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Abstract— Triangular norms or t-norms, in short, and auto-
morphisms are very useful to fuzzy logics in the narrow sense.
However, these notions are usually limited to the set [0, 1].

In this paper we will consider a generalization of the t-norm
notion for arbitrary bounded lattices as a category, where these
generalized t-norms are the objects, and a generalization of
automorphism notion as the morphism of the category. We will
prove that, this category is Cartesian and a subcategory of it is
Cartesian closed. We show that the usual interval t-norms can
be seen as a covariant functor for that category.

I. INTRODUCTION

Triangular norms were introduced by Karl Menger in
[26] with the goal of constructing metric spaces using
probabilistic distributions (and therefore values in the interval
[0, 1]), instead of using real numbers, to describe the distance
between two elements. Besides, the original proposal is not
much restrictive covering t-norms as well as t-conorms.
However, only with the work of Berthold Schweizer and Abe
Sklar in [30] it was defined t-norms in the axiomatic way
used today. In [1], Claudi Alsina, Enric Trillas, and Llorenç
Valverde, using t-norms, model the conjunction in fuzzy
logics, generalizing several previous fuzzy conjunctions,
provided, among others, by Lotfi Zadeh in [35], Richard
Bellman and Zadeh in [5] and Ronald Yager in [34]. From
a t-norm it is also possible to obtain, canonically, the others
propositional connectives [7].

Automorphisms act on t-norms generating in most of the
cases a new t-norm. When we see t-norms as semi-groups
(see for example [23], [24]) the automorphism yields an
isomorphism between t-norms.

On the other hand in fuzzy logic in the narrow sense, it has
been very common the use of lattice theory to deal with fuzzy
logic in a more general framework, see for example the L-
fuzzy set theory [16], BL-algebras of Hájek [18], Brouwerian
lattices [33], etc.

In [14], [13] it was generalized the t-norm notion bounded
to partially ordered sets, which is a more general structure
than the bounded lattice. In [28] it was considered an
extension of t-norms for bounded lattice which coincides
with the one given by [14], [13]. In this paper we will
consider this notion of t-norm for arbitrary bounded lattices.

Categories give a strongly formalized language which
is appropriated in order to establish abstract properties of
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mathematical structures. So, seing the t-norm theory as a
category we gain in elegancy and in the comprehension of
the general property of t-norms.

A first contribution of this paper is to provide a generaliza-
tion of the notion of automorphism to bounded lattices. Since
automorphism presupposes the use of the same lattice, we
also generalize this notion to t-norm morphism which con-
siders different lattices for domain and co-domain. Another
contribution is to consider the product, function space and
interval lattices constructions to construct t-norms and t-norm
morphisms. We also analyze some categorical properties of
these constructions, in particular we show that this category
is Cartesian and its subcategory, which considers only strict
t-norms, is Cartesian closed. We also proved that for both
categories the usual interval constructor on lattice [17], [32]
is a covariant interval functor, and so, despite not proved
here, it is an interval category in the sense of [8].

II. LATTICES

Let L = 〈L,∧,∨〉 be an algebraic structure where L is
a nonempty set and ∧ and ∨ are binary operations. L is a
lattice, if for each x, y, z ∈ L

1) x ∧ y = y ∧ x and x ∨ y = y ∨ x

2) x∧ (y∧ z) = (x∧ y)∧ z and x∨ (y∨ z) = (x∨ y)∨ z

3) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x

In a lattice L = 〈L,∧,∨〉, if there exist two distinct
elements, 0 and 1, such that for each x ∈ L, x ∧ 1 = x

and x∨ 0 = x then 〈L,∧,∨, 1, 0〉 is said a bounded lattice.
Example 2.1: Some examples of bounded lattices:
1) L> = 〈{1},∧,∨, 1, 1〉, where 1 ∧ 1 = 1 ∨ 1 = 1.
2) B = 〈B,∧,∨, 1, 0〉, where B = {0, 1}, ∧ and ∨ are as

