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Abstract

There are several ways to extend the classical logical connectives for fuzzy truth degrees,
in such a way that their behavior for the values 0 and 1 work exactly as in the classical
one. For each extension of logical connectives the formulas which are always true (the
tautologies) changes. In this paper we will provide a fuzzy interpretation for the usual
connectives (conjunction, disjunction, negation, implication and bi-implication) such that
the set of tautologies is exactly the set of classical tautologies. Thus, when we see logics as
set of formulas, then the propositional (classical) logic has a fuzzy model.
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1 Introduction

The fuzzy set theory introduced by Lofti Zadeh in [15] has as main characteristic
the consideration of a degree of belief, i.e. a real value in[0, 1], to indicate how
much an expert believes that the element belongs to the set. This theory is appro-
priate to deal with concepts (and therefore with sets) not very precise such as the
fat people, high temperatures, etc. In this way fuzzy logic, the subjacent logic, be-
comes an important tool to deal with uncertainty of knowledge and to represent the
uncertainty of human reasoning.

Two main directions can be distinguished in fuzzy logic [16]: 1) Fuzzy logic in
the broad sense where the main goal is the development of computational systems
based on fuzzy reasoning, such as fuzzy control systems and 2) Fuzzy logic in the
narrow sense where fuzzy logic is seen as a symbolic logic and therefore questions
as formal theories are studied. Lately, considerable progress has been made in
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strictly mathematical (formal and symbolic) aspects of fuzzy logic as logic with a
comparative notion of truth [10].

Triangular norms (t-norms) were introduced by Schweizer and Sklar in [13] to
model the distance in probabilistic metric spaces. But, Alsina, Trillas and Valverde
in [1] showed that t-norms and their dual notion (t-conorm) can be used to model
conjunction and disjunction in fuzzy logics generalizing several definitions for
those connectives provided by Lotfi Zadeh in [15], Bellman and Zadeh in [4,5] and
Yager in [14] (which define a general class of interpretations), etc. The other usual
propositional connectives also can be fuzzy extended from a t-norm [8,12,6,3].
Thus, each t-norm determines a different set of true formulas (1-tautologies) and
false formulas (0-contradictions) and therefore different (fuzzy) logics. The fuzzy
logic where the interpretation of the propositional connectives are based on t-norm
construction are known as triangular logics [9,2].

In this paper, we will consider the weak t-norm, and provide characterizations
for the residuum, bi-implication, negation and t-conorm, all of them canonically
obtained from this t-norm. Considering the usual propositional language, we will
prove that interpreting the formulas based on these operators, each classical tau-
tology is a tautology for this fuzzy interpretation. Since the converse is trivial,
i.e. each1-tautology (independently of the fuzzy extensions considered for the
propositional connectives) is a tautology in the classical logic, we prove that the
propositional classic logic (when understood as the set of tautologies) is a fuzzy
logic, i.e. there exists a fuzzy interpretation for the propositional connectives such
that the set of fuzzy tautologies coincides with the set of the classical tautologies.

2 Fuzzy logics

Let LP be the usual propositional language. Afuzzy evaluationof propositional
symbolsPS is any functione : PS → I, whereI = [0, 1]. LetT = 〈T, I, N, S,B〉
be a fuzzy generalization of propositional connectives〈∧,→,¬,∨,↔〉, respec-
tively. We can extend the evaluatione for a functionTe : LP −→ I as follows:

(i) Te(p) = e(p) for eachp ∈ PS,

(ii) Te(¬α) = N(Te(α)),

(iii) Te((α ∧ β)) = T (Te(α), Te(β)),

(iv) Te((α ∨ β)) = S(Te(α), Te(β)),

(v) Te((α → β)) = I(Te(α), Te(β)), and

(vi) Te((α ↔ β)) = B(Te(α), Te(β)).

A formula α ∈ LP is a 1-tautology w.r.t aT , or simplyT -tautology, denoted
by |=T α, if for each fuzzy evaluatione, Te(α) = 1. Thus, the fuzzy logic modelled
by T , or simply theT -fuzzy logic is the set

LPT = {α ∈ LP : |=T α}.
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Proposition 2.1 LetT = 〈T, I, N, S,B〉 be a fuzzy generalization of propositional
connectives andα ∈ LP . If |=T α then|= α (classical tautology).

