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Abstract—In this paper a new interval generalization for t- connectives [7]. Thus, each t-norm determines a different
norms is proposed. The main property of our generalization set of true formulas I¢tautologies) and false formula®)-(
is that each interval t-norm can be seen as an interval repre- qniradictions) and therefore different fuzzy logics. In this

sentation of a t-norm and, therefore, can be used to deal with ¢ h b h | ible for th
correctness of interval fuzzy algorithms. Moreover, how to obtain way, t-norms have been hugely responsibie for the progress

in a canonical way the best interval representation (interval t- Of fuzzy logic in the narrow sense.
norm) for a t-norm will be shown. Also it will be proved that On the other hand, interval mathematics was introduced by

the main classes of t-norms, such as continuous, Archimedean, T, Sunaga in [36] and by R.E.Moore in [29] with the goal
without zero divisors, and idempotent, are preserved by these ot royiding a mathematical foundation for interval computa-
constructions. . . . .
tions. In interval computations, a real number is represented
. INTRODUCTION by intervals with float points as end points instead of simply
: . . float points in such a way that the real output is in the

The fgzzy ;ets theory |.ntroduced b.y Lofti Zadeh in [40§)nyerval (E)utput whenever a reyal input is in an inpput interval.
has as Its main (_:haractens_tlc _to consider a degree Of_ b_el F{iis property is know asorrectnesg16] and is guaranteed by
€. a re_al value in0, 1], to indicate how much a spec!allstthe principle of maximal exactness (roundoff "outward”, i.e.
may bellgve th?t the.element pelongs o the sgt. In this w unded down and rounded up) and optimal scalar product
fuzzy Iog!c, their subjagent logic, becomes an important toE . Thus, interval computation gives an automatic and rig-
to deal \.N'th the uncertainty OT knowledge and to represent t ous control of digital error of numerical computations and
uncertainty of humar_1 reasoning.. . therefore is adequate to deal with the imprecision in the input

There are two main directions in fuzzy logic [27]: values or caused by the roundoff errors which occur during

1) Fuzzy logic in the broad sense, which has as main gc&;mputaﬁon [29], [30], [4].

the development of systems based on fuzzy reasoninganother important property of interval constructions pointed
such as fuzzy control systems, and by Hickey [16] is optimality, where an interval operation is

2) Fuzzy logic in the narrow sense, which sees fuzzy logigptimal w.rt. a real operation if the interval result is the

as a symbolic logic, and therefore questions such gagrrowest possible containing all possible results of the real
formal theories are considered. operation. The correctness and optimality properties were

Considerable progress has been made in strictly mathemé&irmalized, for the context of interval functions, by Santiago
cal (formal and symbolic) aspects of fuzzy logic as logic witkt al. in [32] through the concepts afterval representation
a comparative notion of truth [17]. and canonical interval representatiomespectively.

Menger in [28] introduced the triangular norms (t-norms) A great synergy exists between interval mathematics and
notion in order to model the distance in probabilistic metrifuzzy logic. Several works have explored this synergy in differ-
spaces. Schweizer and Sklar in [33] gave an axiomatic fent ways, for example [37], [13], [10], [31], [39], [24], [23]. In
t-norms. In [3], Alsina, Trillas, and Valverde use t-norm$26], Lodwick points out four relationships between fuzzy set
and their dual notion (t-conorm) to model conjunction antheory and interval analysis. The fourth one considers a union
disjunction connectives in fuzzy logics, generalizing severaf both to provide an analysis of uncertainty. In this kind of
previous fuzzy interpretations for the conjunction, providedelationship intervals are used as membership degree of fuzzy
among others, by Lofti Zadeh in [40], Bellman and Zadekets, with the goal of dealing with the uncertainty associated
in [6] and Yager in [38] (which define a general class ofvith digital computers. This approach is also adequate for
interpretations). From a t-norm it also is possible to obtaeddressing the imprecision of a specialist in providing an exact
canonical fuzzy interpretation for implication and negatiomalue to measure membership uncertainty. According to Yam



