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Abstract

In this work, from the category sight, we provide a generalization for the real interval theory.
This generalization allows us to study generic properties of data which are “intervals” of another
data, providing a categorical foundation of intervals as a parametric data type. In doing so we
obtain some properties which holds for real intervals, complex intervals, interval vectors, interval
matrices, and so on. For this purpose we introduce a categorical interval constructor on POSET

based on the information order introduced by Dana Scott and used by Benedito Acióly to provide
a computational foundation of interval mathematics. We study the categorical properties which
this constructor satisfies in order to define the notion of Acióly-Scott interval category. We prove
also that several subcategories of POSET are Acióly-Scott interval categories and we show also
that the quasi-metric spaces category, which is important from a computational point of view and
is not a subcategory of POSET, is an Acióly-Scott interval category.

Keywords: Interval parametric data type, category theory, poset, quasi-metric.

1 Introduction

R.A. Moore in [22,25,23,24] developed a mathematical theory for closed real
intervals, extending the usual mathematical notions on real numbers to real
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intervals. The interval mathematics also consider complex intervals [7], ma-
trix and arrays of real and complex intervals [20]. The main goal of Moore for
introducing this theory was to provide an automatic control of the computa-
tional errors resulting from numeric computations involving real numbers. In
order to perform interval computations 3 in a more clear and efficient way, sev-
eral programming languages have been extended considering computational
representation of these intervals as primitive data types. These extensions
are denominated XSC (eXtension for Scientific Computation) [18,19,16]. It
is reasonable to expect that in the future will be developed XSC languages
with a parametric interval data type. This motivate to generalize the interval
mathematics in order to provide a theoretical foundation for these paramet-
ric interval data type, in such a way that intervals of ”any” possible kind be
allowed.

Since real intervals are defined through the order on the real set, we might
define intervals on any partially order set. The real interval itself are also a
poset. In fact, there exists four usual partial orders on real intervals. In [9]
was introduced an interval constructor based on the Kulisch-Miranker order
on the real intervals [20], which was generalized for other kind of categories
(not necessarily subcategories of POSET) such as the category of topological
spaces with continuous functions. These order is important from a mathemat-
ical point of view, since it is compatible with the cartesian product. However,
from an information or approximation point of view 4 the information order
introduced by Scott to the real intervals [27] and used by Acióly in [1] to pro-
vide a computational foundation to interval mathematics is more interesting.
In [10] was defined an interval constructor on posets based on this information
order. In this work, we will study the class of Acióly-Scott categories, that is,
categories having and interval constructor compatible with the interval con-
structor based on the information order. We will prove also that the category
of quasi-metric spaces and some subcategories of POSET are Acióly-Scott
interval categories. This is an interesting result since the category of quasi-
metric spaces is not a subcategory of POSET and it is an important category
for computer science.

3 Numeric computations using computational interval representations (interval of float
points) for real numbers.
4 An interval can be seen as an information or approximation of the real numbers belonging
to it.
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2 The Interval Mathematics

Let r, s ∈ R such that r ≤ s. The set {x ∈ R : r ≤ x ≤ s} is a closed
real interval or simply a real interval and is denoted by the order pair [r, s].
The set {[r, s] : r, s ∈ R and r ≤ s} called the real interval set is denoted
by I(R). A main characteristic of interval mathematics is to guaranty that all
interesting constructions on intervals can be obtained through their extremes,
that is we can see intervals as ordered pairs. For example,

[r, s] + [t, u] = {x + y : x ∈ [r, s] and y ∈ [t, u]}

= [r + t, s + u]

[r, s] · [t, u] = {xy : x ∈ [r, s] and y ∈ [t, u]}

= [Min{rt, ru, st, su}, Max{rt, ru, st, su}]

It is possible to define several partial orders on I(R) which extend the usual
order on the real set [9]. The information order introduced by Dana Scott in
[27] and used by Benedito Acióly [1] to provide a computational foundation
to interval mathematics is defined as follows:

[r, s] � [t, u] ⇔ [t, u] ⊆ [r, s] ⇔ r ≤ t ≤ u ≤ s

In this work we will take into account this partial order, since it capture
the intuitive idea that if [r, s] � [t, u] then [t, u] is a better approximation
than [r, s] of any unknown real number x which both represents (x ∈ [r, s]
and x ∈ [t, u]), because the maximal error in the representation [t, u] of x

(max{u−x, x−t}) is lesser (and therefore is better) than in the representation
[r, s] (max{s−x, x−r}). Another point in favor of the information order w.r.t.
the other orders, is that we can define in a natural way a computability theory
on the interval spaces based on this order [5,4,13,6]. So, from a computational
point of view, the information order is more interested than the other orders.

