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Abstract

Interval fuzzy logic is firmly integrated with principles of fuzzy logic theory and interval mathematics. The former provides
a complete and inclusive mathematical model of uncertainty from which the foundations of fuzzy control have widened the
scope of control theory. The latter models the uncertainty and the errors in numerical computation, leading to self-validated
methods. Both areas were independently developed in the mid 1960s improving the quantitative analysis of approximations
to mathematically exact values, which may not be observable, representable or computable. Interval fuzzy connectives have
been described in the terms of the combination of those theories. In this work, the best interval representation is considered
for the study of R-implication in fuzzy logic. Based on the best interval representation, an interval fuzzy R-implication
is obtained as a canonical extension satisfying the optimality property and preserving the same properties satisfied by the
fuzzy R-implication. In addition, commutative diagrams relate fuzzy R-implications to interval fuzzy R-implications. This
leads to the understanding of how interval automorphisms act on interval R-implications and generate other interval fuzzy
R-implications.
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1 Introduction

Fuzzy set theory [52] may be thought as having arisen from the need of a more complete
and inclusive mathematical model of uncertainty. Interval analysis [40] arose out of a need
to understand and model the uncertainty and the error in numerical computations, allow-
ing the development of computational tools for the automatic error analysis of numerical
algorithms solved in digital computers. From the interval analysis emerged computational
validation as a fruitful area of research [1].
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In addition, the correctness and optimality of interval analysis have been applied in
technological and scientific computations (see, e.g., [7,16,34]) to provide accuracy of cal-
culations together with automatic and rigorous control of errors of numerical computa-
tions [32]. In this sense, interval computation is adequate to deal with the imprecision or
uncertainty of input values and parameters, or caused by the rounding errors that occur dur-
ing the computation [40,2,41]. Interval mathematics is another form of information theory
which is related to but independent from fuzzy logic.

On the other hand, fuzzy control has broadened the scope of control theory, providing a
tool for describing rules using linguistic variables. The necessity for dealing with impreci-
sion and for making decisions under uncertainties of control systems [13,43] provides the
seminal motivation for development of fuzzy set theory. Fuzzy logic has been developed as
a formal deductive system with a comparative notion of truth to formalize deduction under
vagueness, providing a foundation for approximate reasoning using imprecise propositions
based on fuzzy set theory.

The extension of classical logic connectives to the real unit interval is fundamental for
the studies of fuzzy logic and therefore is essential to the development of fuzzy systems.
This extension must preserve the behaviors of the connectives at the interval endpoints
(crisp values) and important properties, such as commutative and associative properties of
the conjunction and disjunction, resulting in the notions of triangular norms and triangular
conorms, respectively.

Fuzzy implications play an important role in fuzzy logic. However, there is no con-
sensus among researchers which exact properties of fuzzy implications should be satisfied.
In the literature, several fuzzy implication properties have already been considered and
their interrelationship with the other kinds of connectives are generally presented. In this
paper, we are interested in fuzzy implications associated to fuzzy connectives named R-
implications, which are generated by t-norms.

Additionally, whenever intervals are considered as a particular type of fuzzy set, or
interval membership degrees are used in the modeling of the uncertainty in the belief of
specialists, it seems natural and interesting to deal with the interval fuzzy approach.

Among several papers connecting these areas (see, e.g., [41,14,39,18,37,23]), we
adopted Bedregal and Takahashi’s work [9,10], where interval extensions for the fuzzy
connectives, considering both correctness (accuracy) and optimality aspects, were pro-
vided [46].

The aim of this work is to introduce the concept of interval-valued R-implication (an
interval generalization for R-implications) and to show that the action of the interval-
valued automorphisms introduced in [23,24] preserve the interval-valued R-implications. A
method for obtaining an interval-valued R-implication from an R-implication canonically,
via the interval constructor, such that the resulting interval implication is the best interval
representation of the R-implication, is also presented. We prove that there is a commuta-
tivity between the process for obtaining R-implications from t-norms and the process for
obtaining interval-valued R-implications from interval-valued t-norms and those canonical
interval constructions. We also show that the use of automorphism over R-implications, and
of interval-valued automorphisms over interval-valued R-implications also comutes when
the interval constructor is applied.

Observe that R-implication is a very important concepts in the context of fuzzy logic,
since R-implications based on left continuous t-norms are used in the modelling of fuzzy
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rules that satisfy natural properties of implications (see, e.g., properties I1 – I10 in Sect. 4).
Moreover, it takes to the residuation property and to an important family of fuzzy log-
ics [27]. On the other hand, the use of automorphisms allows to change implication pre-
serving its fundamental properties, and then preserving its axiomatic.

