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Abstract— In this paper a new interval generalization for t-
norms is proposed. The main property of our generalization
is that each interval t-norm can be seen as an interval repre-
sentation of a t-norm and, therefore, can be used to deal with
correctness of interval fuzzy algorithms. Moreover, how to obtain
in a canonical way the best interval representation (interval t-
norm) for a t-norm will be shown. Also it will be proved that
the main classes of t-norms, such as continuous, Archimedean,
without zero divisors, and idempotent, are preserved by these
constructions.

I. I NTRODUCTION

The fuzzy sets theory introduced by Lofti Zadeh in [40]
has as its main characteristic to consider a degree of belief,
i.e. a real value in[0, 1], to indicate how much a specialist
may believe that the element belongs to the set. In this way,
fuzzy logic, their subjacent logic, becomes an important tool
to deal with the uncertainty of knowledge and to represent the
uncertainty of human reasoning.

There are two main directions in fuzzy logic [27]:

1) Fuzzy logic in the broad sense, which has as main goal
the development of systems based on fuzzy reasoning,
such as fuzzy control systems, and

2) Fuzzy logic in the narrow sense, which sees fuzzy logic
as a symbolic logic, and therefore questions such as
formal theories are considered.

Considerable progress has been made in strictly mathemati-
cal (formal and symbolic) aspects of fuzzy logic as logic with
a comparative notion of truth [17].

Menger in [28] introduced the triangular norms (t-norms)
notion in order to model the distance in probabilistic metric
spaces. Schweizer and Sklar in [33] gave an axiomatic for
t-norms. In [3], Alsina, Trillas, and Valverde use t-norms
and their dual notion (t-conorm) to model conjunction and
disjunction connectives in fuzzy logics, generalizing several
previous fuzzy interpretations for the conjunction, provided,
among others, by Lofti Zadeh in [40], Bellman and Zadeh
in [6] and Yager in [38] (which define a general class of
interpretations). From a t-norm it also is possible to obtain
canonical fuzzy interpretation for implication and negation

connectives [7]. Thus, each t-norm determines a different
set of true formulas (1-tautologies) and false formulas (0-
contradictions) and therefore different fuzzy logics. In this
way, t-norms have been hugely responsible for the progress
of fuzzy logic in the narrow sense.

On the other hand, interval mathematics was introduced by
T. Sunaga in [36] and by R.E.Moore in [29] with the goal
of providing a mathematical foundation for interval computa-
tions. In interval computations, a real number is represented
by intervals with float points as end points instead of simply
by float points in such a way that the real output is in the
interval output whenever a real input is in an input interval.
This property is know ascorrectness[16] and is guaranteed by
the principle of maximal exactness (roundoff ”outward”, i.e.
rounded down and rounded up) and optimal scalar product
[4]. Thus, interval computation gives an automatic and rig-
orous control of digital error of numerical computations and
therefore is adequate to deal with the imprecision in the input
values or caused by the roundoff errors which occur during
computation [29], [30], [4].

Another important property of interval constructions pointed
by Hickey [16] is optimality, where an interval operation is
optimal w.r.t. a real operation if the interval result is the
narrowest possible containing all possible results of the real
operation. The correctness and optimality properties were
formalized, for the context of interval functions, by Santiago
et al. in [32] through the concepts ofinterval representation
andcanonical interval representation, respectively.

A great synergy exists between interval mathematics and
fuzzy logic. Several works have explored this synergy in differ-
ent ways, for example [37], [13], [10], [31], [39], [24], [23]. In
[26], Lodwick points out four relationships between fuzzy set
theory and interval analysis. The fourth one considers a union
of both to provide an analysis of uncertainty. In this kind of
relationship intervals are used as membership degree of fuzzy
sets, with the goal of dealing with the uncertainty associated
with digital computers. This approach is also adequate for
addressing the imprecision of a specialist in providing an exact
value to measure membership uncertainty. According to Yam



et al. in [39]
“if an expert is uncertain about something, he can as well

be uncertain about his degree of belief as well, and it is
quite possible that the expert will not be able to describe his
degree of uncertainty exactly: e.g., a person can meaningfully
distinguish between his degrees of belief 0.6 and 07., but
hardly anyone will be able to describe his degree of belief
as 0.6 and not 0.601.”