in the boolean algebra.
3) I = 〈[0, 1],∧,∨, 1, 0〉, where x ∧ y = min{x, y} and

x ∨ y = max{x, y}.
4) N = 〈N>,∧,∨,>, 0〉, where N is the set of natural

numbers and
a) N

> = N ∪ {>},
b) x∧> = >∧ x = x and if x, y ∈ N then x∧ y =

min{x, y},
c) x∨> = >∨x = > and if x, y ∈ N then x∨ y =

max{x, y}.
As it is well known, each lattice establishes a partial order.

Let L = 〈L,∧,∨〉 be a lattice. Then ≤L⊆ L×L defined by

x ≤L y ⇔ x ∧ y = x

is a partial order where ∧ coincides with the greatest lower
bound (infimum) and ∨ with the least upper bound (supre-
mum).



Let L = 〈L,∧L,∨L, 1L, 0L〉 and M =
〈M,∧M ,∨M , 1M , 0M 〉 be bounded lattices. A function
h : L −→ M is a lattice homomorphism1 if

1) h(0L) = 0M ,
2) h(1L) = 1M ,
3) for each x, y ∈ L then

a) h(x ∧L y) = h(x) ∧M h(y),
b) h(x ∨L y) = h(x) ∨M h(y).

Proposition 2.1: Let L and M be bounded lattices. h :
L −→ M is a lattice homomorphism iff h(0L) = 0M ,
h(1L) = 1M , and h is monotonic w.r.t. the lattice orders.
Proof: It is a well known fact.

Example 2.2: Let L be a bounded lattice. Then for each
α ∈ (0, 1), the function hα : [0, 1] −→ L defined by

hα(x) =

{
0L if x ≤ α

1L if x > α

is lattice homomorphism from I into L.

A. Operators on bounded lattices

Let L and M be bounded lattices. The product of L and
M, is L × M = 〈L × M,∧,∨, (1L, 1M ), (0L, 0M )〉, where
(x1, x2) ∧ (y1, y2) = (x1 ∧L y1, x2 ∧M y2) and (x1, x2) ∨
(y1, y2) = (x1 ∨L y1, x2 ∨M y2) is also a bounded lattice.

Let L be a bounded lattice. The interval of L, is IL =
〈IL,∧,∨, [1, 1], [0, 0]〉 where IL = {[x, x] : x, x ∈ L and
x ≤L x}, [x, x]∧ [y, y] = [x∧Ly, x∧Ly] and [x, x]∨ [y, y] =
[x ∨L y, x ∨L y] is also a bounded lattice.

The associated order for this lattice agrees with the product
order. That is,

[x, x] ≤ [y, y] iff x ≤L y and x ≤L y (1)

This partial order (1) generalizes a partial order used for
the first time by Kulisch and Miranker [22] in the interval
mathematics context.

Clearly, bounded lattices are closed under product and
interval operators.

III. T-NORMS AND AUTOMORPHISMS ON BOUNDED
LATTICES

Let L be a bounded lattice. A binary operation T on L

is a triangular norm on L, t-norm in short, if for each
v, x, y, z ∈ L the following properties are satisfied:

1) commutativity: T (x, y) = T (y, x),
2) associativity: T (x, T (y, z)) = T (T (x, y), z),
3) neutral element: T (x, 1) = x and
4) monotonicity: If y ≤L z then T (x, y) ≤L T (x, z).
Notice that for the lattice I in particular, this notion of

t-norm coincides with the usual one. The well known Gödel
and weak t-norms (also known by minimum and drastic
product t-norm [23]) can be generalized for arbitrary bounded

1In [12] the term “homomorphism” was used for a lattice not necessarily
bounded. For homomorphism preserving bottom and top elements, as
considered here, Davey and Priestley use the term {0, 1}-homomorphism.

lattice in a natural way. In particular, the Gödel t-norm (TG)
coincides with ∧ itself and the weak t-norm is defined by