The paper is organized as follows. In Sect. 2, we discuss the conditions under which
best interval representations of real functions are obtained, and present the related defini-
tions and results. Based on these considerations, we focus attention on the interval ex-
tensions of fuzzy t-norm in Sect. 3. Further analysis of the properties satisfied by fuzzy
R-implications is carried out in Sect. 4. We show that minimal properties of fuzzy impli-
cations may be extended from interval fuzzy degrees, in a natural way. In addition, a com-
mutative diagram relating fuzzy R-implications to interval-valued fuzzy R-implications is
also discussed. The action of an interval-valued automorphism on an interval-valued R-
implication is analyzed in Sect. 5. The canonical construction of an interval-valued auto-
morphism from an automorphism, including its best interval representation, and the relation
between interval-valued implications and automorphism are also discussed. In Sect. 6, we
conclude with the main results of this paper and some final remarks.

2 Interval Representations

Consider the real unit interval U = [0, 1] ⊆ < and let U be the set of subintervals of U ,
that is, U = {[a, b] | 0 ≤ a ≤ b ≤ 1}.

The interval set has two projections l, r : U → U defined by l([a, b]) = a and
r([a, b]) = b, respectively. For X ∈ U, l(X) and r(X) are also denoted by X and X ,
respectively.

Several natural partial orders may be defined on U [12]. The most used orders in the
context of interval mathematics are the following:

(i) Product: X ≤ Y if and only if X ≤ Y and X ≤ Y ;

(ii) Inclusion: X ⊆ Y if and only if X ≥ Y and X ≤ Y .

An interval X ∈ U is said to be an interval representation of a real number α if α ∈ X .
Considering two interval representations X and Y of a real number α, X is said a better
representation of α than Y if X ⊆ Y . This notion can be easily extended for tuples of n

intervals (
−→
X ) = (X1, . . . , Xn).

Definition 2.1 A function F : Un −→ U is an interval representation of a function f :
Un −→ U if, for each

−→
X ∈ Un and −→x ∈

−→
X , f(−→x ) ∈ F (

−→
X ) [46].

Definition 2.2 Let F : Un −→ U and G : Un −→ U be two interval representations of
the function f : U −→ U . F is a better interval representation of f than G, denoted by
G v F , if, for each

−→
X ∈ Un, the inclusion F (

−→
X ) ⊆ G(

−→
X ) holds.

2.1 The Best Interval Representation

Definition 2.3 For each real function f : Un −→ U , the interval function f̂ : Un −→ U
defined by

f̂(
−→
X ) =

[
inf{f(−→x ) | −→x ∈

−→
X}, sup{f(−→x ) | −→x ∈

−→
X}

]
(1)
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is called the best interval representation of f [46].

The interval function f̂ is well defined and for any other interval representation F of f ,
F v f̂ . The interval function f̂ returns an interval that is narrower (has a lesser diameter)
than any other interval representation of f . Thus, f̂ presents the optimality property of
interval algorithms mentioned by Hickey et al. [32], when it is seen as an algorithm to
compute a real function f .

Notice that if f is continuous in the usual sense, then for each
−→
X ∈ Un, the interval

function f̂ applied to
−→
X coincides with the image of f when applied to

−→
X , that is, f̂(

−→
X ) =

f(
−→
X ), where f(

−→
X ) = {f(−→x ) | −→x ∈

−→
X}.

There are several possible notions of continuity for interval functions (see, e.g., [3,46]).
In this paper we will take in consideration the Moore and Scott continuities. Another
approach based on Coherence Spaces can be found in [15,17].

The main result in [46] can be adapted to our context, considering Un instead of <, as
shown in the following:

Theorem 2.4 Let f : Un −→ U be a function. The following statements are equivalent:

(i) f is continuous;

(ii) f̂ is Scott continuous;

(iii) f̂ is Moore continuous.

3 Interval t-norms

Considering the interval generalization proposed in [9], an interval triangular norm (t-norm,
for short) may be considered as an interval representation of a t-norm. This generalization
fits with the fuzzy principle, which means that the interval membership degree may be
thought as an approximation of the exact degree.

Notice that a t-norm is a function T : U2 → U that is commutative, associative, mono-
tonic and has 1 as neutral element. In the following definition, a natural extension of the
t-norm notion for I is considered, following the same approach introduced in [9].

Definition 3.1 A function T : U2 → U is an interval t-norm if it is commutative, asso-
ciative, monotonic with respect to the product and inclusion order and [1, 1] is a neutral
element.

For the proofs of the next three propositions in this section, see [10]. The following
result shows how an interval t-norm can be constructed from two given t-norms.