Proof: Straightforward.

The propositional classical logic was defined in [7] as being the set of all tau-
tologies. So, any fuzzy logic is contained in the classical one.

3 Equivalence between the propositional classical logic and the
W-fuzzy logic

LetW = 〈W, IW , NW , SW , BW 〉 be the fuzzy generalization of propositional con-
nectives obtained canonically from the weak t-norm, i.e.

Conjunction:

W (x, y) =





min{x, y} , if max{x, y} = 1

0 , otherwise

Implication:

IW (x, y) =





y , if x = 1

1 , otherwise

Negation:

NW (x) =





1 , if x < 1

0 , if x = 1

Disjunction:

SW (x, y) =





1 , if x = 1 or y = 1

0 , otherwise

Bi-implication:

BW (x, y) =





y , if x = 1

x , if y = 1

1 , otherwise

Lemma 3.1 Letα, β, γ ∈ LP . Then

A1
def
= α → (β → α)

A2
def
= (α → (β → γ)) → ((α → β) → (α → γ))
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A3
def
= (¬β → ¬α) → ((¬β → α) → β)

A4
def
= α ∧ β → β

A5
def
= α → (β → (α ∧ β))

A6
def
= α → (α ∨ β)

A7
def
= β → (α ∨ β)

A8
def
= (α → γ) → ((β → γ) → (α ∨ β → γ))

A9
def
= (α → β) → ((α → ¬β) → ¬α)

A10
def
= ¬¬α → α

A11
def
= (α ↔ β) → ((α → β) ∧ (β → α))

A12
def
= ((α → β) ∧ (β → α)) → (α ↔ β)

areW-tautologies.

Proof:

(i) Suppose that6|=W α → (β → α). Then, there is a fuzzy evaluatione such that
We(α → (β → α)) 6= 1. But, by definitions ofIW andWe, to it is necessary
thatWe(α) = 1 andWe(β → α) 6= 1. But, by the same definitions,We(β →
α) 6= 1, only if We(β) = 1 andWe(α) 6= 1 leading to a contradiction. So,
|=W α → (β → α).

(ii) Suppose that6|=W (α → (β → γ)) → ((α → β) → (α → γ)). Then,
We((α → (β → γ)) → ((α → β) → (α → γ))) 6= 1 for some fuzzy
evaluatione. So, by definition ofIW and ofWe,We(α → (β → γ)) = 1 and
We((α → β) → (α → γ)) 6= 1. BeingWe(α → (β → γ)) = 1, necessarily
We(α) 6= 1 and beingWe((α → β) → (α → γ)) 6= 1, thenWe(α → β) = 1
andWe(α → γ) 6= 1. Thus, becauseWe(α → γ) 6= 1, We(α) = 1, also
leading to a contradiction. So,|=W (α → (β → γ)) → ((α → β) → (α →
γ)).

(iii) Suppose that6|=W (¬β → ¬α) → ((¬β → α) → β). So for some fuzzy
evaluatione,We((¬β → ¬α) → ((¬β → α) → β)) 6= 1. Thus, by definition
of IW and ofWe, We(¬β → ¬α) = 1 andWe((¬β → α) → β) 6= 1. But,
by the same definitions, ifWe((¬β → α) → β) 6= 1 thenWe(¬β → α) = 1
andWe(β) 6= 1. BecauseWe(¬β → α) = 1, We(¬β) = 1 andWe(α) = 1,
orWe(¬β) 6= 1. The last implies thatWe(β) = 1, which is a contradiction.
So,We(¬β) = 1 andWe(α) = 1. On the other hand, sinceWe(¬β → ¬α) =
1, or We(¬β) = 1 andWe(¬α) = 1. ThereforeWe(α) 6= 1 which is a
contradiction, orWe(¬β) 6= 1 which is also a contradiction. So,|=W (¬β →
¬α) → ((¬β → α) → β).