3 The Interval Constructor on POSET

Observe that the real intervals as much as the order on I(R) depend upon
the usual real order. We can generalize this constructions by considering any
partially order set, instead of the real set with its usual order. So, we can
think of intervals as a constructor on the category POSET.

Definition 3.1 Let D = (D,≤) be a poset. The poset I(D) = (I(D),�),
where

• I(D) = {[a, b] : a, b ∈ D and a ≤ b}

• [a, b] � [c, d] ⇔ a ≤ c and d ≤ b
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is called the poset of intervals of D [10].

There are two natural functions from I(D) to D, which are the left and
right projections l : I(D) −→ D and r : I(D) −→ D respectively, defined by

l([a, b]) = a and r([a, b]) = b.

The function l is monotonic and therefore it is a morphism from the poset
I(D) to the poset D, but the function r is not monotonic. Nevertheless,
reverting the order on D, this could be overcome.

Definition 3.2 Let D = (D,≤) be a poset. The opposite poset of D, de-
noted by Dop, is the pair Dop = (Dop,≤op), where Dop = D and
x ≤op y ⇔ y ≤ x.

Thus, every poset D has a opposite poset and the functions l and r are
monotonic.

Let D and E posets. If f : D −→ E is a monotonic function w.r.t. D

and E, then the function f op : Dop −→ Eop defined by f op(x) = f(x) is a
monotonic function w.r.t. Dop and Eop. Thus, op is a covariant functor from
POSET into POSET.

Proposition 3.3 Let D = (D,≤) be a poset. Then

(i) (Dop)op = D and

(ii) I(Dop) and I(D) are order isomorphic.

Proof. (i) Is trivial. (ii) Let inv : I(Dop) −→ I(D) be the function defined
by inv([a, b]) = [b, a]. Clearly inv is well defined, monotonic and bijective and
therefore is an isomorphism. �

It is well know that POSET is a cartesian closed category (for example see
[3]). Let D1 = (D1,≤1) and D2 = (D2,≤2) be posets. The cartesian product
between D1 and D2, denoted by D1×D2, is defined by D1×D2 = (D1×D2,≤),
where (a, b) ≤ (c, d) ⇔ a ≤1 c and b ≤2 d.

Lemma 3.4 Let D1 = (D1,≤1) and D2 = (D2,≤2) be posets. Then
I(D1 ×D2) is order isomorphic to I(D1) × I(D2)

5 .

Proof. Let f : I(D1 × D2) −→ I(D1) × I(D2) be a function defined by
f([(a, b), (c, d)]) = ([a, c], [b, d]).

Since,

5 Consider in the proof ≤×, �, �×, �1 and �2 as the orders of D1 × D2, I(D1 × D2),
I(D1) × I(D2), I(D1) and I(D2), respectively.
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[(a1, b1), (a2, b2)] ∈ I(D1 × D2) ⇔ (a1, b1) ≤× (a2, b2)

⇔ a1 ≤1 a2 and b1 ≤2 b2

[(c1, d1), (c2, d2)] ∈ I(D1 × D2) ⇔ (c1, d1) ≤× (c2, d2)

⇔ c1 ≤1 c2 and d1 ≤2 d2

then,

[(a1, b1), (a2, b2)] � [(c1, d1), (c2, d2)] ⇔

((a1, b1) ≤× (c1, d1) and (c2, d2) ≤× (a2, b2) ⇔

a1 ≤1 c1 and b1 ≤2 d1 and c2 ≤1 a2 and d2 ≤2 b2 ⇔

a1 ≤1 c1 ≤1 c2 ≤1 a2 and b1 ≤2 d1 ≤2 d2 ≤2 b2 ⇔

[a1, a2] �1 [c1, c2] and [b1, b2] � [d1, d2] ⇔

([a1, a2], [b1, b2]) �× ([c1, c2], [d1, d2]) ⇔

f([(a1, b1), (a2, b2)]) �× f([(c1, d1), (c2, d2)])

So f is monotonic. Since f is bijective we have that it is an isomorphism.�

The cartesian construction provide the introduction of the arrays and ma-
trix of some type. Thus, this lemma states that an array (or matrix) of
intervals of some type can be see as an interval of an array (or matrix) of
these types.