Proposition 3.2 A function T : U2 → U is an interval t-norm if and only if there exist
t-norms T1 and T2 such that T1 ≤ T2 and T = I[T1, T2], where

I[T1, T2](X, Y ) = [T1(X,Y ), T2(X,Y )]. (2)

The following proposition states that the best interval representation of a t-norm is an
interval t-norm.

Proposition 3.3 If T is a t-norm then T̂ : U2 → U is an interval t-norm.
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The next proposition shows that the interval representation of a t-norm coincides with
the interval construction provided in Prop. 3.2 when both t-norms are the same.

Proposition 3.4 Let T be a t-norm and T̂ : U2 → U be an interval t-norm. Then

T̂ (X, Y ) = [T (X,Y ), T (X,Y )]. (3)

4 Fuzzy Implication

Several definitions for fuzzy implication together with related properties have been given
(see, e.g., [4,6,11,20,19,33,38,45,49,50,51]). The unique consensus in these definitions is
that the fuzzy implication should present the same behavior of the classical implication for
the crisp case. Thus, a binary function I : U2 −→ U is a fuzzy implication if it satisfies the
minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

Several reasonable properties may be required for fuzzy implications. The properties
considered in this paper are listed below:

I1 : If y ≤ z then I(x, y) ≤ I(x, z);

I2 : I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I3 : I(x, y) = 1 if and only if x ≤ y;

I4 : limn→∞ I(x, yn) = I(x, limn→∞ yn) (right-continuity);

I5 : If x ≤ z then I(x, y) ≥ I(z, y);

I6 : I(x, 1) = 1;

I7 : I(0, x) = 1 (dominance of falsity);

I8 : I(1, x) = x (neutrality of truth);

I9 : I(x, y) ≥ y;

I10 : I(x, x) = 1 (identity);

The next proposition presents a relation among the properties I1–10, showing that the
four first are strongest than the others.

Proposition 4.1 Let I be a fuzzy implication satisfying I1, I2 and I3. Then I also satisfies
I5 – I10.

Proof. See [11, Lemma 1 (xi)]. 2

4.1 R-implications

Let T be a t-norm. Then the equation

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y},∀x, y ∈ [0, 1] (4)

defines a fuzzy implication, called R-implication or residuum of T [20,19,36,11,4,22,47].
The R-implication arises from the notion of residuum in Intuitionistic Logic [5] or, equiva-
lently, from the notion of residue in the theory of lattice-ordered semigroups [21]. Observe
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that the R-implication is well-defined only if the t-norm is left-continuous 5 [25,4,47]. This
justifies the name “residuum of T ”, since the R-implication satisfies the residuation condi-
tion when the underlying t-norm is left continuous:

T (x, z) ≤ y if and only if IT (x, y) ≥ z. (5)

Moreover, a t-norm T is left-continuous if and only if it satisfies the residuation condi-
tion [22].

The main results relating the R-implication and the properties I1 – I10 are presented in
the following.

Theorem 4.2 Let I : U2 → U be a fuzzy implication. Then, I is an R-implication with a
left-continuous underlying t-norm if and only if I satisfies the properties I1 to I4.

Proof. See [48,19,4,47]. 2

Since, by Prop. 4.1, I5 – I10 follow directly from I1 – I3, then R-implications with
left-continuous underlying t-norms satisfy the properties I1 – I10.

5 Interval-valued Fuzzy Implications

According to the idea that values in interval mathematics are identified with degenerate
intervals, the minimal properties of fuzzy implications can be naturally extended from in-
terval fuzzy degrees, whenever the respective degenerate intervals are considered. Thus, a
function I : U2 −→ U is an interval fuzzy implication if the following conditions hold:

I([1, 1], [1, 1]) = I([0, 0], [0, 0]) = I([0, 0], [1, 1]) = [1, 1]; (6)
I([1, 1], [0, 0]) = [0, 0]. (7)

Some extra properties can be naturally extended:

I1 : If Y ≤ Z then I(X, Y ) ≤ I(X, Z),

I2 : I(X, I(Y, Z)) = I(Y, I(X, Z)),

I3 : I(X, Y ) = [1, 1] if and only if X ≤ Y ,

I4a : IY (X) = I(X, Y ) is Moore-continuous,

I4b : IY (X) = I(X, Y ) is Scott-continuous,

I5 : If X ≤ Z then I(X, Y ) ≥ I(Z, Y ),

I6 : I([0, 0], X) = [1, 1],

I7 : I(X, [1, 1]) = [1, 1],

I8 : I([1, 1], X) = X ,

I9 : I(X, Y ) ≥ Y ,

I10 : I(X, X) = 1

Observe that it is always possible to obtain an interval fuzzy implication from any
fuzzy implication canonically. The interval fuzzy implication also meets the optimality

5 A t-norm T is said to be left-continuous whenever limn→∞ T (xn, y) = T (limn→∞ xn, y). [36,22]
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property and preserves the same properties satisfied by the fuzzy implication. In the fol-
lowing two propositions, the best interval representation of a fuzzy implication is shown as
an inclusion-monotonic function in both arguments. The related proofs are straightforward,
following from the definition of Î as a particular case of the equation (1).