TW (x, y) =

{
0 if x 6= 1 and y 6= 1
x ∧ y otherwise

The t-norm on a same lattice can be partially ordered. Let
T1 and T2 be t-norms on a bounded lattice L. Then T1 is
weaker than T2 or, equivalently, T2 is stronger than T1,
denoted by T1 ≤ T2 if for each x, y ∈ L, T1(x, y) ≤L

T2(x, y).
Proposition 3.1: Let T be a t-norm on a bounded lattice

L. Then

TW ≤ T ≤ TG

Proof: Similar to the classical result (see for example remark
1.5.(i) in [23]).

Corollary 3.1: Let T be a t-norm on a bounded lattice L.
Then T (x, y) = 1L iff x = y = 1L.
Proof: Straightforward.

Let T be a t-norm on a bounded lattice L. An element
x ∈ L is a zero divisor of T if T (x, y) = 0L for some
y ∈ L − {0L}. In case x 6= 0L, x is said a nontrivial
zero divisor of T . An x ∈ L is a nilpotent element of T

if T (x, x) = 0L. A t-norm T with at most one nilpotent
element x ∈ L − {0L, 1L} is said a nilpotent t-norm. A
classical result is that a t-norm T is nilpotent iff it has at
most one nontrivial zero divisor. A t-norm is strict if for
each x ∈ L − {0L, 1L}, T (x, x) <L x. A classical result
is that a t-norm T is strict iff it is not nilpotent. So, strict
t-norms have no nontrivial zero divisor.

A. T-norm morphisms

Let T1 and T2 be t-norms on the bounded lattices L and
M, respectively. A lattice homomorphism ρ : L → M is a
t-norm morphism from T1 into T2 if for each x, y ∈ L

ρ(T1(x, y)) ≤M T2(ρ(x), ρ(y)) (2)

Straightforward from the fact that ρ is a lattice morphism,
ρ is monotonic.

If there exists a t-norm morphism ρ′ from T2 into T1 such
that ρ′ ◦ ρ = IdL and ρ ◦ ρ′ = IdM , then ρ is a t-norm
isomorphism. Notice that, there is at most only one t-norm
isomorphism between two t-norms, but there can exist several
t-norm morphisms. Notice also that for t-norm isomorphism,
the inequality ( 2) is an equality, but not necessarily all t-
norm morphisms satisfying ρ(T1(x, y)) = T2(ρ(x), ρ(y)) are
t-norm isomorphisms.

When L and M are equal, t-norm isomorphisms are called
automorphisms. In fact, this notion coincides with the usual
notion of automorphism when the lattice is I.



IV. THE CATEGORY OF BOUNDED LATTICE STRICT
T-NORMS

Clearly the composition of two t-norm morphisms is also
a t-norm morphism. In fact, let K, L and M be bounded
lattices, T1, T2 and T3 be t-norms on K, L, and M, respec-
tively, and ρ1 and ρ2 be a morphism between T1 into T2

and between T2 into T3, respectively. So, T3(ρ2 ◦ρ1(x), ρ2 ◦
ρ1(y)) = ρ2(T2(ρ1(x), ρ1(y))) = ρ2(ρ1(T1(x, y))).

Since the composition of functions is associative, then
the composition of t-norm morphisms is also associative.
Notice that for any bounded lattice L, the identity IdL(x) =
x is an automorphism such that for each t-norm on L,
IdL(T (x, y)) = T (IdL(x), IdL(y)).

Thus, considering the t-norm morphism notion as a mor-
phism and t-norms as objects, we have a category, denoted
by T .

In the following section we will see some properties of this
category and of its subcategory TS which has strict t-norms
as objects and t-norm morphisms as morphisms.

A. Terminal object

Proposition 4.1: Let T> : {(1, 1)} −→ {1} defined by
T>(1, 1) = 1. Then T> is a strict t-norm on the bounded
lattice L>.
Proof: Straightforward.