Moreover, it is hard to believe that a specialist can assign√
0.2 as a degree of membership of an object to some fuzzy

sets.
This paper proposes a generalization of t-norms for in-

terval values. This generalization, different than the other
generalization of t-norms [41], [10], [12], is concerned with
the correctness and optimality aspect. In this sense, it will
provide a canonical construction to obtain an interval t-norm
from a t-norm in such a way that it always guarantees that
the interval result of the interval t-norm is the narrowest
interval containing the real result of the t-norm. Also analyzed
which characteristic of the t-norm, such as continuity and
Archimedean, are preserved by the respective interval t-norm.
Several other intermediary results for interval t-norms are
given.

In this paper we will assume that the reader is familiar with
t-norm theory. There exists much literature on this topics; we
recommend [19], [20], [21], [22]

II. I NTERVAL REPRESENTATIONS

Let IR be the set of intervals with real numbers as end
points. That is,IR = {[r, s] : r, s ∈ R and r ≤ s}. So, an
interval has a dual nature: a set of real numbers and an ordered
pair of real numbers.IR is associated with two projections:
π1 : IR −→ R andπ2 : IR −→ R defined by

π1([x, x]) = x andπ2([x, x]) = x

As convention, for any interval variableX, π1(X), and
π2(X) will be denoted byx andx, respectively.

Interval analysis, proposed by T. Sunaga in [36] and by R.E.
Moore [29], provides a mathematical framework for comput-
ing real functions with an automatic control of computational
errors. In this sense, real numbers arerepresentedby float-
point intervals instead of simple float points, guaranteeing that
the resulting interval contains the value of the real function.
This property is known ascorrectness criterium [16]. In [32],
correctness was formalized thorough the notion ofinterval
representation, where an interval functionF : IRm −→ IRn

represents a real functionf : Rm −→ Rn if for each
X ∈ IRm, f(x) ∈ F (X) always x ∈ X (the intervalX
representsx). If the function f is not asymptotic then the
function f̂ : IRm −→ IRn defined by

f̂(X) = [inf{f(x) : x ∈ X}, sup{f(x) : x ∈ X}]
is well defined and it is an interval representation off
[32]. So, by definitionf̂ is a sharp function [18]. Clearly,

if F is also an interval representation off , then for each
X ∈ IR, f̂(X) ⊆ F (X). Thus, f̂ returns a narrower interval
than any other interval representation off and is therefore
their best interval representation. Thus, f̂ , when seen as
an algorithm to computef , has theoptimality property of
interval algorithms mentioned by Hickey et al. in [16]. When
f is continuous then̂f(X) = {f(x) : x ∈ X} [32].

A. Partial orders onIR
Real numbers have a natural total order. However, there is

not any total order which extends the real order in a natural
way. Nevertheless, some partial orders onIR consider different
natures of intervals.

1) When an interval is seen as a set of real numbers, the
natural partial order is the inclusion, introduced by T.
Sunaga in [36]. Formally, for eachX,Y ∈ IR,

X ⊆ Y ⇔ y ≤ x ≤ x ≤ y.

2) When an interval is seen as ordered pair of real numbers,
the natural order is compatible with the order of the
cartesian product, introduced by Kulisch and Miranker
in [25]. Formally, for eachX, Y ∈ IR,

X ≤ Y ⇔ x ≤ y andx ≤ y.

3) When an interval is seen as an information or as a
representation of an unknown real number, the natural
order is that introduced by Scott in [34] and widely used
by Acióly in [1] to provide a computational foundation
of interval mathematics. Formally, for eachX, Y ∈ IR,

X v Y ⇔ x ≤ y ≤ y ≤ x.

In this paper we will consider all these orders.