Proposition 5.1 If I is a fuzzy implication then Î is an interval fuzzy implication.

Proof. See [10]. 2

Proposition 5.2 Let I be a fuzzy implication. Then, for each X1, X2, Y1, Y2 ∈ U, if X1 ⊆
X2 and Y1 ⊆ Y2 then it holds that Î(X1, Y1) ⊆ Î(X2, Y2).

Proof. It is straightforward. 2

The next theorem states that the best interval representation of a fuzzy implication pre-
serves, in some sense, the properties I1–I10 listed in Sect. 4.

Theorem 5.3 Let I be a fuzzy implication. If I satisfies a property Ik, for k = 1, . . . , 10,
then Î satisfies the property Ik.

Proof.

I1: If I satisfies I1, then it holds that Î(X, Y ) = [inf{I(x, Y )|x ∈ X}, sup{I(x, Y )|x ∈
X}] and Î(X, Z) = [inf{I(x,Z)|x ∈ X}, sup{I(x,Z)|x ∈ X}]. Thus, if Y ≤ Z

then, for each x ∈ X , it is valid that I(x, Y ) ≤ I(x,Z) and I(x, Y ) ≤ I(x,Z). It
follows that inf{I(x, Y )|x ∈ X} ≤ inf{I(x,Z) | x ∈ X} and sup{I(x, Y )|x ∈ X} ≤
sup{I(x,Z)|x ∈ X}. Therefore, we conclude that Î(X, Y ) ≤ Î(X, Z).

I2: First, observe that, if u ∈ Î(X, Y ), then there exist x ∈ X and y ∈ Y such that
I(x, y) = u. Thus, if u ∈ Î(X, Î(Y, Z)), then there exist x ∈ X , y ∈ Y and z ∈ Z

such that I(x, I(y, z)) = u. But, by I2, one has that u = I(y, I(x, z)). It follows
that u ∈ Î(Y, Î(X, Z)) and, therefore, it holds that Î(X, Î(Y, Z)) ⊆ Î(Y, Î(X, Z)).
Analogously, if u ∈ Î(Y, Î(X, Z)), then there exist x ∈ X , y ∈ Y and z ∈ Z such
that I(y, I(x, z)) = u. However, by I2, one has that u = I(x, I(y, z)). It follows that
u ∈ Î(X, Î(Y, Z)) and, therefore, it results that Î(Y, Î(X, Z)) ⊆ Î(X, Î(Y, Z)). Hence,
we conclude that Î(X, Î(Y, Z)) = Î(Y, Î(X, Z)).

I3: One has that Î(X, Y ) = [1, 1] if and only if inf{I(x, y)|x ∈ X , y ∈ Y } = 1 =
sup{I(x, y)|x ∈ X, y ∈ Y }. However, this is only possible if and only if {I(x, y)|x ∈
X, y ∈ Y } = {1}, and, therefore, if and only if I(x, y) = 1, for each x ∈ X and y ∈ Y .
Hence, since I satisfies I3, this happens if and only if, for each x ∈ X and y ∈ Y , it is
valid that x ≤ y. This is only possible if and only if X ≤ Y .

I4: For each x ∈ X , let Ix : U −→ U be defined by Ix(y) = I(x, y). Thus, I is right-
continuous if and only if, for each x ∈ X , Ix is continuous. If Ix is continuous then, by
Theorem 2.4, Îx is Scott (Moore) continuous. It follows that

Î(X, Y ) = [inf{I(x, y)|x ∈ X and y ∈ Y }, sup{I(x, y)|x ∈ X and y ∈ Y }]

= [inf{inf{I(x, y)|y ∈ Y } | x ∈ X}, sup{sup{I(x, y)|y ∈ Y }|x ∈ X}]

=
⋃

x∈X [inf{I(x, y)|y ∈ Y }, sup{I(x, y)|y ∈ Y }]

=
⋃

x∈X Îx(Y )
and then, considering that Ix is (topologically) continuous and the union preserves
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continuity, one concludes that Î is also Scott (Moore) continuous.