et al. in [39] if Fis also an interval representation ¢f then for each
“if an expert is uncertain about something, he can as well € IR, f(X) C F(X). Thus, f returns a narrower interval
be uncertain about his degree of belief as well, and it than any other interval representation pfand is therefore
quite possible that the expert will not be able to describe Hiseir best interval representation Thus, f, when seen as
degree of uncertainty exactly: e.g., a person can meaningfullg algorithm to compute, has theoptimality property of
distinguish between his degrees of belief 0.6 and 07., baterval algorithms mentioned by Hickey et al. in [16]. When
hardly anyone will be able to describe his degree of beligfis continuous therf(X) = {f(z) : =z € X} [32].
as 0.6 and not 0.601." .
Moreover, it is hard to believe that a specialist can assiQQh Partial orders onIR
v/0.2 as a degree of membership of an object to some fuzzyReal numbers have a natural total order. However, there is
sets. not any total order which extends the real order in a natural
This paper proposes a generalization of t-norms for imvay. Nevertheless, some partial ordersi&consider different
terval values. This generalization, different than the otheatures of intervals.
generalization of t-norms [41], [10], [12], is concerned with 1) When an interval is seen as a set of real numbers, the
the correctness and optimality aspect. In this sense, it will  natural partial order is the inclusion, introduced by T.
provide a canonical construction to obtain an interval t-norm  Sunaga in [36]. Formally, for eacK,Y < IR,
from a t-norm in such a way that it always guarantees that
the interval result of the interval t-norm is the narrowest XCYey<z<z<y.
interval containing the real result of the t-norm. Also analyzed ) ) B .
which characteristic of the t-norm, such as continuity and 2) When an intervalis seen as ordered pair of real numbers,
Archimedean, are preserved by the respective interval t-norm. the natural order is compatible with the order of the
Several other intermediary results for interval t-norms are  cartesian product, introduced by Kulisch and Miranker

given. in [25]. Formally, for eachX,Y € IR,
In this paper we will assume that the reader is familiar with o
t-norm theory. There exists much literature on this topics; we X<Yezr<yandr<y.
recommend [19], [20], [21], [22] 3) When an interval is seen as an information or as a

II. INTERVAL REPRESENTATIONS representation of an unknown real number, the natural
order is that introduced by Scott in [34] and widely used
by Aciobly in [1] to provide a computational foundation
of interval mathematics. Formally, for each Y € IR,

Let TR be the set of intervals with real numbers as end
points. That isIR = {[r,s] : r,s € R andr < s}. So, an
interval has a dual nature: a set of real numbers and an ordered
pair of real numberslIR is associated with two projections: XCYoe<y<y<z
m : IR — R andwy : IR — R defined by - =TT

In this paper we will consider all these orders.
(2, 7]) = z andmy(z, 7)) == [1l. SCOTT AND MOORE CONTINUITY

As convention, for any interval variablé’, m1(X), and  There are several topologies R [32] which extend the
m2(X) will be denoted byz andz, respectively. real topology. Since continuity of a function is related to a

Interval analysis, proposed by T. Sunaga in [36] and by R.gypology, these different topologies determine different notions
Moore [29], provides a mathematical framework for compubt continuity. In this paper we will consider Scott continuity
ing real functions with an automatic control of computationg{nd Moore continuity.
errors. In this sense, real numbers egpresentedby float- The Scott domain is a mathematics theory introduced by
point intervals instead of simple float points, guaranteeing thggna S. Scott in the late 1960s [34] with the goal of pro-
the resulting interval contains the value of the real functiogiging denotational semantics for programs. In the first works
This property is known asorrectness criterium[16]. In [32],  ¢ontinuous lattices were considered for this purpose, but from
correctness was formalized thorough the notionimiérval  the mid-1970s were more used the algebraic and continuous
representation where an interval functiod” : [R™ — IR"  ¢|asses of consistently complete cpos, or simply Scott domains
represents a real functioff : R™ — R" if for each ang continuous domains, respectively. This theory was used by
X € IR™, f(z) € F(X) awaysz € X (the interval X gome authors (e.g. [1], [5], [9], [8]) to provide a computational
representse). If the function f is not asymptotic then the foundation for interval mathematics. For unfamiliar readers on

function f : IR™ — IR" defined by domain theory we suggest [15], [35], [14].
In the following we will provide the basic notions of this
FO) = [inf{f(2) - x € X}sup{f(a) : we X)) theoV:

Let D = (D,<) be a partially ordered set (poset). An
is well defined and it is an interval representation pf elementz € D is total if for eachy € D, » < y implies
[32]. So, by definitionf is a sharp function [18]. Clearly, thatz = y. A set A C D is directed if Va,b € A, Jc € A



such thate < c andb < ¢. A posetD is directed complete

(dcpo for short) if each directed subsét has a least upper T(z. 1) = min{z /max{z.ub
bound (or supremum), denoted byA, in D. If a dcpo has (=9) tr.v} tr. v}

a least element then it is calledpwinted dcpo or simply @ The order on a pseudo t-norm is similar to that on t-norm.
cpo. A subsetX C D is consistentif there exists an upper  proposition4.1: Let 7 be a pseudo t-norm. Then
bound inD, i.e. if there existsx € D such that for each 7. <7 <7, 1,

a € X, a < z. AdcpoD is consistently completeif each p;qof: Suppose that < y. Then, by monotonicityl'(z, y) <
nonempty consistent se&f C D has a supremum i (i.e. T(z,1) and by,1-idenﬁty, T(z,1) = 2. But, because: < y_

LI X exists inD). An elementz is way below an element 1., ) — ;. 'So, T(x,y) < Tes(x,y). The case whep < «
y, denoted byr < y, if for each directed sef\ such that g analogous.

y < | | A there exists: € A such t_hatr g_z. Let i:c be the Letz,y € [0,1]. If = = 1 then, by 1-identityTiy (z,y) =
set{y € D Ty < x}. A (d)cpo is contmuous if for each y = T(z,y). Analogously, ify = 1, Ty (2, y) = y = T(x.,y).
z € D, lx is directed and |z = z. D is a continuous ¢ Z1andy £ 1 then Ty (z,y) — 0 and therefore

domain if it is a consistently complete continuous cpo.
LetD = (D, <p) andE = (E, <g) be dcpo’s. A function Tw(@y) < T(@y). -
f: E — D is called Scott continuousif it is monotonic V. INTERVAL T-NORMS
(x <g y implies f(z) <p f(y)) and preserves supremum ’
(F(JA) =1 f(A). Letl = {X €IR : X C[0,1]}. AmappingT : IxI — I
Each cpo has associated a topology, denominated Sgetninterval triangular norm , it-norm in short, if T satisfies
topology, whose opens are the sé&tsC D such that the follow properties:
1) for eachz € O if z <y theny € O and 1) Symmetry: for eachX,Y € I, T(X,Y) = T(Y, X),
2) if | |A € O for some directed seh then A N O # 0. 2) Associativity: for eachX,Y, 7 € I, T(X,T(Y, 7)) =
A well known fact is that a functiorf : D — E' is Scott T(T(X,Y), Z),
continuous if and only if it is topologically continuous w.r.t. 3) KM-Monotonicity: for eachX, Y7, X, Ys € [ if X; <
the Scott topologies. X, andY; <Y, thenT(X1,Y;) < T(Xa,Ys),

The pairkt = (IR, C) is a continuous domain and therefore 4) Inclusion Monotonicity: for eachX;, Y, X»,Ys € I if
we have a continuity notion on the interval functions based on X, C X, andY; C Y, thenT(X,,Y;) C T(X,Y3)
this order. and

Notice that the subjacent idea of a Scott domain theorys) 1-identity: for eachX € I, T(X,[1,1]) = X.
Itztg;aélfahrﬁetr?ttsal ;rfmzrr]tti;a:g t:;i;?}f:tliOonbsjeccnfst;\t’gfg?;’;renorklot[ic_e that if an inte_rval functio_n is incI_usion monotonic
. . . P P L rﬂ?en it is also monotonic w.r.t. the information order.
in this sense ifX C Y then the representation is more
precise or provides more information of an ideal object th
X. The monotonicity of the function guarantees that wheneve
more precise is the representation of the ideal input, theThe following proposition, considerinfy = 7%, shows how
representation of the ideal output will be more exact. In the obtain from any t-norm an it-norm.
case offt domain, the total elements are just the degenerateProposition5.1: Let 77 and T, t-norms. If T < T, then
intervals which can be identified with the real numbers. S@[T} T,] : T x T — I defined by
in this theory intervals are representations of real numbers
that belong to the interval. Clearly, # is Scott continuous
then F' is monotonic with respect to the information order and
consequently is inclusion monotonic.

On the other hand, an interval functidn: IR — IR is
Moore continuous if it is continuous w.r.t. the usual Moor
metric d([a, b], [¢,d]) = max{| a —c|,| b—d |}.

The main result in [32] is the following:

Theorem3.1: Let f : R — R be a function. f is
continuous ifff is Scott continuous ifff is Moore continuous.