III. SCOTT AND MOORECONTINUITY

There are several topologies onIR [32] which extend the
real topology. Since continuity of a function is related to a
topology, these different topologies determine different notions
of continuity. In this paper we will consider Scott continuity
and Moore continuity.

The Scott domain is a mathematics theory introduced by
Dana S. Scott in the late 1960s [34] with the goal of pro-
viding denotational semantics for programs. In the first works
continuous lattices were considered for this purpose, but from
the mid-1970s were more used the algebraic and continuous
classes of consistently complete cpos, or simply Scott domains
and continuous domains, respectively. This theory was used by
some authors (e.g. [1], [5], [9], [8]) to provide a computational
foundation for interval mathematics. For unfamiliar readers on
domain theory we suggest [15], [35], [14].

In the following we will provide the basic notions of this
theory:

Let D = 〈D,≤〉 be a partially ordered set (poset). An
elementx ∈ D is total if for each y ∈ D, x ≤ y implies
that x = y. A set ∆ ⊆ D is directed if ∀a, b ∈ ∆, ∃c ∈ ∆



such thata ≤ c and b ≤ c. A posetD is directed complete
(dcpo for short) if each directed subset∆ has a least upper
bound (or supremum), denoted by

⊔
∆, in D. If a dcpo has

a least element then it is called apointed dcpo or simply a
cpo. A subsetX ⊆ D is consistent if there exists an upper
bound in D, i.e. if there existsx ∈ D such that for each
a ∈ X, a ≤ x. A dcpo D is consistently completeif each
nonempty consistent setX ⊆ D has a supremum inD (i.e.⊔

X exists inD). An elementx is way below an element
y, denoted byx ¿ y, if for each directed set∆ such that
y ≤ ⊔

∆ there existsz ∈ ∆ such thatx ≤ z. Let ↓↓x be the
set {y ∈ D : y ¿ x}. A (d)cpo is continuous if for each
x ∈ D, ↓↓x is directed and

⊔ ↓↓x = x. D is a continuous
domain if it is a consistently complete continuous cpo.

Let D = 〈D,≤D〉 andE = 〈E,≤E〉 be dcpo’s. A function
f : E −→ D is called Scott continuous if it is monotonic
(x ≤E y implies f(x) ≤D f(y)) and preserves supremum
(f(

⊔
∆) =

⊔
f(∆)).

Each cpo has associated a topology, denominated Scott
topology, whose opens are the setsO ⊆ D such that

1) for eachx ∈ O if x ≤ y theny ∈ O and
2) if

⊔
∆ ∈ O for some directed set∆ then∆ ∩O 6= ∅.

A well known fact is that a functionf : D −→ E is Scott
continuous if and only if it is topologically continuous w.r.t.
the Scott topologies.

The pair< = 〈IR,v〉 is a continuous domain and therefore
we have a continuity notion on the interval functions based on
this order.

Notice that the subjacent idea of a Scott domain theory
is that the total elements are the ideal objects whenever non
total elements are partial representations of total elements,
in this sense ifX v Y then the representationY is more
precise or provides more information of an ideal object than
X. The monotonicity of the function guarantees that whenever
more precise is the representation of the ideal input, the
representation of the ideal output will be more exact. In the
case of< domain, the total elements are just the degenerate
intervals which can be identified with the real numbers. So,
in this theory intervals are representations of real numbers
that belong to the interval. Clearly, ifF is Scott continuous
thenF is monotonic with respect to the information order and
consequently is inclusion monotonic.

On the other hand, an interval functionF : IR −→ IR is
Moore continuous if it is continuous w.r.t. the usual Moore
metric d([a, b], [c, d]) = max{| a− c |, | b− d |}.

The main result in [32] is the following:
Theorem3.1: Let f : R −→ R be a function.f is

continuous ifff̂ is Scott continuous iff̂f is Moore continuous.