(iv) Suppose that6|=W α ∧ β → β. Then, by definition ofIW and ofWe, for some
fuzzy evaluatione, We(α ∧ β) = 1 andWe(β) 6= 1. Thus, by definition of
We, W (We(α),We(β)) = 1 and thereforee(α) = We(β) = 1 which is a
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contradiction. So,|=W α ∧ β → β.

(v) Suppose that6|=W α → (β → (α ∧ β)). Then, by definition ofIW and of
We, for some fuzzy evaluatione, We(α) = 1 andWe(β → (α ∧ β)) 6= 1.
But, becauseWe(β → (α ∧ β)) 6= 1, We(β) = 1 andWe(α ∧ β) 6= 1. So,
becauseWe(α ∧ β) 6= 1, W (We(α),We(β)) 6= 1. Therefore,We(α) 6= 1 and
We(β) 6= 1 which is a contradiction. Hence,|=W α → (β → (α ∧ β)).

(vi) Suppose that6|=W α → (α ∨ β). Then, by definition ofIW and ofWe,
We(α) = 1 andWe(α ∨ β) 6= 1 for some fuzzy evaluatione. So, because
We(α∨β) 6= 1, SW (We(α),We(β)) 6= 1. ThereforeW(α) 6= 1 andW(β) 6=
1 which is a contradiction. Hence,|=W α → (α ∨ β).

(vii) Analogously.

(viii) Suppose that6|=W (α → γ) → ((β → γ) → (α ∨ β → γ)). Then,
by definition of IW and ofWe, there exists a fuzzy evaluatione such that
We(α → γ) = 1 andWe((β → γ) → (α ∨ β → γ)) 6= 1. There-
fore, by definition ofIW , We(β → γ) = 1 andWe(α ∨ β → γ)) 6= 1.
So, by the same definition,We(α ∨ β) = 1 andWe(γ)) 6= 1. By defi-
nition of NW , We(α) = 1 or We(β) = 1. If We(α) = 1, then because
We(α → γ) = 1 and by definitionIW , We(α) 6= 1 which is a contradiction,
orWe(α) = We(γ) = 1 which also is a contradiction. So,We(β) = 1. But,
because,We(β → γ) = 1 and by definition ofIW , We(β) 6= 1 which is a
contradiction, orWe(β) = We(γ) = 1 which also is a contradiction. So,
|=W (α → γ) → ((β → γ) → (α ∨ β → γ)).

(ix) Suppose that6|=W (α → β) → ((α → ¬β) → ¬α). Then, by definition of
IW and ofWe, for some fuzzy evaluatione, We(α → β) = 1 andWe((α →
¬β) → ¬α) 6= 1. So,We(α → ¬β) = 1 andWe(¬α) 6= 1. Thus, by
definition ofNW , We(α) = 1 and, becauseWe(α → β) = 1, orWe(α) 6=
1 which is a contradiction, orWe(α) = 1 andWe(β) = 1. On the other
hand, sinceWe(α → ¬β) = 1, or We(α) 6= 1 which is a contradiction or
We(α) = We(¬β) = 1 and, by definition ofNW ,We(β) 6= 1 which also is a
contradiction. Hence,|=W (α → β) → ((α → ¬β) → ¬α).

(x) Suppose that6|=W ¬¬α → α. Then, by definition ofIW and ofWe, for some
fuzzy evaluatione,We(¬¬α) = 1 andWe(α) 6= 1. But, becauseWe(¬¬α) =
1, We(¬α) 6= 1 and thereforeWe(α) = 1 which is a contradiction. So,
|=W ¬¬α → α.

(xi) Suppose that6|=W (α ↔ β) → ((α → β) ∧ (β → α)). Then, by definition of
IW and ofWe, for some fuzzy evaluatione, We(α ↔ β) = 1 andWe((α →
β) ∧ (β → α)) 6= 1. Thus, by definition ofBW , We(α) = We(β) = 1 or,
We(α) 6= 1 andWe(β) 6= 1. On the other hand, by definition of weak t-norm,
We(α → β) 6= 1 orWe(β → α) 6= 1. So, by definition ofIW , orWe(α) = 1
andWe(β) 6= 1 which is a contradiction, orWe(β) = 1 andWe(α) 6= 1
which also is a contradiction. So,|=W (α ↔ β) → ((α → β) ∧ (β → α)).