I5: If I satisfies I5, then it holds that Î(X, Y ) = [inf{I(X, y)|y ∈ Y }, sup{I(X, y)|y ∈
Y }] and Î(Z, Y ) = [inf{I(Z, y)|y ∈ Y }, sup{I(Z, y)|y ∈ Y }]. Thus, if X ≤ Z

then, for each y ∈ Y , it is valid that I(X, y) ≤ I(Z, y) and I(X, y) ≤ I(Z, y). It
follows that inf{I(Z, y)|y ∈ Y } ≤ inf{I(X, y) | y ∈ Y } and sup{I(Z, y)|y ∈ Y } ≤
inf{I(X, y)|y ∈ Y }. Therefore, we conclude that Î(X, Y ) ≥ Î(Z, Y ).

I6: Observe that Î([0, 0], X) = [inf{I(0, x)|x ∈ X}, sup{I(0, x)|x ∈ X}]. Since I

satisfies I6, it follows that I(0, x) = 1, for each x ∈ X . Then, it holds that {I(0, x)|x ∈
X} = {1}, and, therefore, it is valid that Î([0, 0], X) = [1, 1].

I7: Observe that Î(X, [1, 1]) = [inf{I(x, 1)|x ∈ X}, sup{I(x, 1)|x ∈ X}]. Since I

satisfies I7, it follows that I(x, 1) = 1, for each x ∈ X . Then, it holds that {I(x, 1)|x ∈
X} = {1}, and, therefore, it is valid that Î(X, [1, 1]) = [1, 1].

I8: Observe that Î([1, 1], X) = [inf{I(1, x)|x ∈ X}, sup{I(1, x)|x ∈ X}]. Since I

satisfies I8, it follows that I(1, x) = x, for each x ∈ X . Then, it holds that {I(1, x)|x ∈
X} = X , and, therefore, it is valid that Î([1, 1], X) = X .

I9: One has that Î(X, Y ) = [inf{I(x, y)|x ∈ X, y ∈ Y }, sup{I(x, y)|x ∈ X, y ∈ Y }].
Since I satisfies I9, it is valid that I(x, y) ≥ y, for each x ∈ X and y ∈ Y . Therefore, it
holds that inf{I(x, y)|x ∈ X, y ∈ Y } ≥ Y and sup{I(x, y)|x ∈ X, y ∈ Y } ≥ Y . So,
one concludes that Î(X, Y ) ≥ Y .

I10: Since I satisfies I10, it holds that {I(x, x)|x ∈ X} = {1}. Thus, since {I(x, x)|x ∈
X} ⊆ {I(x, y)|x ∈ X, y ∈ X}, it follows that Î(X, X) = 1.

2

The next corollary indicates that the best interval representation of a fuzzy implication
satisfying I1–I3 satisfies the properties I1–I3 and I5–I10 listed in the beginning of this
section.

Corollary 5.4 Let I : U2 −→ U be a fuzzy implication satisfying I1, I2 and I3. Then Î

satisfies I1–I3 and I5–I10.

Proof. It is straightforward, following from Prop. 4.1 and Theorem 5.3. 2

The next proposition provides, for the best interval representation of a fuzzy implication
satisfying the properties I1, I2 and I3, a more concrete and simpler characterization of the
endpoints than the one given by Equation (1).

Proposition 5.5 Let I : U2 −→ U be a fuzzy implication satisfying the properties I1, I2
and I3. Then a characterization of Î can be obtained as

Î(X, Y ) = [I(X,Y ), I(X,Y )]. (8)

Proof. By Prop. 4.1, I also satisfies I5 and, therefore, it holds that Î(X, Y ) =
[I(X,Y ), I(X,Y )] (see also [10]). 2

Similar characterizations can be obtained for other cases. For example, if I satisfies the
properties I1, I5 and I10, then it holds that that Î(X, X) = [I(X,X), 1].
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5.1 Interval-valued R-implications

Definition 5.6 An interval fuzzy implication I is an interval R-implication if there is an
interval t-norm T such that I = IT, where

IT(X, Y ) = sup{Z ∈ U|T(X, Z) ≤ Y }. (9)

Observe that, in Equation (9), the supremum is determined considering the product
order, and, therefore, it results from the supremum considering the usual order on the real
numbers (the interval endpoints).

The next proposition shows that, analogously to R-implications, interval R-implications
satisfy the properties I1, I2 e I3.

Proposition 5.7 Let I be an interval fuzzy implication. If I is an interval R-implication
then I satisfies I1, I2 and I3.

