. Thus, if f admits an interval representation, then CIR(f)
exists.

Theorem 4.2. For every interval representation F of a real function f , F ⊑
CIR(f)17.

16In the usual sense — according to euclidean topology.
17i.e., for every interval A, F (A) ⊑ CIR(f)(A).
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Proof. Suppose that F is an interval representation for f , the for all x ∈ [a, b],
f(x) ∈ F [a, b], so f [a, b] ⊆ F [a, b], by theorem 4.5, CIR(f)[a, b] ⊆ F [a, b], and then
F [a, b] ⊑ CIR(f)[a, b]

Therefore CIR(f) is the best representation of a continuous function f . The next
theorem, tell us in some sense that the continuity of f induces the Scott-continuity
in I(R).

Theorem 4.3. For every real continuous function f , CIR(f) is Scott-continuous.

Proof. Let f be a continuous function. According to lemma 3.3 it is enough to prove
that CIR(f) is ord-continuous. (1) [a, b] ⊑ [c, d] then [c, d] ⊆ [a, b], so f([c, d]) ⊆
f([a, b]), therefore min(f [a, b]) ≤ min(f([c, d]) and max(f [a, b]) ≥ max(f([c, d]),
hence CIR(f)([a, b]) ⊑ CIR(f)([c, d]). (2) Since CIR(f) is monotonic then for
every directed set ∆, CIR(f)(∆) is also directed and CIR(f)(

⊔

∆) is one of its
upper bounds, and then

⊔

CIR(f)(∆) ⊑ CIR(f)(
⊔

∆). So it is enough to prove
that CIR(f)(

⊔

∆) ⊑
⊔

CIR(f)(∆). If y ∈
⊔

CIR(f)(∆), then for every f([a, b]) ∈
CIR(f)(∆), f−1(y) ∩ [a, b] 6= ∅. We need to prove that

⋂

∆ ∩ f−1(y) 6= ∅ 18.
Suppose that f−1(y)∩ [a, b] = ∅, then there exist [a, b], [c, d] ∈ ∆ such that f−1(y)∩
[a, b] ∩ [c, d] = ∅, because ∆ is directed there exists [e, f ] ∈ ∆ where [a, b], [c, d] ⊑
[e, f ], but clearly [e, f ] ⊆ [a, b] ∩ [c, d], and hence f−1(y) ∩ [e, f ] = ∅, since f is
continuous, according to corollary 4.4, for each [a, b] ∈ ∆, f−1(y)∩ [a, b] 6= ∅, which
is a contradiction. So there exist x ∈

⊔

∆ such that f(x) = y, and therefore
y ∈ CIR(f)(

⊔

∆).

Corollary 4.5. CIR is an operator which maps the set of real Euclidean continuous

functions into the set of Scott-continuous function.

Proof. Observe that CIR maps a continuous function in a unique ord-continuous
function

Lemma 4.6. There exist non-continuous functions f : R → R, such that CIR(f)
is monotonic.

Proof. We will prove that trunc is a counter-example. (1) trunc is not continuous:
Consider the open ball O = (4.5, 5.5), then trunc−1(O) = [5, 6), which is not an open
set. (2) CIR(trunc)[a, b] = [min{trunc(x.y) : a ≤ x.y ≤ b},max{trunc(x.y) : a ≤
x.y ≤ b}] = [min{trunc(x.y) : trunc(a) ≤ trunc(x.y) ≤ trunc(b)},max{trunc(x.y) :
trunc(a) ≤ trunc(x.y) ≤ trunc(b)}] — by monotonicity — = [trunc(a), trunc(b)]

(3) CIR(trunc) is monotone: If [a, b] ⊑ [c, d], then a ≤ c ≤ d ≤ b, and (by
monotonicity of trunc) trunc(a) ≤ trunc(c) ≤ trunc(d) ≤ trunc(b), therefore
CIR(trunc)[a, b] = [trunc(a), trunc(b)] ⊑ [trunc(c), trunc(d)] = CIR(trunc).

Note that, although trunc is not a continuous function according to euclidean
topology, and that some computability models for real numbers accept just contin-
uous function (e.g. Type-2 machines [9]), it is intuitively a computable function in
systems which work with representations for real numbers. Note also that, in some

18Note that, in the Scott sense,
⋂

∆ =
⊔

∆.
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other models of computability, e.g. real-RAM [6], the trunc function is computable
and it is implementable in some concrete machine.

Proposition 4.1. CIR(trunc) is nor Moore-continuous neither Scott-continuous.

Moore and Scott continuity does not capture some computable functions like
trunc 19. It seems that the preservation of least upper bounds by Scott continuity
is something too strong, therefore it is necessary to find some definition between
monotonicy and ord-continuity to capture functions like trunc.

5. Final remarks

Some real functions have many different analytic expressions; for example: f(x) =
2x can be expressed by (1+1)x, x+x, etc. Using a real arithmetic formula (i.e. an
expression containing variables, real numbers, and operations) for f , replacing real
variables occurrences by the corresponding interval variables and real arithmetic
operations by the corresponding interval operations, the resulting expression desig-
nates an interval function which is called natural extension for f (see Moore [5]
p. 21). However, the natural extensions of those expressions are different interval
representations of f , which contain CIR(f)20. In some cases, there are expressions
in which the extension coincides with CIR(f); for example: The function above,
f(x) = 2x, is such that CIR(f)([a, b]) = [min f([a, b]),max f([a, b])] = [2a, 2b] =
[2, 2]∗ [a, b], which is the natural extension of the expression 2x. In this case we have
an interval expression which denotes CIR(f). However, it is not always possible
to find an interval expression which characterizes CIR(f); for example: Given the
function f(x) = x2, its CIR(f)[a, b] = [min{x2 : x ∈ [a, b]},max{x2 : x ∈ [a, b]}],
is rewritten as:

CIR(f)[a, b] =







[a2, b2], if a ≥ 0,
[b2, a2], if b < 0,
[0,max{a2, b2}], otherwise.

Clearly, there is no arithmetical expression which describes this function. There-
fore it is not a natural extension of any real arithmetical expression.

Although natural extensions are very easy to obtain and are clearly more tractable
from the computational point of view, they are not broad enough to describe any
real continuous function — e.g. there does not exist the natural extension for sin(x)
although it is possible to find an algorithm to compute CIR(sin). Finally they do
not always describe the best interval representation for f – CIR(f).

All the notions and proofs of this section are trivially extended for Rn and I(R)
n
.

19trunc is a kind of accessory function, it is just a change of space; it is a coercion of data-types.
20Or in the Scott theory: is an information for CIR(f).
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