(xii) Suppose that6|=W (((α → β) ∧ (β → α)) → (α ↔ β)). Then, by definition
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of IW and ofWe, We((α → β) ∧ (β → α)) = 1 andWe(α ↔ β) 6= 1,
for some fuzzy evaluatione. Thus, by definition ofBW , or (*) We(α) = 1
andWe(β) 6= 1 or, (**) We(α) 6= 1 andWe(β) = 1. On the other hand, by
definition of weak t-norm,We(α → β) = We(β → α) = 1. So, by defini-
tion of IW , orWe(α) 6= 1 or We(α) = We(β) = 1, and, orWe(β) 6= 1 or
We(α) = We(β) = 1. So we have two cases: 1)We(α) 6= 1 andWe(β) 6= 1
which is contradiction with (*) as much as (**). 2)We(α) = We(β) = 1,
which also is a contradiction with (*) as much as (**). Therefore,
|=W (((α → β) ∧ (β → α)) → (α ↔ β)).

Lemma 3.2 Letα, β ∈ LP . If |=W α and|=W α → β then|=W β.

Proof: If |=W α and|=W α → β, then for each fuzzy evaluatione, We(α) = 1
andWe(α → β) = 1. But, if We(α → β) = 1, then orWe(α) 6= 1 which is a
contradiction orWe(α) = 1 andWe(β) = 1. So,We(β) = 1. Therefore,|=W β.

Observe that this lemma says that the modus ponens preserveW-tautologies.

Theorem 3.3 Letα ∈ LP . |= α if, only if, |=W α.

Proof: Consider the propositional formal theory (TP) describe by Kleene in [11],
namely, TPK = 〈LP , ∆,MP 〉, where LP is the propositional language,
∆ = {A1, . . . , A12} andMP is the modus ponens rule. As proved by Kleene, all
tautology is a theorem ofTPK . If α is a theorem inTPK then there exists a proof
α1, . . . , αn of α in TPK . We will prove by induction that for eachi = 1, . . . , n,
|=W αi.

For i = 1, αi is an axiom. So, by lemma3.1, |=W α1.
Suppose that|=W αi for eachi < k. Thenαk or is an axiom, in whose case

by lemma 3.1, |=W αk, or there existk1, k2 < k such thatαk is obtained in the
proof as modus ponens ofαk1 andαk2. Therefore,αk2 = αk1 → αk. By inductive
hypothesis|=W αk1 and|=W αk2. So, by lemma3.2, |=W αk.

Therefore,|=W αi for eachi = 1, . . . , n. In particular|=W αn (which is α).
So, if α is a tautology then|=W α. The reverse, i.e. if|=W α thenα was proved in
proposition2.1.

4 Final Remarks

The main contribution of this paper was to proved that the classical logic, when
seen as the set of tautologies as in [7], can be also modelled by fuzzy connectives,
and therefore is a fuzzy logic.

The importance of these results is to make possible to apply all the mathematical
and computational tools developed for classical propositional logic (such as formal
theories, automated theorem provers, programming logic languages, etc.) to the
propositional fuzzy logics based on the weak t-norm (as seen in this paper). So,
we can deal with (propositional) approximate reasoning as we can with the exact
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reasoning. In order to turn this work more expressive, in a further work, we will
prove that the classical predicate logic can be seen (in the sense of this paper) as a
fuzzy logic.

Apparently the main result of this paper is a trivial consequence of identify 1
with 1 and the other values with 0, making the behavior of the fuzzy connectives
to coincide with the classical one, or more formally, because given the function
k : I→ {0, 1} defined byk(1) = 1 andk(x) = 0 for eachx ∈ [0, 1), the following
equation is satisfied for each formulaα ∈ LP and evaluatione:

k ◦We(α) = Ck◦e(α) (1)

whereCf is the classical extension of a classical evaluationf . Nevertheless, this
equation is also satisfied for a natural fuzzy extension based on the product t-norm
and fork : I → {0, 1} defined byk(0) = 0 andk(x) = 1 for eachx ∈ (0, 1]. But,
the classical tautology¬¬α → α is not a tautology for this fuzzy logic.
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