Proposition 4.2: Let T be a t-norm on a bounded lattice
L. Then ρ> : L → {1} defined by ρ>(x) = 1 is the unique
t-norm morphism from T into T>.
Proof: Straightforward.

Thus, T> is a terminal object of T and consequently of
TS .

Proposition 4.3: Let T be a t-norm on a bounded lattice
L. If there exists a morphism ρ from T> into T then T is
isomorph to T>.
Proof: Straightforward.

This means that, there is a unique morphism output from
T>.

Corollary 4.1: Neither T nor TS has a generator.
Proof: Straightforward definition of generator, see for exam-
ple [2].

B. Cartesian Product

Proposition 4.4: Let T1 and T2 be t-norms on bounded
lattices L and M, respectively. Then T1 ×T2 : (L×M)2 →
L × M defined by

T1 × T2((x1, x2), (y1, y2)) = (T1(x1, y1), T2(x2, y2))

is a t-norm on the bounded lattice L × M. Moreover, if T1

and T2 are strict then T1 × T2 also is.
Proof: Straightforward.

Proposition 4.5: Let T1 and T2 be t-norms on the bounded
lattices L and M, respectively. Then the usual projections
π1 : L × M −→ L and π2 : L × M −→ M defined by

π1(x, y) = x and π2(x, y) = y

are t-norm morphisms from T1 ×T2 into T1 and T2, respec-
tively.
Proof: As it is well known, π1 and π2 are lattice morphisms.
So, it only remains to prove that it satisfies Equation 2. Let
(x1, x2), (y1, y2) ∈ L × M . Then
π1(T1 × T2((x1, x2), (y1, y2))) = π1(T1(x1, y1), T2(x2, y2))

= T1(x1, y1)
= T1(π1(x1, x2), π1(y1, y2))

The π2 case is analogous.

Next we will prove that T satisfies the universal property
of cartesian product.

Theorem 4.1: Let T , T1 and T2 be (strict) t-norms on the
bounded lattices K, L and M, respectively. If ρ1 and ρ2 are
t-norm morphisms from T into T1 and T2, respectively, then
there exists only one t-norm morphism ρ from T into T1×T2

such that the following diagram commutes:

T

T1
�

π1
�

ρ 1

T1 × T2

ρ

? π2
- T2

ρ
2

-

Proof: Let ρ : K −→ L × M be the function:

ρ(x) = (ρ1(x), ρ2(x))

First we will prove that, ρ is a t-norm morphism.
ρ(T (x, y)) = (ρ1(T (x, y)), ρ2(T (x, y)))

≤L×M (T1(ρ1(x), ρ1(y)), T2(ρ2(x), ρ2(y)))
= T1 × T2((ρ1(x), ρ2(x)), (ρ1(y), ρ2(y))
= T1 × T2(ρ(x), ρ(y)).

Since, for i = 1 and i = 2, πi(ρ(x)) = πi(ρ1(x), ρ2(x)) =
ρi(x), then the above diagram commutes.

Suppose that ρ′ : K −→ L × M is a t-norm morphism
which commutes the diagram. Then, π1(ρ

′(T (x, y))) =
ρ1(T (x, y)) and π2(ρ

′(T (x, y))) = ρ2(T (x, y)).
So, ρ′(T (x, y)) = (ρ1(T (x, y)), ρ2(T (x, y))) =

ρ(T (x, y)). Therefore, ρ is the unique t-norm morphism
commuting the above diagram.

Therefore, we can claim that TS is a cartesian category.

C. Exponential

In computing, it could be interesting in some situations
when a procedure is an argument of other procedures, and
in this case, from a theoretical point of view, we need to
deal with higher order functions. In category theory, higher
order function is dealt with the notion of an exponent object,



which suitably represents the set of morphism from an object
to another object in the category [2].