" Obtaining it-norms from t-norms

I[Tb T2](X7 Y) = [Tl (Ea y)v T2(f7 y)]

is an it-norm, denominateit-norm derived of 77 andT5.
Proof: By definition of interval, 2 < 7 andy < 7.
%o, by monotonicity of t-norms7(z,y) < Tl(f,j). Since
T, < Ty, Tl(f,y) < Tg(f,y) So, Tl(@;g) < Tg(f,g)
Therefore,I[T1, T>] is well defined.

In the sequel it will be proved that[T}, T3] is an it-norm.
Symmetry: VX, Y € I[0,1]

IV. PSEUDO FNORMS I, L)(X,Y) =[Ti(z,y), T2(T,7)]
In spite of the associativity condition of t-norms being very = [T1(y, z), T2(y, 7)]
important, see for example [33], when looking at t-norms as = I[Ty, )(Y, X

commutative monoids, we can relax the definition of t-norm tRssociativity: VX, Y, Z € I]0, 1]

abolish this condition. This weak kind of t-norm will be named

pseudo t-n_orm An example of a pseudo t-norm (which is not 1T denotes the Gdel t-norm, also known as minimum t-norm, aifig,
a t-norm) is is the weak t-norm or drastic product t-norm.



I, (X, IT, T5)(Y, Z)) =

I[Tlv T2KX7 [Tl (yv 5)7 TQ(yv E)]) =

(Th(z, T1 (Qa 2), Tx(z,12(y,2))] =

(T (. y). 2), To(T2(7,9), 2)] =

1Ty, )T (2, y), L@ 9. 2) =

1Ty, T](I[Th, T2)(X,Y), Z)
KM-Monotonicity: If X < Z and Y < W
thenz < 2, 7 < z, vy < wandy < w. So,
Ti(z,y) < Ti(zw) and Tyr(7,5) < To(z,w). Thus,
[Ti(z,y), T2(Z,9)] < [Ti(z,w), T>(z,w)] and therefore
I, T)(X,Y) < I[Ty, T2)(Z,W).
Inclusion monotonicity: If X C Z andY C W, then
z<z<T<zZandw <y <7y < w. By definition,
I[T17T2](X Y) [T1(£’Q)7T2(§7y)] andI[TlaT2](Z W)
[T1(z,w),T>(Z,w)]. Thus, by monotonicity of t-norms,
Ti(z,w) < Ti(z,y) < T(z,y) < Tx(zw). So,
[Tl (&, y)a Tz (fa y)] 72 [Tl (57 w)a T3 (Ev @)] Therefore,
IT, T)(X,Y) C I[Th, To)(Z,W).
1-Identity: VX € I]0,1],

I[T17T2KX7 [171}) :[T1(231)7T2(§71)}

:[g,f]
= X. ]

For simplicity, I[T', T] will be denote byI[T].

B. Obtaining pseudo t-norms from it-norms

Proposition5.2: Let 77 and 75, be t-norms such thaf; <

Ts. ThenI[Tth] =T andI[ThTQ} =Ts.
Proof: Let z,y € [0, 1]. Then
I[N, o)(z,y) = m(I[Ty, To)([z, 2], [y, y]))
=m([T1(z,y), Ta(z, y)])

- Tl ($7 y)
Analogously,I[T}, T5)(x, y)

=15 (.’L‘, y)
C. A partial order on it-norms

Let T; and Ty be it-norms. ThenT; < T, if for each
X, Y e, Ti(X,Y) <Ty(X,Y).

Proposition5.3: Let T} andT; be t-norms. Ifl; < T5 then
I[T) < I[T3).
Proof: Let X,Y € I Then, by monotonicity of t-
norms, Ty (z,y) < Ta(z,y) and T1(z,y) < T»(Z,7y). So,
[Ty (z,y), T1(z,7)] < [Ta2(z,y), T2(7,7)]. Therefore I[T:] <
I[Ty]. [

Proposition5.4: Let T be an it-norm. Thed [Ty ] < T <
I[T¢].

Proof: By lemma 5.1,T and T are pseudo t-norms.
So, by proposition 417y < T < Tg and Tyy <
T < Tg. Since, triviallyy, T < T, then, for each
X7Y € L [TW(£7Q)?TW(f7y)} < [I(iay%qr(jvy)] <
[TG(%y)aTG(T@)}- So, I[TW](va) < T(va) <
ITE|(X,Y). |

D. Representation theorem

In the following what will be shown is the inverse process, In this subsection we will prove that the it-norm obtained

i.e. how to obtain two pseudo t-norms from an it-norm.
Lemmab.1: Let T be an it-norm. Then, the functiorib :

[0,1] % [0,1] — [0,1] andT : [0,1] x [0,1] — [0, 1] defined
by
T(z,y) = m(T([x, =], [y, 9]))
and
T(z,y) = m2(T([z, ], [y, 4])

are pseudo t-norms.