Lemma 3.5 Let D = (D,≤) be a poset. There is a unique monomorphism
m(D) : I(D) −→ D × Dop which makes the following diagram

I(D)

��
�

�
�

�
l

�
�

�
�

�

r

�

D � π0
D × Dop

m(D)

� π1 � Dop

commutative.

Proof. Follows from the universal property of the cartesian product. �

Proposition 3.6 Let D1 = (D1,≤1) and D2 = (D2,≤2) be posets. Let f :
D1 −→ D2 be a monotonic function. The function I(f) : I(D1) −→ I(D2),
defined by
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I(f)([a, b]) = [f(a), f op(b)],

is the unique monotonic function which makes the following diagram

D1
� l

I(D1)
r � D

op
1

D2

f

�
� l

I(D2)

I(f)

� r � D
op
2

f op

�

commutative.

Proof. Clearly I(f) is monotonic and makes the above diagram commutative.

If G : I(D1) −→ I(D2) is another monotonic function such that l◦G = f ◦l

and r ◦ G = f op ◦ r then,

G([a, b]) = [c, d] ⇔ l(G([a, b])) = l([c, d]) and r(G([a, b])) = r([c, d])

(since m(D2) : I(D2) −→ D2 × D
op
2 is injective)

⇔ f(l([a, b])) = l([c, d]) and f op(r([a, b])) = r([c, d])

(by commutativity)

⇔ f(a) = c and f op(b) = d

Thus G([a, b]) = [f(a), f op(b)] = I(f)([a, b]). Therefore I(f) is unique. �

Remark 3.7 The above proposition guarantees that we have a covariant
functor I : POSET −→ POSET and provide a generalization of the best
interval representation notion [26] for monotonic functions.

Lemma 3.8 Let C be a category with cartesian product. Let f : A −→ B

and g : C −→ D be morphisms of C. Then there is a unique morphism
f × g : A × C −→ B × D which makes commutative the following diagram

A � π0
A × C

π1 � C

B

f

�
� π0

B × D

f × g

� π1 � D.

g

�

Proof. Follows from the universal property of the cartesian product. �
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Remark 3.9 The lemma 3.8 guarantees that if F : C −→ C is a covariant
functor, then ProdF : C −→ C is a covariant functor, where ProdF is defined
by

ProdF (A) = A × F (A)

for each object A of C and if f : A −→ B is a morphism then

ProdF (f) = f × F (f) : A × F (A) −→ B × F (B)

Lemma 3.10 The collection

m = {m(D) : I(D) −→ Prodop(D) : D is a poset }

of morphisms is a natural transformation from I : POSET −→ POSET to
Prodop : POSET −→ POSET.

Proof. Let f : D1 −→ D2 be a monotonic function of posets. We must prove
that the following diagram

I(D1)
m(D1) � D1 × D

op
1

I(D2)

I(f)

� m(D2) � D2 × D
op
2

f × f op

�

commutes. In fact, if [a, b] ∈ I(D1) then

f × f op(m(D1)([a, b])) = f × f op([a, b])

= (f(a), f op(b))

= m(D2)([f(a), f op(b)])

= m(D2)(I(f)([a, b]))

Thus, (f × f op) ◦ m(D1) = m(D2) ◦ I(f). �

4 Acióly-Scott Interval Categories

Definition 4.1 An Acióly-Scott interval category is a quadruple
(C, op, I, m) such that