Proof. Let T be the underlying interval t-norm of I, that is, I = IT. It follows that:

I1: If Y ≤ Z and T(X, Z ′) ≤ Y then it holds that T(X, Z ′) ≤ Z. It follows that
{Z ′ ∈ U | T(X, Z ′) ≤ Y } ⊆ {Z ′ ∈ U | T(X, Z ′) ≤ Z}, and, therefore, it is valid that
IT(X, Y ) ≤ IT(X, Z).

I2: Let T1 and T2 be the t-norms related to T by Prop. 3.2. Then it follows that:

IT(X, IT(Y, Z))
= sup{X ′ ∈ U | T(X, X ′) ≤ sup{Y ′ ∈ U|T(Y, Y ′) ≤ Z}} by Eq. (9)

= sup{X ′ ∈ U|T(X, X ′) ≤ sup{Y ′ ∈ U|[T1(Y , Y ′), T2(Y , Y ′)] ≤ Z}} by Eq. (2)

= sup{X ′ ∈ U|T(X, X ′) ≤
[sup{Y ′ ∈ U | T1(Y , Y ′) ≤ Z}, sup{Y ′ ∈ U |T2(Y , Y ′) ≤ Z}}

= sup{X ′ ∈ U|T(X, X ′) ≤ [IT1(Y ,Z), IT2(Y ,Z)]} by Eq. (4)

= [sup{X ′ ∈ U | T1(X,X ′) ≤ IT1(Y ,Z)},
sup{X ′ ∈ U |T2(X,X ′) ≤ IT2(Y ,Z)}] by Eq. (2)

= [IT1(X, IT1(Y ,Z)), IT2(X, IT2(Y ,Z))] by Eq. (4)

= [IT1(Y , IT1(X,Z)), IT2(Y , IT2(X,Z))] by Theorem 4.2

= IT(Y, IT(X, Z)), by the inverse construction.

I3: Observe that IT(X, Y ) = [1, 1] if and only if sup{Z ∈ U | T(X, Z) ≤ Y } = [1, 1] if
and only if {Z ∈ U | T(X, Z) ≤ Y } = U if and only if X = T(X, [1, 1]) ≤ Y .

2

The next theorem states that the best interval representation of an R-implication that is
obtained from a left continuous t-norm coincides with the interval R-implication obtained
from the best interval representation of the t-norm. Then, this theorem provides a sim-
pler characterization for the best interval representation of an R-implication than the one
obtained by the direct application of Equation (1).

Theorem 5.8 Let T be a left continuous t-norm. Then it holds that

ÎT = I bT . (10)
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Proof. It follows that:

I bT (X, Y )

= sup{Z ∈ U|T̂ (X, Z) ≤ Y } by Eq. (9)

= sup{[Z,Z] ∈ U|[T (X,Z), T (X,Z)] ≤ [Y , Y ]} by Eq. (3)

= sup{[Z,Z] ∈ U|T (X,Z) ≤ Y ∧ T (X,Z) ≤ Y } by the Def. of the product order

= [sup{Z ∈ U |T (X,Z) ≤ Y }, sup{Z ∈ U |T (X,Z) ≤ Y }] by the Def. of supremum

= [IT (X,Y ), IT (X,Y )] by Eq. (4)

⊆ [IT (X,Y ), IT (X,Y )] by Theorem (4.2)

= [inf{IT (x, y)|x ∈ X ∧ y ∈ Y }, sup{IT (x, y)|x ∈ X ∧ y ∈ Y }] by Theorem (4.2)

= ÎT (X, Y ) by Eq. (1)

On the other hand, whenever x ∈ X and y ∈ Y , then, for each z ∈ U , if T (x, z) ≤ y

then, by left continuity of T , there exists Z ∈ U such that T̂ (X, Z) ≤ Y . It follows
that IT (x, y) = sup{z ∈ U |T (x, z) ≤ y} ∈ sup{Z ∈ U|T̂ (X, Z) ≤ Y } = I bT (X, Y ).
Therefore, I bT is an interval representation of IT , but ÎT is the best representation of IT . So,
for each X ∈ U and Y ∈ U, it holds that ÎT (X, Y ) ⊆ I bT (X, Y ). 2

The next corollary showing that the best interval representation of an R-implication is
an interval R-implication follows directly.

Corollary 5.9 If I is an R-implication then Î is an interval R-implication.

The above results together with Theorem 5.8 state the commutativity of the diagram
presented in Fig. 1, where C(T ) (C(T)) denotes the class of (interval) t-norms and C(I)
(C(I)) is the class of (interval) R-implications.

C(T )
eq(4)

- C(I)

C(T)

eq(3)

? eq(9)
- C(I)

eq(10)

?