IV. PSEUDO T-NORMS

In spite of the associativity condition of t-norms being very
important, see for example [33], when looking at t-norms as
commutative monoids, we can relax the definition of t-norm to
abolish this condition. This weak kind of t-norm will be named
pseudo t-norm. An example of a pseudo t-norm (which is not
a t-norm) is

T (x, y) = min{x, y}
√

max{x, y}

The order on a pseudo t-norm is similar to that on t-norm.
Proposition4.1: Let T be a pseudo t-norm. Then

TW ≤ T ≤ TG
1.

Proof: Suppose thatx ≤ y. Then, by monotonicity,T (x, y) ≤
T (x, 1) and by,1-identity, T (x, 1) = x. But, becausex ≤ y,
TG(x, y) = x. So,T (x, y) ≤ TG(x, y). The case wheny ≤ x
is analogous.

Let x, y ∈ [0, 1]. If x = 1 then, by 1-identity,TW (x, y) =
y = T (x, y). Analogously, ify = 1, TW (x, y) = y = T (x, y).
If x 6= 1 and y 6= 1 then TW (x, y) = 0 and therefore
TW (x, y) ≤ T (x, y).

V. I NTERVAL T-NORMS

Let I = {X ∈ IR : X ⊆ [0, 1]}. A mappingT : I×I −→ I
is aninterval triangular norm , it-norm in short, ifT satisfies
the follow properties:

1) Symmetry: for eachX, Y ∈ I, T(X, Y ) = T(Y, X),
2) Associativity: for eachX, Y, Z ∈ I, T(X,T(Y, Z)) =
T(T(X, Y ), Z),

3) KM-Monotonicity: for eachX1, Y1, X2, Y2 ∈ I if X1 ≤
X2 andY1 ≤ Y2 thenT(X1, Y1) ≤ T(X2, Y2),

4) Inclusion Monotonicity: for eachX1, Y1, X2, Y2 ∈ I if
X1 ⊆ X2 and Y1 ⊆ Y2 then T(X1, Y1) ⊆ T(X2, Y2)
and

5) 1-identity: for eachX ∈ I, T(X, [1, 1]) = X.

Notice that if an interval function is inclusion monotonic
then it is also monotonic w.r.t. the information order.

A. Obtaining it-norms from t-norms

The following proposition, consideringT1 = T2, shows how
to obtain from any t-norm an it-norm.

Proposition5.1: Let T1 and T2 t-norms. If T1 ≤ T2 then
I[T1, T2] : I× I −→ I defined by

I[T1, T2](X, Y ) = [T1(x, y), T2(x, y)]

is an it-norm, denominatedit-norm derived of T1 andT2.
Proof: By definition of interval, x ≤ x and y ≤ y.
So, by monotonicity of t-norms,T1(x, y) ≤ T1(x, y). Since
T1 ≤ T2, T1(x, y) ≤ T2(x, y). So, T1(x, y) ≤ T2(x, y).
Therefore,I[T1, T2] is well defined.

In the sequel it will be proved thatI[T1, T2] is an it-norm.
Symmetry: ∀X,Y ∈ I[0, 1]

I[T1, T2](X, Y ) = [T1(x, y), T2(x, y)]
= [T1(y, x), T2(y, x)]
= I[T1, T2](Y, X)

Associativity: ∀X,Y, Z ∈ I[0, 1]

1TG denotes the G̈odel t-norm, also known as minimum t-norm, andTW

is the weak t-norm or drastic product t-norm.



I[T1, T2](X, I[T1, T2](Y, Z)) =
I[T1, T2](X, [T1(y, z), T2(y, z)]) =
[T1(x, T1(y, z)), T2(x, T2(y, z))] =
[T1(T1(x, y), z), T2(T2(x, y), z)] =
I[T1, T2]([T1(x, y), T2(x, y)], Z) =
I[T1, T2](I[T1, T2](X, Y ), Z)

KM-Monotonicity: If X ≤ Z and Y ≤ W
then x ≤ z, x ≤ z, y ≤ w and y ≤ w. So,
T1(x, y) ≤ T1(z, w) and T2(x, y) ≤ T2(z, w). Thus,
[T1(x, y), T2(x, y)] ≤ [T1(z, w), T2(z, w)] and therefore
I[T1, T2](X, Y ) ≤ I[T1, T2](Z,W ).