Proof: Clearly, T andT are well defined. In the following it
will be proved thatT andT are pseudo t-norms.
Symmetry: For eachz,y € [0, 1]

T(z,y) =m(T([z, 2] [y,9]))
:m(T([y,y],[x,:c]))
Monotonicity: If 21 < xz and y; < 1y then, by

definition of Kulisch-Miranker order,xz;,z1] < [z2,%2]
and [y1,11] < [y2,92]. So, by KM-monotonicity of T,
T([z1, z1], [y1,1]) < T([22,22], [y2,92]) and therefore,

T (T([z1, z1), [y, 1)) < m(T([22, 2], [y2, 92])).  So,
T(x1,y1) < T(x2,y2).
l-identity: If = € [0, 1], thenT(z,1) = m1 (T([z, z],[1,1])) =

m1([z, x]) = .

So, T is a pseudo t-norm. The case Bfis analogous one.

as described in proposition 5.1 from a t-noffnis the best
or optimal interval representation df.

Theorem5.1 (Representation theoremlet T be a t-norm.
Then,I[T7 is the best interval representation®fi.e. I[T] =
T.

Proof: Sincez < 2 <z andy < y <7, for eachx e X

andy € Y, then by monotonicity off’, T'(z,y) < T'(z,y) <
T(z,7). S0, T(x.y) € [T(x.y),T(z,7)] = I[T](X,Y). On
the other hand, since triviall§'(z, y), T'(z,y) € I[T](X,Y),

then I[T)(X,Y) is the least interval conta[nngT(x,y)
x € X andy € Y}. Thereforel[T]|(X,Y) =T(X,Y). [ |
Proposition5.5: Let T' be a continuous t-norm. Then, for
eachX,Y €I, IIT|(X,Y) = {T(z,y) : z € X andy €
Y}.
Proof: By theorem 5.1,I[T](X,Y) is the least interval
containing {7T'(z, y) x € Xandy € Y}. Let z €
IT|(X,Y). ThenT(z,y) < =z < T(z,7y). So, by the well
known middle value theorem, there existsv € [0, 1] such
thatz < w <7 andy < v <7y andT(u,v) = z. Thus,
z = T(u,v) € {T(z,y) : = € X andy € Y}. Therefore,
IT(X,)Y)={T(z,y) : x€ X andy € Y} [ ]

E. Classes of it-norms

Analogously to the case of t-norms, several classes of it-
norms can be defined. We only some analyze of them.

An it-norm T has zero divisors if there exists almost
one pair of elements{ # [0,0] andY # [0,0], such that
T(X,Y) = [0,0]. For exampleI[Tw](]0.3,0.8],[0.5,0.6]) =



[0,0]. So, if an it-norm does not have a zero divisor and  therefore[T(z,z),T(z,z)] < [y,y]. S0, T(z,z) < y,

T(X,Y)=0thenX =[0,0] or Y = [0, 0].
Let T be an it-normT is Archimedean if for each X, Y €
I —{]0,0],[1,1]}, there exists a positive integer such that
X" <Y 2whereX! =T(X, X) and X*+! = T(X, X*).
Lemmab5.2: Let T be a t-norm and[T] its associated it-
norm. Then for eackX € I and positive integen

x™, xm].
Suppose that fok, X* = [z*, z*]. Thus, ifn = k+1, then
X = I[T)(X, X*)
= I[T](X, [z*,7"))
= [T(£7 gk)a T(T7 fk)]
= [z",7"].
[ |
An it-norm isidempotentif T(X, X) = X for eachX €I,
for examplel[T¢].
Theorem5.2: Let T" be a t-norm. Then

1) T has zero divisors iff[T] has zero divisors.

2) T is Archimedean iffI[T] is Archimedean.

3) T is continuous iffI[T] is Scott-continuous iff is Moore-
continuous.

4) T is idempotent iff/[T] is idempotent.

Proof:

1) (=) If T has zero divisors;y andyo thenT' (o, yo) =
0. Thus, [T(x0, o), T(x0,y0)] = [0,0] and therefore,
I[T) (o, z0), [yo, yo]) = [0,0]. So, I[T] also has zero
divisors.