Proposition 4.6: Let T1 and T2 be strict t-norms on
bounded lattices L and M, respectively and [T1 → T2] =
〈[T1 → T2],

∧
,
∨

, ρ>, ρ⊥〉 where
• [T1 → T2] is the set of all t-norm morphisms from T1

into T2;
• ρ1

∧
ρ2(x) = ρ1(x) ∧M ρ2(x), ∀ρ1, ρ2 ∈ [T1 → T2]

and x ∈ L;
• ρ1

∨
ρ2(x) = ρ1(x) ∨M ρ2(x), ∀ρ1, ρ2 ∈ [T1 → T2]

and x ∈ L;
• ρ>, ρ⊥ : L −→ M are defined by

– ρ>(x) = 0M if x = 0L and ρ>(x) = 1M

otherwise;
– ρ⊥(x) = 1M if x = 1L and ρ>(x) = 0M

otherwise.
Then, [T1 → T2] is a bounded lattice.

Proof: Clearly
∧

and
∨

are commutative and associative.
Absorbtion laws: ρ1

∧
(ρ1

∨
ρ2)(x) = ρ1(x) ∧M (ρ1(x) ∨M

ρ2(x)) = ρ1(x) and ρ1

∨
(ρ1

∧
ρ2)(x) = ρ1(x) ∨M

(ρ1(x) ∧M ρ2(x) = ρ1(x).
So, it only remains to prove that ρ> and ρ⊥ are well de-

fined and are the smallest and the greatest t-norm morphisms,
respectively.

If ρ>(T1(x, y)) = 0M then T1(x, y) = 0L. Since T1

has no nontrivial zero divisors, x = 0L or y = 0L.
If x = 0L, then T2(ρ

>(x), ρ>(y)) = T2(0M , ρ>(y)) =
0M . Analogously, If y = 0L, then T2(ρ

>(x), ρ>(y)) =
T2(ρ

>(x), 0M ) = 0M . So, T2(ρ
>(x), ρ>(y)) = 0M . On the

other hand, if ρ>(T1(x, y)) = 1M then T1(x, y) 6= 0L and
so x 6= 0L and y 6= 0L. Therefore, ρ>(x) = ρ>(y) = 1M

and hence T2(ρ
>(x), ρ>(y)) = T2(1M , 1M ) = 1M .

If ρ⊥(T1(x, y)) = 1M then T1(x, y) = 1L and therefore
x = y = 1L. So, T2(ρ

⊥(x), ρ⊥(y)) = T2(1M , 1M ) = 1M . If
ρ⊥(T1(x, y)) 6= 1M then T1(x, y) 6= 1M . Thus, either x 6=
1M or y 6= 1M and hence either ρ⊥(x) 6= 1M or ρ⊥(y) 6=
1M . Therefore, by Corollary 3.1, T2(ρ

⊥(x), ρ⊥(y)) 6= 1M .
So, ρ> and ρ⊥ are well defined, i.e. are t-norm morphisms.
Let ρ be another t-norm morphism from T1 into T2, then

(ρ
∧

ρ>)(0L) = ρ(0L) ∧M ρ>(0L) = 0M ∧M 0M = 0M =
ρ(0L). If x 6= 0L then (ρ

∧
ρ>)(x) = ρ(x) ∧M ρ>(x) =

ρ(x) ∧M 1M = ρ(x).
Let ρ be another t-norm morphism from T1 into T2, then

(ρ
∨

ρ⊥)(1L) = ρ(1L)
∨

ρ⊥(1L) = 1M ∨M 1M = 1M =
ρ(1M ). If x 6= 1M then (ρ

∨
ρ⊥)(x) = ρ(x) ∨M ρ⊥(x) =

ρ(x) ∨M 0M = ρ(x).