Inclusion monotonicity: If X ⊆ Z and Y ⊆ W , then
z ≤ x ≤ x ≤ z and w ≤ y ≤ y ≤ w. By definition,
I[T1, T2](X, Y ) = [T1(x, y), T2(x, y)] andI[T1, T2](Z, W ) =
[T1(z, w), T2(z, w)]. Thus, by monotonicity of t-norms,
T1(z, w) ≤ T1(x, y) ≤ T2(x, y) ≤ T2(z, w). So,
[T1(x, y), T2(x, y)] ⊆ [T1(z, w), T2(z, w)]. Therefore,
I[T1, T2](X, Y ) ⊆ I[T1, T2](Z,W ).

1-Identity: ∀X ∈ I[0, 1],
I[T1, T2](X, [1, 1]) = [T1(x, 1), T2(x, 1)]

= [x, x]
= X.

For simplicity, I[T, T ] will be denote byI[T ].

B. Obtaining pseudo t-norms from it-norms

In the following what will be shown is the inverse process,
i.e. how to obtain two pseudo t-norms from an it-norm.

Lemma5.1: Let T be an it-norm. Then, the functionsT :
[0, 1]× [0, 1] −→ [0, 1] andT : [0, 1]× [0, 1] −→ [0, 1] defined
by

T(x, y) = π1(T([x, x], [y, y]))

and

T(x, y) = π2(T([x, x], [y, y]))

are pseudo t-norms.
Proof: Clearly,T andT are well defined. In the following it
will be proved thatT andT are pseudo t-norms.
Symmetry: For eachx, y ∈ [0, 1]
T(x, y) = π1(T([x, x], [y, y]))

= π1(T([y, y], [x, x]))
= T(y, x)

Monotonicity: If x1 ≤ x2 and y1 ≤ y2 then, by
definition of Kulisch-Miranker order,[x1, x1] ≤ [x2, x2]
and [y1, y1] ≤ [y2, y2]. So, by KM-monotonicity of T,
T([x1, x1], [y1, y1]) ≤ T([x2, x2], [y2, y2]) and therefore,
π1(T([x1, x1], [y1, y1])) ≤ π1(T([x2, x2], [y2, y2])). So,
T(x1, y1) ≤ T(x2, y2).

1-identity: If x ∈ [0, 1], thenT(x, 1) = π1(T([x, x], [1, 1])) =
π1([x, x]) = x.

So,T is a pseudo t-norm. The case ofT is analogous one.

Proposition5.2: Let T1 andT2 be t-norms such thatT1 ≤
T2. ThenI[T1, T2] = T1 andI[T1, T2] = T2.
Proof: Let x, y ∈ [0, 1]. Then

I[T1, T2](x, y) = π1(I[T1, T2]([x, x], [y, y]))
= π1([T1(x, y), T2(x, y)])
= T1(x, y)

Analogously,I[T1, T2](x, y) = T2(x, y).

C. A partial order on it-norms

Let T1 and T2 be it-norms. Then,T1 ≤ T2 if for each
X, Y ∈ I, T1(X,Y ) ≤ T2(X, Y ).

Proposition5.3: Let T1 andT2 be t-norms. IfT1 ≤ T2 then
I[T1] ≤ I[T2].
Proof: Let X, Y ∈ I. Then, by monotonicity of t-
norms, T1(x, y) ≤ T2(x, y) and T1(x, y) ≤ T2(x, y). So,
[T1(x, y), T1(x, y)] ≤ [T2(x, y), T2(x, y)]. Therefore,I[T1] ≤
I[T2].