Fig. 1. Commutative diagram relating R-implications with interval R-implications

6 Interval-valued Automorphisms

Definition 6.1 A mapping ρ : U −→ U is an automorphism if it is bijective and monotonic
(i.e., x ≤ y implies that ρ(x) ≤ ρ(y)) [35,42]. Aut(U) denotes the set of automorphisms.

An equivalent definition, given in [11], says that ρ : U −→ U is an automorphism if it
is a continuous and strictly increasing function such that ρ(0) = 0 and ρ(1) = 1.

Automorphisms are closed under composition, that is, if ρ and ρ′ are automorphisms
then ρ ◦ ρ′(x) = ρ(ρ′(x)) is also an automorphism. In addition, the inverse of an automor-
phism is also an automorphism.

10
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Let ρ be an automorphism and I be a fuzzy implication. The action of ρ on I , denoted
by Iρ, defined as

Iρ(x, y) = ρ−1(I(ρ(x), ρ(y))), (11)

is a fuzzy implication. Moreover, if I is an R-implication then Iρ is also an R-implication.

6.1 Canonical Construction of an Interval Automorphism

A mapping % : U −→ U is an interval automorphism if it is bijective and monotonic with
respect to the product order [23,24] (i.e., X ≤ Y implies that %(X) ≤ %(Y )). The set of
all interval automorphisms % : U −→ U is denoted by Aut(U).

The next theorem shows that each interval automorphism can be constructed from an
automorphism.

Theorem 6.2 Let % : U −→ U be an interval automorphism. Then there exists an auto-
morphism ρ : U −→ U such that

%(X) = [ρ(X), ρ(X)]. (12)

Proof. See Theorem 2 of [23]. 2

The Equation (12) also provides a canonical construction of interval automorphisms
from automorphisms and, therefore, a bijection between the sets Aut(U) and Aut(U) (The-
orem 3 of [23]).

6.2 The Best Interval Representation of an Automorphism

For the proofs of the next five propositions in this section, see [9].
In the following, we present interval automorphisms from the point of view of its rep-

resentation.

Theorem 6.3 (Automorphism Representation Theorem) Let ρ : U → U be an auto-
morphism. Then ρ̂ is an interval automorphism and its characterization can be obtained
as:

ρ̂(X) = [ρ(X), ρ(X)]. (13)

Then, interval automorphisms are the best interval representations of automorphisms.
Notice that t-norms are required, by definition, to satisfy ⊆-monotonicity, but never-

theless this property is not required by the definition of interval automorphisms. In the
following corollary, we show that interval automorphisms also are ⊆-monotonic [9].

Corollary 6.4 If % is an interval automorphism then % is inclusion monotonic, that is, if
X ⊆ Y then %(X) ⊆ %(Y ).

Analogously, considering the alternative definition of automorphism provided in [11],
we present alternative characterizations for interval automorphisms based on the Moore’s
and Scott’s definitions of continuity.

A function % : U −→ U is strictly increasing if, for each X, Y ∈ U, whenever X < Y

(i.e., X ≤ Y and X 6= Y ) then %(X) < %(Y ).

11
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Proposition 6.5 % : U −→ U is an interval automorphism if and only if % is Moore-
continuous, strictly increasing, %([0, 0]) = [0, 0] and %([1, 1]) = [1, 1].

Corollary 6.6 Let % : U −→ U be a Moore-continuous and strictly increasing function
such that %([0, 0]) = [0, 0] and %([1, 1]) = [1, 1]. Then there exists an automorphism ρ

such that % = ρ̂.

Analogous result can be obtained for the case of Scott-continuity.
The next proposition shows the action of the inverse with respect to the composition of

interval automorphisms.

Proposition 6.7 Let %1 and %2 be interval automorphisms. Then it holds that

(%1 ◦ %2)−1 = %−1
2 ◦ %−1

1 . (14)

The next theorem states that the best interval representation of a fuzzy implication,
obtained from the action of an automorphism on a fuzzy implication, coincides with the
action of the best interval representation of the automorphism on the best interval represen-
tation of the fuzzy implication. In other words, the best interval representation preserves
the action of automorphisms on fuzzy implications.

Theorem 6.8 Let I be an implication and ρ be an automorphism. Then it holds that

Îρ = Îbρ. (15)

Proof. See [44]. 2

6.3 Interval Automorphism Acting on Interval R-implication

In the following theorem, we show how interval automorphisms act on interval R-
implications, generating new interval R-implications.