(<) If IT] has zero divisorsX, and Y, then
I[T)(Xo.Yy) = [0.0). Thus, [T(zo. yo). T(To, 7)) =

[0,0] and thereforel (Zg,%o)] = 0. Since, Xy # [0, 0]

andYy # [0,0] thenZg # 0 andyg # 0. So,T also has
zero divisors.

2) (=)LetX,Y eI-{[0,0],[1,1]}. If T"is Archimedean
then there exist positive integetsandm such thatt” <
yandz™ < 7y. If n =1andm = 1 thenT(z,z) <
y and T(z,Z) < 3. Thus, [T(z,2),T(Z,7)] < Y.
Therefore, X' = I[T|(X,X) < Y. If n = 1 and
m =k +1thenT(z,z) < y andT(7,7") < 7. So,
IT)(X, [z, X*]) < Y. But, by lemma 5.2X*% = z*
and as is well knownr* < z andz* < Z. Therefore,
Xk < [z, XK]. So, I[T|(X, X*) <YV ie X1 <Y,
By symmetry of it-norms and t-norms, i = £+ 1 and
m=1thenX**' <Y.lfn=k+1landm=F +1
then T'(z,2*) < y and T'(z,z*) < 7. Therefore, by
lemma 5.2 and definition of [T], I[T](X, X*) < Y,
ie. Xkl < v,

(<) Let z,y € (0,1). If I[T] is Archimedean then
there exists a positive integer such that|z,z|" <
ly,y]. if n = 1 then I[T]([z, =], [x,2]) < [y,y] and

2X <Y iff X<YandX #Y

ie. 2! < y. If n =k+1 thenI[T|([z,z], [r,2]*) <
[y, y]. Therefore, by lemma 5.2 and definition BT,
[T(x,2%),T(x,2%)] < [y,9]. So, T(z,z*) < y ie.
ol <y
3) Straightforward of theorem 3.1 which also is valid for
functions froml x I into I, as is the case of t-norms.
4) (=) If T is idempotent, thef'(z, x) = « for eachx €
[0,1]. Thus, if X e I then[T(z,2),T(Z,T)] = [z,Z] =
X and therefore][T](X, X) = X.
(<) If I[T] is idempotent, thed [T](X, X) = X for
eachX e I. So, for eachlx € [0, 1], I[T)([z, z], [z, z]) =
[T(x,x), T(x,2)] = |z, z] and thereforel'(x, z) = x.
[
Since we can consider Scott as much as Moore continuity
for it-tnorms, the interval extension for strict and nilpotent t-
norms (which are based on continuity of t-norms) has two
versions. A Scott-continuous Archimedean it-norm which has
at least one pair of zero divisors is call&tott-nilpotent
and is calledScott-strict otherwise. Analogously, for Moore
continuity.
Corollary 5.1: Let T be a t-norm. Then
1) T is nilpotent iff I[T] is Scott-nilpotent iff I[T] is
Moore-nilpotent.
2) T is strict iff I[T)] is Scott-strict iff /[T"] is Moore-strict.
Proof: Straightforward of theorem 5.2 items 1, 2 and 3

VI. FINAL REMARKS

Since t-norms play a main role in fuzzy logics in the narrow
sense, a “good”” generalization of this concept is fundamental
for the interval fuzzy logics in the narrow sense. In this way,
this paper is a contribution in the consolidation of a formal
study of interval fuzzy logics.

There are in the literature other attempts to extend the
t-norm notion for intervals. For example, in [41] it was
demanded that beyond the condition imposed in our gen-
eralization also be continuous w.r.t. Moore topology. This
exigency is hard because not all t-norms will have an interval
t-norm which represents them. In fact Zuo neither provides any
relation between t-norms and interval t-norms (in the sense of
providing a way to obtain canonically t-norms from interval t-
norms and vice-versa) nor considers the representation aspects
of interval t-norms and therefore can not be useful for the
fourth approach pointed out by Lodwick in [26]. On the
other hand, in [11] and [12] it was required that for each
X €1, T([0,1], X) = [0,Z], that T be distributive undemn
andv, thatT([x, z], [z, z]) return a degenerated interval and
is not required be monotonic (neither inclusion nor Kulisch-
Miranker). An interesting result in [11] is the theorem 7 where
it is proved that for each it-norri (in their sense) there exists
a t-normT such that

T(X,Y) = [T(z, ), T(z,7)] 1)

So, each it-norm has associated an unique t-norm (clearly
T representsl’). That is, if T = T/ thenT = T’. On the
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