Proposition5.4: Let T be an it-norm. ThenI[TW ] ≤ T ≤
I[TG].
Proof: By lemma 5.1, T and T are pseudo t-norms.
So, by proposition 4.1,TW ≤ T ≤ TG and TW ≤
T ≤ TG. Since, trivially, T ≤ T, then, for each
X, Y ∈ I, [TW (x, y), TW (x, y)] ≤ [T(x, y),T(x, y)] ≤
[TG(x, y), TG(x, y)]. So, I[TW ](X, Y ) ≤ T(X,Y ) ≤
I[TG](X,Y ).

D. Representation theorem

In this subsection we will prove that the it-norm obtained
as described in proposition 5.1 from a t-normT is the best
or optimal interval representation ofT .

Theorem5.1 (Representation theorem):Let T be a t-norm.
Then,I[T ] is the best interval representation ofT , i.e. I[T ] =
T̂ .
Proof: Sincex ≤ x ≤ x and y ≤ y ≤ y, for eachx ∈ X
andy ∈ Y , then by monotonicity ofT , T (x, y) ≤ T (x, y) ≤
T (x, y). So, T (x, y) ∈ [T (x, y), T (x, y)] = I[T ](X,Y ). On
the other hand, since triviallyT (x, y), T (x, y) ∈ I[T ](X, Y ),
then I[T ](X, Y ) is the least interval containing{T (x, y) :
x ∈ X andy ∈ Y }. ThereforeI[T ](X,Y ) = T̂ (X,Y ).

Proposition5.5: Let T be a continuous t-norm. Then, for
eachX, Y ∈ I, I[T ](X, Y ) = {T (x, y) : x ∈ X andy ∈
Y }.
Proof: By theorem 5.1,I[T ](X,Y ) is the least interval
containing {T (x, y) : x ∈ X andy ∈ Y }. Let z ∈
I[T ](X, Y ). Then T (x, y) ≤ z ≤ T (x, y). So, by the well
known middle value theorem, there existsu, v ∈ [0, 1] such
that x ≤ u ≤ x and y ≤ v ≤ y and T (u, v) = z. Thus,
z = T (u, v) ∈ {T (x, y) : x ∈ X andy ∈ Y }. Therefore,
I[T ](X, Y ) = {T (x, y) : x ∈ X andy ∈ Y }.
E. Classes of it-norms

Analogously to the case of t-norms, several classes of it-
norms can be defined. We only some analyze of them.

An it-norm T has zero divisors if there exists almost
one pair of elementsX 6= [0, 0] and Y 6= [0, 0], such that
T(X, Y ) = [0, 0]. For example,I[TW ]([0.3, 0.8], [0.5, 0.6]) =



[0, 0]. So, if an it-norm does not have a zero divisor and
T(X, Y ) = 0 thenX = [0, 0] or Y = [0, 0].

Let T be an it-norm.T is Archimedean if for eachX, Y ∈
I − {[0, 0], [1, 1]}, there exists a positive integern such that
Xn < Y 2 whereX1 = T(X, X) andXk+1 = T(X, Xk).

Lemma5.2: Let T be a t-norm andI[T ] its associated it-
norm. Then for eachX ∈ I and positive integern

Xn = [xn, xn].
Proof: If n = 1 then

Xn = I[T ](X,X)
= [T (x, x), T (x, x)]
= [xn, xn].

Suppose that fork, Xk = [xk, xk]. Thus, ifn = k+1, then
Xn = I[T ](X,Xk)

= I[T ](X, [xk, xk])
= [T (x, xk), T (x, xk)]
= [xn, xn].

An it-norm is idempotent if T(X,X) = X for eachX ∈ I,
for exampleI[TG].

Theorem5.2: Let T be a t-norm. Then

1) T has zero divisors iffI[T ] has zero divisors.
2) T is Archimedean iffI[T ] is Archimedean.
3) T is continuous iffI[T ] is Scott-continuous iff is Moore-

continuous.
4) T is idempotent iffI[T ] is idempotent.