Theorem 6.9 Let % : U −→ U be an interval automorphism and I : U2 −→ U be an
interval R-implication. Then the mapping I% : U2 −→ U is an interval R-implication,
defined by

I%
T(X, Y ) = IT%(X, Y ). (16)

Proof. It follows that:

I%
T(X, Y ) = %−1(IT(%(X), %(Y ))) by Eq. (16)

= %−1(sup{%(Z) ∈ U|T(%(X), %(X)) ≤ %(Y )}) by Eq. (9)

= (sup{(%−1 ◦ %)Z ∈ U|T((%−1 ◦ %)X, (%−1 ◦ %)Z) ≤ (%−1 ◦ %)Y )})
= (sup{%(Z) ∈ U|T%(X, Z) ≤ Y }) by Eq. (9)

= IT%(X, Y ).

2

Observe that Theorem 6.9 states that applying an interval automorphism to an R-
Implication presents the same effect than applying it to a t-norm and then obtaining an inter-
val R-implication. Then, this theorem guarantees that whenever an interval R-implication
is submitted to an interval automorphism, a new interval R-implication is then generated,

12
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which means that interval automorphisms may be applied in order to generate new interval
R-implications.

According to Theorem 6.8, the commutative diagram pictured in Fig. 2 holds.

C(I)
eq(11)

- C(I)

C(I)

eq(8)

? eq(16)
- C(I)

eq(8)

?

Fig. 2. Commutative diagram relating R-implications, automorphisms, interval R-implications and interval automorphisms

Based on Prop. 6.7 and Theorems 6.8 and 6.9, (interval) R-implications and (in-
terval) automorphisms can be seen as objects and morphism, respectively, of the category
C(C(I), Aut(I)) (C(C(I), Aut(I))), respectively. In a categorical approach, the action of an
interval automorphism on an interval R-implication can be conceived as a covariant functor
whose application over R-implications and automorphisms in C(C(I), Aut(I)) returns the
related best interval representations in C(C(I), Aut(I)).

7 Final Remarks

Research on extending the ideas of validation to fuzzy logic allow researchers the capability
of determining the quality of solutions within the range of uncertainty associated with the
problem. The synergism between fuzzy logic and interval analysis may be used to underlie
the logic system for expert systems.

We observe that the work in [29,30,31] explains that large parts of fuzzy set theory can
be seen as subfields of Sheaf Theory [28], actually, of the theory of complete Ω-valued
sets, showing that several key concepts of the fuzzy set theory can be naturally described in
terms of subsheaves of constant sheaves and related concepts. One important claim is that
fuzzy theorists are not able to give proper solutions for some problems (see, e.g., [26], and
also [31] for a discussion on the quotient problem) that can be properly explained by sheaf
theory. However, to be able to deal with those concepts some fundamental knowledge from
sheaf theory is inevitable, as pointed out in [29].

This paper presents R-implications as the logical counter-part of the algebraic semantics
for Fuzzy Set Theory, regarded to Interval-Valued varying sets. Although this concept may
be defined as a quite standard sheaf construction, there is no need to know Sheaf Theory
and Topoi in order to understand the presentation given here.

The results concerning interval-valued R-implications and automorphisms presented in
this paper extend our previous work in [9,44,8]. Although the methodology used here is
analogous to onde applied in [44,8] for interval-valued QL-implications and S-implications,
we observe that, whereas S-implications, for example, are obtained directly from t-norms
and fuzzy negations, R-implications are obtained as limits (supremum) of applications of
t-norms, which led us to a different and more elegant approach in this presentation, and in
the proofs of propositions and theorems.

Throughout this paper, intervals are used to model the uncertainty of specialists’ in-
formation related to truth values in the fuzzy propositional calculus: the basic systems are
based on interval t-norms, that is, using subsets of the real unit interval as the standard sets
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of truth degrees and applying continuous t-norms. Thus, the standard truth interval function
of an R-implication can be obtained.

In addition, we mainly discussed under which conditions generalized fuzzy R-
implications applied to interval values preserve properties of canonical forms generated
by interval t-norms. It was shown that properties of fuzzy logic may be naturally extended
for interval fuzzy degrees considering the respective degenerated intervals. The signifi-
cance of an interval fuzzy R-implication was emphasized, showing that R-implications can
be constructed from interval automorphisms that are preserved by the interval canonical
representations.

The development of computer systems based on interval fuzzy logic would inform re-
searchers on how to provide better information requisite for manipulating data types most
accurately and efficiently. The study of interval fuzzy logic improves the use of interval
methods to develop solutions to problems in the fuzzy set domain and vice versa.

These results are important not only to analyze deductive systems in mathematical
depth but also to develop methods based on interval fuzzy logic. They integrate two im-
portant features: the accuracy criteria and the optimality property of interval computations,
and a formal mathematical theory for the representation of uncertainty, concerned with the
fuzzy set theory.
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