(i) C is a category with cartesian product

(ii) op : C −→ C is a covariant functor such that (Aop)op = A for all object
A of C
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(iii) I : C −→ C is a covariant functor such that
(a) I(A×B) is isomorphic to I(A)× I(B) for all pair of objects A and B

of C and
(b) I(Aop) is isomorphic to I(A) for all object A of C

(iv) m is an injective natural transformation from I : C −→ C to
Prodop : C −→ C

(v) There exists a covariant functor F : C −→ POSET such that for each
A, B, C, D ∈ ObjC and for each f : A −→ C and g : B −→ D morphisms
we have that
(a) F (Aop) = F (A)op,
(b) F (f op) = F (f)op,
(c) F (I(A)) = I(F (A)),
(d) F (I(f)) = I(F (f)),
(e) F (A × B) = F (A) × F (B),
(f) F (f × g) = F (f) × F (g) and
(g) F (m(A)) = m(F (A)).

Notice that the functor op and the natural transformation m of the left
and right sides of the equations of definition 4.1 are different, because the left
sides are defined w.r.t. the category C whenever the right sides are defined
w.r.t. the POSET category. Analogously, I and I are different.

Lemma 4.2 Let (C, op, I, m) be an Acióly-Scott interval category and A be an
object of C. There are unique morphisms l : I(A) −→ A and r : I(A) −→ Aop

which makes the following diagram

I(A)

��
�

�
�

�
l

�
�

�
�

�

r

�

A � π0
A × Aop

m(A)

� π1 � Aop

commutative.

Proof. Follows from the universal property of the cartesian product. �

Proposition 4.3 Let (C, op, I, m) be an Acióly-Scott interval category, A and
B be objects of C and f : A −→ B be a morphism. There is a unique morphism
I(f) : I(A) −→ I(B) which makes the following diagram
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A � l
I(A)

r � Aop

B

f

�
� l

I(B)

I(f)

� r � Bop

f op

�

commutative.

Proof. The morphism I(f) = (f ◦ l) × (f ◦ r). �

5 Some Trivial Interval Categories

In this section we study several categories which are trivially Acióly-Scott
interval categories.

Proposition 5.1 (POSET, op, I, m) is an Acióly-Scott interval category.

Proof. Properties (i), (ii), (iii) and (iv) of definition 4.1 follows from what we
had discussed before. To prove property (v) it is enough to take
F : POSET −→ POSET as the identity functor. �

Definition 5.2 Let C = (C,op , I, m) and C′ = (C′,op′ , I′, m′) be Acióly-Scott
interval categories. C′ is an Acióly-Scott interval subcategory of C if C′

is a subcategory of C and the inclusion functor Inc : C′ −→ C satisfy

(i) Inc(Aop′) = Inc(A)op,

(ii) Inc(f op′) = Inc(f)op,

(iii) Inc(I′(A)) = I(Inc(A)),

(iv) Inc(I′(f)) = I(Inc(f)),

(v) Inc(A × B) = Inc(A) × Inc(B),

(vi) Inc(f × g) = Inc(f) × Inc(g) and

(vii) Inc(m′(A)) = m(Inc(A)).

Proposition 5.3 Let C = (C,op , I, m) and C′ = (C′,op′ , I′, m′) be Acióly-Scott
interval categories. C′ is an Acióly-Scott interval subcategory of C if and only
if C′ is a subcategory of C with cartesian product, closed under the functors I

and op and Op′, I
′ and m′ are the restrictions of op, I and m to C′, respectively.

Proof. Straightforward. �

Corollary 5.4 Consider the following subcategories of POSET:
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(i) biDCPO with dcpos whose reverse poset are also a dcpo as objects and
continuous functions as morphisms.

(ii) biCCDCPO with consistently complete dcpos whose reverse poset are
also a consistently complete dcpos as objects and continuous functions as
morphisms.

(iii) biADCPO with algebraic dcpos whose reverse poset are also an algebraic
dcpo as objects and continuous functions as morphisms.

(iv) biSDom with Scott domains whose reverse poset are also a Scott domain
as objects and continuous functions as morphisms.

Then (biDCPO,op , I, m), (biCCDCPO,op , I, m), (biADCPO,op , I, m)
and (biSDom,op , I, m) are Acióly-Scott interval categories.