Proof:
1) (⇒) If T has zero divisorsx0 andy0 thenT (x0, y0) =

0. Thus, [T (x0, y0), T (x0, y0)] = [0, 0] and therefore,
I[T ]([x0, x0], [y0, y0]) = [0, 0]. So, I[T ] also has zero
divisors.
(⇐) If I[T ] has zero divisorsX0 and Y0 then
I[T ](X0, Y0) = [0, 0]. Thus, [T (x0, y0), T (x0, y0)] =
[0, 0] and therefore,T (x0, y0)] = 0. Since,X0 6= [0, 0]
andY0 6= [0, 0] thenx0 6= 0 andy0 6= 0. So,T also has
zero divisors.

2) (⇒) Let X, Y ∈ I−{[0, 0], [1, 1]}. If T is Archimedean
then there exist positive integersn andm such thatxn <
y and xm < y. If n = 1 and m = 1 then T (x, x) <
y and T (x, x) < y. Thus, [T (x, x), T (x, x)] < Y .
Therefore,X1 = I[T ](X,X) < Y . If n = 1 and
m = k + 1 then T (x, x) < y and T (x, xk) < y. So,
I[T ](X, [x, Xk]) < Y . But, by lemma 5.2Xk = xk

and as is well knownxk ≤ x and xk ≤ x. Therefore,
Xk ≤ [x,Xk]. So, I[T ](X, Xk) < Y i.e. Xk+1 < Y .
By symmetry of it-norms and t-norms, ifn = k +1 and
m = 1 thenXk+1 < Y . If n = k + 1 andm = k′ + 1
then T (x, xk) < y and T (x, xk) < y. Therefore, by
lemma 5.2 and definition ofI[T ], I[T ](X, Xk) < Y ,
i.e. Xk+1 < Y .
(⇐) Let x, y ∈ (0, 1). If I[T ] is Archimedean then
there exists a positive integern such that[x, x]n <
[y, y]. if n = 1 then I[T ]([x, x], [x, x]) < [y, y] and

2X < Y iff X ≤ Y andX 6= Y

therefore[T (x, x), T (x, x)] < [y, y]. So, T (x, x) < y,
i.e. x1 < y. If n = k + 1 then I[T ]([x, x], [x, x]k) <
[y, y]. Therefore, by lemma 5.2 and definition ofI[T ],
[T (x, xk), T (x, xk)] < [y, y]. So, T (x, xk) < y i.e.
xk+1 < y.

3) Straightforward of theorem 3.1 which also is valid for
functions fromI× I into I, as is the case of t-norms.

4) (⇒) If T is idempotent, thenT (x, x) = x for eachx ∈
[0, 1]. Thus, if X ∈ I then [T (x, x), T (x, x)] = [x, x] =
X and therefore,I[T ](X, X) = X.
(⇐) If I[T ] is idempotent, thenI[T ](X,X) = X for
eachX ∈ I. So, for eachx ∈ [0, 1], I[T ]([x, x], [x, x]) =
[T (x, x), T (x, x)] = [x, x] and thereforeT (x, x) = x.

Since we can consider Scott as much as Moore continuity
for it-tnorms, the interval extension for strict and nilpotent t-
norms (which are based on continuity of t-norms) has two
versions. A Scott-continuous Archimedean it-norm which has
at least one pair of zero divisors is calledScott-nilpotent
and is calledScott-strict otherwise. Analogously, for Moore
continuity.

Corollary 5.1: Let T be a t-norm. Then

1) T is nilpotent iff I[T ] is Scott-nilpotent iff I[T ] is
Moore-nilpotent.

2) T is strict iff I[T ] is Scott-strict iffI[T ] is Moore-strict.
Proof: Straightforward of theorem 5.2 items 1, 2 and 3.

VI. F INAL REMARKS

Since t-norms play a main role in fuzzy logics in the narrow
sense, a “good´´ generalization of this concept is fundamental
for the interval fuzzy logics in the narrow sense. In this way,
this paper is a contribution in the consolidation of a formal
study of interval fuzzy logics.