Notice that, the lattice order of [T1 → T2] is defined by

ρ1 ≤ ρ2 iff ρ1(x) ≤M ρ2(x) for each x ∈ L

where ≤M is the lattice order of M.
Let T1 and T2 be t-norms on bounded lattices L and M,

respectively. The exponent of T1 and T2 is the function
TT1

2
: [T1 → T2]

2 −→ [T1 → T2] defined by

TT1

2
(ρ1, ρ2)(x) = T2(ρ1(x), ρ2(x)) (3)

Proposition 4.7: Let T1 and T2 be t-norms on bounded
lattices L and M, respectively. Then T T1

2
is a t-norm on the

bounded lattice [T1 → T2].
Proof: For each x ∈ L,

• Commutativity: T T1

2
(ρ1, ρ2)(x) = T2(ρ1(x), ρ2(x)) =

T2(ρ2(x), ρ1(x)) = T T1

2
(ρ2, ρ1)(x);

• Associativity: T T1

2
(ρ1, T

T1

2
(ρ2, ρ3))(x) =

T2(ρ1(x), T T1

2
(ρ2, ρ3)(x)) =

T2(ρ1(x), T2(ρ2(x), ρ3(x))) =
T2(T2(ρ1(x), ρ2(x)), ρ3(x)) =
TT1

2
(TT1

2
(ρ1, ρ2), ρ3)(x)

• Neutral element: T T1

2
(ρ, ρ>)(x) = T2(ρ(x), ρ>(x)) =

T2(0M , 0M ) = 0M = ρ(x) if x = 0M . If x 6= 0M , then
TT1

2
(ρ, ρ>)(x) = T2(ρ(x), ρ>(x)) = T2(ρ(x), 1M ) =

ρ(x). So, T T1

2
(ρ, ρ>)(x) = ρ(x) for each x ∈ L.

• Monotonicity: If ρ1 ≤ ρ2 then ρ1(x) ≤M ρ2(x)
for each x ∈ L. So, by monotonicity of T2,
T2(ρ(x), ρ1(x)) ≤M T2(ρ(x), ρ2(x)) and therefore,
TT1

2
(ρ, ρ1)(x) ≤M TT1

2
(ρ, ρ2)(x). So, T T1

2
(ρ, ρ1) ≤

TT1

2
(ρ, ρ2).

Proposition 4.8: Let T1 and T2 be t-norms on the bounded
lattices L and M, respectively. Then the function eval :
[T1 → T2] × L −→ M defined by eval(ρ, x) = ρ(x), is
a t-norm morphism from T T1

2
× T1 into T2.

Proof: First we need to prove that eval is a lattice homo-
morphism, to do that we will consider the proposition 2.1
and, finally, that it is a t-norm morphism.

• eval(ρ⊥, 0L) = ρ⊥(0L) = 0M ,
• eval(ρ>, 1L) = ρ>(1L) = 1M ,
• If (ρ, x) ≤ (ρ′, y) then ρ ≤ ρ′ and x ≤L y. So,

ρ(x) ≤M ρ(y) ≤M ρ′(y) and therefore, eval(ρ, x) ≤M

eval(ρ′, y),
• eval(T T1

2
×T1((ρ, x), (ρ′, y)) =

eval(TT1

2
(ρ, ρ′), T1(x, y)) =

TT1

2
(ρ, ρ′)(T1(x, y)) =

T2(ρ(T1(x, y)), ρ′(T1(x, y))) =
T2(T2(ρ(x), ρ(y)), T2(ρ

′(x), ρ′(y))) =
T2(T2(ρ(x), ρ′(y)), T2(ρ

′(x), ρ(y))) ≤M

T2(ρ(x), ρ′(y)) =
T2(eval(ρ, x), eval(ρ′, y)).

Theorem 4.2: Let T , T1 and T2 be t-norms on the bounded
lattices K, L and M, respectively. If ρ is a t-norm morphism
from T × T1 into T2 then there exists a unique t-norm
morphism ρ′ from T into T T1

2
such that the following

diagram commutes:

T T × T1

ρ
- T2

TT1

2

ρ′

?