Proof. In [9] was proved that the interval functor I is closed under this kind
of posets and if f : D −→ E is continuous then I(f) is also continuous.
By definition, the op functor is also closed under this kind of posets. So, all
those categories are closed under the functors I and op. Since, trivially, those
categories are subcategories of POSET (all dcpo is a poset and all continuous
function is monotonic) then, by propositions 5.1 and 5.3, all those categories
are Acióly-Scott categories. �

Another trivial way to obtain an Acióly-Scott interval category is to con-
sider cartesian structured set categories with functions as morphism, the func-
tor F mapping objects (A, Γ), where A is the set and Γ the structure, in the
poset (A, =), the functor op as the identity and the I functor mapping an ob-
ject (A, Γ) in (A, Γ) × (A, Γ) and the natural transformation m is defined by
m(A, Γ)[x, y] = (x, y). For example, let G be the category of groups as objects
with their usual homomorphism as morphism. Define the covariant functor op

and I by (G, +, 0)op = (G, +, 0), hop = h, I((G, +, 0)) = (G, +, 0) × (G, +, 0)
and I(h) = h × h and m((G, +, 0))[x, y] = (x, y). Trivially, (G,op , I, m) is an
Acióly-Scott interval category.

In the next section we will give a non-trivial example of an Acióly-Scott
interval category, in the sense that neither is a subcategory of POSET nor
the functor F maps always objects into a poset with the equality as order.

6 Quasi-metric Spaces as an Acióly-Scott Interval Cat-

egory

In [24] the set of real intervals is endowed with a metric topology such that
when restricted to the degenerate intervals the induced relative topology co-
incides with the usual one on the real line. It is well known that the metric
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topology [24] on an interval space is not compatible with the interval inclu-
sion monotonicity property in the sense that may exist monotonic functions
which are not continuous and conversely. Quasi-metric spaces is a general-
ization of metric spaces. In [2] a quasi-metric topology for the interval space
was provided which is consistent with the real line topology and whose con-
tinuous functions are monotonic. This quasi-metric is not a metric since it
fails to satisfies the symmetrical property. Thus, except for the Hausdorff
property of the metric - which does not fit with our point of view - the other
good metric properties remains true. Lately [32] used this quasi-metric to
provide some results in order to develop a Scott interval analysis as alter-
native to Moore interval analysis. Quasi-metric spaces and their relation to
domain theory have turned into a field of intensive research recently, see for
example [30,29,2,31]. Other applications of quasi-metric spaces are in the
study of computability [8], specification of lazy real numbers [12], hyperspaces
[11], fuzzy topology [17], fixed point theorem and fuzzy mappings [14], etc.

Definition 6.1 [29] Let X be a non empty set and q : X × X −→ R
+ be a

function. The pair (X, q) is said to be a quasi-metric space if for each x, y

and z in X, q satisfies the following axioms.

i) q(x, x) = 0

ii) q(x, z) ≤ q(x, y) + q(y, z)

iii) q(x, y) = q(y, x) = 0 ⇒ x = y

In this case q is called a quasi-metric.

The weakening of the symmetry axiom is not as absurd as it may seem. For
example, the distance from a point x to a point y could be thought as a measure
of the effort performed in going from x to y. Thus when x is at the basis of a
hill and y at the top, the distance (effort) in going from x to y is considerably
greater than the effort in going from y to x [29]. Another intuition is to see
a quasi-metric as a measure of the distance between information. Thus the
distance of an information x to y is zero if x is more complete or is equal to
y, otherwise it is greater than zero.

From this definition every metric space is also a quasi-metric one. Let
X = (X, q) be a quasi-metric space. As in the case of metric spaces the
standard topology induced on X by a quasi-metric q is defined by taking a
set O ⊆ X as being open if, and only if, for any x ∈ X, x ∈ O implies that
Bε(x) ⊆ O for some ε > 0, where Bε(x) = {y ∈ X : q(x, y) < ε}. In
that case, the open ε-balls Bε(x) constitute evidently a base of open sets for
a topology on X.

Continuous and uniformly continuous functions for quasi-metric spaces are
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defined analogously to metric spaces.