There are in the literature other attempts to extend the
t-norm notion for intervals. For example, in [41] it was
demanded that beyond the condition imposed in our gen-
eralization also be continuous w.r.t. Moore topology. This
exigency is hard because not all t-norms will have an interval
t-norm which represents them. In fact Zuo neither provides any
relation between t-norms and interval t-norms (in the sense of
providing a way to obtain canonically t-norms from interval t-
norms and vice-versa) nor considers the representation aspects
of interval t-norms and therefore can not be useful for the
fourth approach pointed out by Lodwick in [26]. On the
other hand, in [11] and [12] it was required that for each
X ∈ I, T([0, 1], X) = [0, x], that T be distributive under∧
and∨, thatT([x, x], [x, x]) return a degenerated interval and
is not required be monotonic (neither inclusion nor Kulisch-
Miranker). An interesting result in [11] is the theorem 7 where
it is proved that for each it-normT (in their sense) there exists
a t-normT such that

T(X, Y ) = [T (x, y), T (x, y)] (1)

So, each it-norm has associated an unique t-norm (clearly
T representsT ). That is, if T = T′ then T = T ′. On the



other hand this theorem does not guarantees that each t-norm
has an associated it-norm satisfying (1). For example, suppose
that the Lukasiewics t-normTL has an associated it-normTL.
Therefore

TL(X,Y ) = [TL(x, y), TL(x, y)]

Thus,
TL([0.6, 0.7], [0.2, 0.8] ∨ [0.3, 0.5]) =
TL([0.6, 0.7], [0.3, 0.8]) =
[TL(0.6, 0.3), TL(0.7, 0.8)] = [0, 0.5].
On the other hand, by distributivity of it-norms of

[12], TL([0.6, 0.7], [0.2, 0.8] ∨ [0.3, 0.5]) = TL([0.6, 0.7] ∨
[0.2, 0.8], [0.6, 0.7] ∨ [0.3, 0.5]). But
TL([0.6, 0.7] ∨ [0.2, 0.8], [0.6, 0.7] ∨ [0.3, 0.5]) =
TL([0.6, 0.8], [0.6, 0.7]) =
[TL(0.6, 0.6), TL(0.8, 0.7)] = [0.2, 0.5]

generating an inconsistency. Therefore, there does not exist an
it-norm associated toTL!!!.

Thus, the main contribution of our interval generalization
of t-norm, w.r.t. other generalizations, is to regard interval
t-norms as interval representations of t-norms. This vision
agrees with the interval fuzzy approach where the intervals
degree membership is considered as an imprecision in the
degree of belief of a specialist, i.e. as a representation or an
approximation of the exact degree. Other approaches do not
consider this factor.
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correctness and optimality of interval computations.Formal Aspects of
Computing. To appear.

[33] Schweizer, B. and Sklar, A. (1963). Associative functions and abstract
semigroups.Publ. Math. Debrecen, 10:69–81.

[34] Scott, D. (1970). Outline of a mathematical theory of computation. In
4th Annual Princeton Conference on Information Sciences and Systems,
pages 169–176.

[35] Stoltenberg, V., Lindstr̈om, I. and Griffer, E.R. (1994).Mathematical
Theory of Domains. Cambridge University Press, Cambridge.

[36] Sunaga, T. (1958) Theory of an interval algebra and its application to
numerical analysis.RAAG Memoris2: 29–46.

[37] Turksen, I. (1986). Interval valued fuzzy sets based on normal forms.
Fuzzy Sets and Systems, 20:191–210.

[38] Yager, R. (1980). An approach to inference in approximate reasoning.
International Journal on Man-Machine Studies, 13:323–338.

[39] Yam, Y., Mukaidono, M., and Kreinovich, V. (1999). Beyond [0,1] to
intervals and further: Do we need all new fuzzy values? InProceedings
of The Eighth International Fuzzy Systems Association World Congress
IFSA’99, pages 143–146, Taipei, Taiwan.

[40] Zadeh, L. A. (1965). Fuzzy sets.Information and Control, 8:338–353.
[41] Zuo, Q. (1995). Description of strictly monotonic interval and/or oper-

ations. InAPIC’S Proceedings: International Workshop on Applications
of Interval Computations, pages 232–235.