TT1

2
× T1

ρ′ × IdL

?

ev
al

-



Proof: Let ρ′ : K −→ [L → M ] be the function defined
by ρ′(x) = ρx where ρx(y) = ρ(x, y). First we will prove
that ρ′ is the unique lattice morphism such that the above
diagram commutes for the underlying lattices.

eval(ρ′ × IdL)(x, y) = eval(ρ′(x), IdL(y))
= eval(ρx, y)
= ρ(x, y)

If ρ̃ is another lattice morphism commuting the above di-
agram then, eval(ρ̃(x), y) = ρ̃(x)(y) = ρ(x, y) = ρ′(x)(y).

So, only remain to prove that ρ′ is a t-norm morphism.
ρ′(T (x, y))(T1(x1, y1)) = ρ(T (x, y), T1(x1, y1))

≤ T2(ρ(x, x1), ρ(y, y1))
= T2(ρx(x1), ρy(y1))

= TT1

2
(ρx, ρy)(x1, y1).

Therefore, TS is a Cartesian closed category, which is an
important property to model the typed λ-calculi [27], [11],
[20], [25], [2].

D. Intervals

Interval t-norms have been widely studied in the unit
lattice (see for example [36], [15], [4]) as well as in certain
classes of lattice (see for example [10], [32], [3]). The
main motivation to consider interval valued degrees, and
therefore with interval fuzzy connectives, is to deal with
approximations of exact but incomplete knowledge of truth
degrees provided by experts. Since the interval constructor is
closed on the bounded lattices, the t-norm notion on bounded
lattice is sufficient, however, here we see how to transform
an arbitrary t-norm on a bounded lattice into a t-norm on its
interval bounded lattice.

Proposition 4.9: Let T be a t-norm on the bounded lattice
L. Then I[T ] : IL2 −→ IL defined by

I[T ](X,Y ) = [T (x, y), T (x, y)]

is a t-norm on the bounded lattice IL.
Proof: Commutativity, monotonicity and neutral element
([1, 1]) properties of I[T ] follow straightforward from the
same properties of T . The associativity requests a bit of
attention.

I[T ](X, I[T ](Y,Z)) = I[T ](X, [T (y, z), T (y, z)]
= [T (x, T (y, z)), T (x, T (y, z))]
= [T (T (x, y), z), T (T (x, y), z)]
= I[T ]([T (x, y), T (x, y)], Z)
= I[T ](I[T ](X,Y ), Z).

Proposition 4.10: Let T be a t-norm on the bounded
lattice L. Then the projections l : IL −→ L and r : IL −→
M defined by

l(X) = x and r(X) = x

are t-norm morphisms from I[T ] into T .
Proof: l(I[T ](X,Y )) = I[T ](X,Y ) = [T (x, y), T (x, y)] =

T (x, y) = T (l(X), l(Y ))
So, l and, by analogy, r are t-norm morphisms.

Proposition 4.11: Let T1 and T2 be t-norms on the
bounded lattices L and M, respectively. If ρ is a t-norm
morphism from T1 into T2, then there exists a unique t-norm
morphism I[ρ] from I[T1] into I[T2] such that the following
diagram commutes:

T1
�

l
I[T1]

r
- T1

T2

ρ

?

�
l

I[T2]

I[ρ]

? r
- T2

ρ

?

Proof: Let I[ρ] : IL1 −→ IL2 defined by

I[ρ](X) = [ρ(l(X)), ρ(r(X))].

Since,
I[ρ](I[T1](X,Y )) = [ρ(l(I[T1](X,Y ))), ρ(r(I[T1](X,Y )))] =
[ρ(l([T1(x, y), T1(x, y)]), ρ(r([T1(x, y), T1(x, y)])] =
[ρ(T1(x, y)), ρ(T1(x, y))] ≤
[T2(ρ(x), ρ(y)), T2(ρ(x), ρ(y))] = I[T2](I[ρ](X), I[ρ](Y )).
I[ρ] is a t-norm morphism from I[T1] into I[T2].