Definition 6.2 Let X = (X, q) and Y = (Y, q′) be quasi-metric spaces. Then
f : X −→ Y is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x, y ∈ X. q(x, y) ≤ δ ⇒ q′(f(x), f(y)) ≤ ε

The idea of uniform continuity is that if a pair of points is closed in X

then their image must be closed in Y, uniformly across the space X [29]. If f

is uniformly continuous then f is continuous [29].

Proposition 6.3 Let X = (X, q) and Y = (Y, q′) be quasi-metric spaces. If
f : X −→ Y is uniformly continuous and q(x, y) = 0 then q′(f(x), f(y)) = 0.

Proof. Suppose that q(x, y) = 0 and q′(f(x), f(y)) �= 0. Then, there exists
ε such that 0 < ε < q′(f(x), f(y)). By definition of uniformly continuous
function, there exists δ > 0 such that q(x, y) ≤ δ ⇒ q′(f(x), f(y)) ≤ ε. Since,
by hypothesis, q(x, y) = 0 then q(x, y) ≤ δ. So, q′(f(x), f(y)) ≤ ε, which is a
contradiction. �

Quasi-metric spaces with uniformly continuous functions form a category,
denoted by QMS.

Observe that a metric space (X, q∗) could be obtained from a quasi-metric
space (X, q) by taking q∗(x, y) = max{q(x, y), q(y, x)} (the associated metric).

Proposition 6.4 [2] Let q : I(R) × I(R) −→ R
+ be defined by

q([r, s], [t, u]) = max{0, t − r, s − u}.

Then q is a quasi-metric on I(R).

This quasi-metric on the real intervals is interesting mathematically and
computationally. Mathematically because it allows us to develop a theory
of Cauchy sequence, limits, continuity, etc. Computationally because it pro-
vides a mean of endowing the interval space with the Scott topology whose
computational characteristic is well known [28,29,21].

In what follows we will show that QMS is an Acióly-Scott interval cate-
gory.

6.1 The functor op

Lemma 6.5 Let X = (X, q) be a quasi-metric space. Then
qop : Xop × Xop −→ R

+ defined by qop(x, y) = q(y, x) 6 , where Xop = X

is a quasi-metric on Xop.

6 qop is known as the conjugate of q [29].
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Proof. We will prove that the three conditions of definition 6.1 are satisfied.

1. qop(x, x) = q(x, x) = 0.

2. qop(x, z) = q(z, x)

≤ q(z, y) + q(y, x)

= q(y, x) + q(z, y)

= qop(x, y) + qop(y, z)

3. If qop(x, y) = qop(y, x) = 0 then q(y, x) = q(x, y) = 0. So, x = y.
�

Theorem 6.6 Let X = (X, q) be a quasi-metric space. Then Xop = (Xop, qop)
is a quasi-metric space.

Proof. Straightforward from lemma 6.5. �

Let X = (X, q) and Y = (Y, q′) be quasi-metric spaces and f : X −→ Y be
a uniformly continuous function. Define f op : Xop −→ Y op by f op(x) = f(x).

Theorem 6.7 f op is a uniformly continuous function.

Proof. Trivially f op is a well defined function. Let ε > 0 then, since f

is uniformly continuous, there exists δ > 0 such that if q(x, y) ≤ δ then
q′(f(x), f(y)) ≤ ε. That is, if qop(y, x) ≤ δ then (q′)op(f op(y), f op(x)) ≤ ε. So,
f op is uniformly continuous. �

6.2 The functor I

Let X = (X, q) be a quasi-metric space. We define the set I(X) by

I(X) = {[x, y] : x, y ∈ X and q(y, x) = 0},

and the function I(q) : I(X)−→R
+ by I(q)([r,s], [t,u]) = max{0,q(r,t),q(u,s)}.

Lemma 6.8 The pair (I(X), I(q)) is a quasi-metric space.

Proof. Axioms i) and iii) in the definition of quasi-metric spaces are trivially
verified. Let us, verify axiom ii):

If I(q)([r, s], [v, w]) = 0 then trivially for any [t, u] ∈ I(X),
I(q)([r, s], [v, w]) ≤ I(q)([r, s], [t, u]) + I(q)([t, u], [v, w]).

If I(q)([r, s], [v, w]) > 0 then I(q)([r, s], [v, w]) = max{q(r, v), q(w, s)}. But
q(r, v) ≤ q(r, t) + q(t, v) and q(w, s) ≤ q(w, u) + q(u, s). So,

max{q(r, v), q(w, s)} ≤ max{q(r, t) + q(t, v), q(w, u) + q(u, s)}

= max{q(r, t), q(w, u)}+ max{q(t, v), q(u, s)}

and therefore, I(q)([r, s], [v, w]) ≤ I(q)([r, s], [t, u]) + I(q)([t, u], [v, w]). �
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Let X = (X, q) and Y = (Y, q′) be quasi-metric spaces and f : X −→ Y

be a uniformly continuous function. Define I(f) : I(X) −→ I(Y ) by

I(f)([x, y]) = [f(x), f op(y)].

Theorem 6.9 I(f) is a uniformly continuous function.

Proof. First, we will prove that I(f) is a well defined function. If [x, y] ∈ I(X)
then q(y, x) = 0. So, by proposition 6.3, q′(f(y), f(x)) = 0. Therefore,
[f(x), f(y)] = [f(x), f op(y)] ∈ I(Y ).

We will prove next that I(f) : I(X) −→ I(Y ) is uniformly continuous.

Let ε > 0 and [r, s], [t, u] ∈ I(X). Then by definition 6.2, there exists
δ > 0 such that if q(r, t) ≤ δ then q′(f(r), f(t)) ≤ ε and if q(u, s) ≤ δ then
q′(f(u), f(s)) ≤ ε.

I(q)([r, s], [t, u]) = 0 or I(q)([r, s], [t, u]) = max{q(r, t), q(u, s) ≤ δ.

If I(q)([r, s], [t, u]) = 0, then q(t, r) = 0 and q(s, u) = 0, and therefore
q′(f(t), f(r)) = 0 and q′(f(s), f(u)) = 0. So

I(q)([f(r), f(s)], [f(t), f(u)]) = I(q)(I(f)([r, s]), I(f)([t, u])) = 0.

Therefore I(q)(I(f)([r, s]), I(f)([t, u])) ≤ ε.

If I(q)([r, s], [t, u]) = max{q(r, t), q(u, s)} then q(r, t) ≤ δ and q(u, s) ≤ δ.
Therefore, q′(f(r), f(t)) ≤ ε and q′(f(u), f(s)) ≤ ε. Thus,
max{q′(f(r), f(t)), q′(f(u), f(s))} ≤ ε. So, I(q)(I(f)([r, s]), I(f)([t, u])) ≤ ε. �

What we had proved so far is that I : QMS −→ QMS is a covariant
functor.

Lemma 6.10 Let X and Y be quasi-metric spaces. Then I(X × Y ) is order
isomorphic to I(X) × I(Y ).

Proof. Let f : I(X × Y ) −→ I(X) × I(Y ) be defined by

f([(a, b), (c, d)]) = ([a, c], [b, d]).

It is easy to show that f is a well defined uniformly continuous isomor-
phism. �

6.3 The Natural Transformation

Let X be a quasi-metric space. Define m(X) : I(X) −→ X × Xop by

m(X)([x, y]) = (x, y).

Lemma 6.11 m(X) : I(X) −→ X × Xop is uniformly continuous.

Proof. Let ε > 0. If I(q)([r, s], [t, u]) ≤ ε (considering δ = ε) then or
I(q)([r, s], [t, u]) = 0 or max{q(r, t), q(u, s)} ≤ ε.
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If I(q)([r, s], [t, u]) = 0 then q(t, r) = 0 and q(s, u) = 0 (i.e. qop(u, s) = 0).
So, q × qop((t, u), (r, s)) = 0. Thus, q × qop(m(X)([t, u]), m(X)([r, s])) = 0.
Therefore, q × qop(m(X)([t, u]), m(X)([r, s])) ≤ ε.

If max{q(r, t), q(u, s)} ≤ ε then q(r, t) ≤ ε and q(u, s) ≤ ε (i.e.
qop(s, u) ≤ ε). Therefore, q × qop((r, s), (t, u)) ≤ ε. Thus,
q × qop(m(X)([t, u]), m(X)([r, s])) ≤ ε. �

Lemma 6.12 Let X and Y be quasi-metric spaces. Let f : X −→ Y be a
uniformly continuous map. Then the following diagram

I(X)
m(X) � X × Xop

I(Y )

I(f)

� m(Y ) � Y × Y op

f × f op

�

commutes.