Since, l(I[ρ](X)) = l([ρ(l(X)), ρ(r(X))]) = ρ(l(X)) and
r(I[ρ](X)) = r([ρ(l(X)), ρ(r(X))]) = ρ(r(X)), the above
diagram commutes.

Now suppose that ρ′ is t-norm morphism from I[T1] into
I[T2] which commutes the diagram above. Then

l(ρ′(X)) = ρ(l(X)) and r(ρ′(X)) = ρ(r(X))

Therefore,
ρ′(X) = [l(ρ′(X)), r(ρ′(X))]

= [ρ(l(X)), ρ(r(X))]
= I[ρ](X).

So, I could be seen as a covariant functor from T into T .

V. FINAL REMARKS

This is an introductory paper which considers a well
known generalization of the t-norm notion for arbitrary
bounded lattices and introduces a generalization of the auto-
morphism notion for t-norms on arbitrary bounded lattices,
named t-norm morphisms. With these two generalizations
we can consider a rich category having t-norms as objects
and t-norm morphism as morphism. We then prove that this
category is Cartesian and for the case of its subcategory
where the objects are strict t-norms, we proved that it is
a Cartesian closed category. Moreover we show that the
usual interval construction on lattices, is a functor on those
categories.

The t-norm morphisms are usual morphisms between lat-
tice ordered monoids (l-monoid in short) which are integral,
i.e. which have the universal upper bound of the lattice as
the unit element of the monoid, where the t-norm is just



the monoidal operation [6], [19], [31]. Since, t-conorms are
also monoids, the category of l-monoid is more general than
the study in this paper. Observe that properties of a super
category are not always inherited by their subcategories.
For example, the category of cpos is a cartesian closed
category, but the category of algebraic cpos is not cartesian
closed. Moreover, the category of Scott domain (which is a
subcategory of algebraic cpos) is cartesian closed [21]. Thus,
a further work is to analise which other usual categorical
construction and properties our category has and compare it
with the properties of the l-monoid category. We also plan
to extend for bounded lattices other usual notions of fuzzy
theory, such as t-conorms, implications, negations, additive
generators, copulas, etc. and see them as categories and relate
them via natural transformations.
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(eds.). Kluwer Academic Publisher, Boston, 1995.

[20] G. P. Huet, “Cartesian closed categories and the lambda-calculus”.
LNCS 242:123–135, 1986.

[21] A. Jung, “Cartesian Closed Categories of Domains”. PhD thesis,
Darmstadt, 1988.

[22] U. Kulisch, and W. Miranker, “Computer Arithmetic in Theory and
Practice”. Academic Press, 1981.

[23] E.P. Klement, R. Mesiar, and E. Pap, “Triangular Norms”. Kluwer
academic publisher, Dordrecht, 2000.

[24] E.P. Klement, and R. Mesiar, “Semigroups and Triangular Norms”. In:
Logical, Algebraic, and Probalistic Aspects of Triangular Norms, E.P.
Klement, and R. Mesiar (eds.). Elsevier, Amsterdam, 2005.

[25] J. Lambek, “Cartesian closed categories and typed lambda calculi”.
LNCS 242:136–175, 1986.

[26] K. Menger, “Statical metrics”. Proc. Nat. Acad. Sci, 37:535–537, 1942.
[27] A.R. Meyer, “What is a model of the lambda calculus?”. Information

and Control, 52:87–122, 1982.
[28] S. Ray, “Representation of a Boolean algebra by its triangular norms”.

Matheware & Soft Computing, 4:63–68, 1997.
[29] D. Scott, “Outline of a mathematical theory of computation”. Proc.

4
th Annual Princeton Conference on Information Sciences and Systems,

pages 169–176, 1970.
[30] B. Schweizer, and A. Sklar, “Associative functions and statistical

triangle inequalities”. Publ. Math. Debrecen, 8:169–186, 1961.
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