Proof. Let [x, y] ∈ I(X). Then

f × f op(m(X)([x, y])) = f × f op(x, y)

= (f(x), f op(y))

= m(Y )([f(x), f op(y)])

= m(Y )(I(f)([x, y])).

Hence, (f × f op) ◦ m(X) = m(Y ) ◦ I(f).

Therefore the above diagram commutes. �

The above lemmas guarantees that m is a natural transformation from
functor I to functor Prodop.

6.4 The Functor F

Let (X, q) be a quasi-metric space. Define the poset F (X) = (X,≤X) where

x ≤X y ⇔ q(y, x) = 0.

Clearly, ≤X is a partial order on X.

Lemma 6.13 If f : X −→ Y is a uniformly continuous map then f is mono-
tonic with respect to the above partial order.

Proof. Straightforward from proposition 6.3. �
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Define F (f) = f . The above lemma guarantees that F (f) is a morphism
from the poset F (X) to the poset F (Y ). Thus F : QMS −→ POSET is a
covariant functor.

Proposition 6.14 (QMS, op, I, m) is an Acióly-Scott interval category.

Proof. Properties (i), (ii), (iii) and (iv) of definition 4.1 follows from the
above discussions. Property (v) follows straightforward from the definition of
F , m, op and I. We will only show that F (I(X)) = I(F (X)) for all quasi-
metric space X.

Notice that

[r, s] ≤I(X) [t, u] ⇔ I(q)([t, u], [r, s]) = 0

⇔ q(r, t) = 0 and q(u, s) = 0

⇔ t ≤F (X) r and u ≤F (X) s

⇔ t ≤F (X) r and s ≤op

F (X) u

⇔ [r, s] � [t, u] in I(F (X)).
�

7 Conclusions

We defined Acióly-Scott interval categories in order to generalize usual results
of the Moore interval theory to other kind of categories.

The main difference of this work with a previous one [9] which also general-
ize the Moore interval theory in a categorical sight, rest in the order considered
to define the interval constructor. The choice in this paper of the information
order is better from a computational point of view, because it reflect the in-
formation or approximation nature of an interval as well as the error bound
[23,24]. That is, an interval [a, b] � [c, d] means that the information or ap-
proximation given by the interval [c, d] on an exact solution is better than the
one provided by [a, b] and therefore the length of the maximal error (error
bound) in [c, d] is lesser than the one provided by [a, b] 7 .

We showed that some important categories are Acióly-Scott interval cat-
egories, such as the category QMS of quasi-metric spaces with uniformly
continuous functions, and several domain categories. This is an interesting
result since QMS is not a subcategory of POSET and it is important in
computer science as showed in [29,12,2,15,8,14]. It is clear that for a category

7 Although, for calculating the maximal errors of a real interval, we need arithmetic oper-
ations, turning this process not generic since not every Acióly-Scott category has objects
with intrinsic arithmetic operations, the intuitive idea is that when smaller is the interval
smaller is the error.
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be a non trivial Acióly-Scott interval category it is necessary that it embeds
(implicit or explicitly) a partial order (different of equal for some object) on
their objects. But not necessarily all category with a partial order embedding
is a non trivial Acióly-Scott interval category.

As a secondary product we define an interval constructor I on the POSET

category which generalizes the interval constructor on the real set. This result
is important in order to have a formal treatment of parametric interval data
type. Therefore, we are given a theoretical foundations to develop program-
ming languages with such parametric interval data type as primitive type.

Further work includes:

(i) To define interval categories in an intrinsic way;

(ii) To prove that some categories of continuous posets, such as the cate-
gory of ω-continuous consistently complete cpo´s whose reverse is also
an ω-continuous consistently complete cpo and continuous functions, are
Acióly-Scott interval categories;

(iii) To prove that the interval functor is well behaved under other domain
constructors; and

(iv) To extend interval arithmetic for some Acióly-Scott interval categories.
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