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Abstract

The main contribution of this paper is to introduce an autonomous definition of the connective “fuzzy exclusive or” (fuzzy
Xor, for short), which is independent from others connectives. Also, two canonical definitions of the connective Xor are
obtained from the composition of fuzzy connectives, and based on the commutative and associative properties related to
the notions of triangular norms, triangular conorms and fuzzy negations. We show that the main properties of the classical
connective Xor are preserved by the connective fuzzy Xor, and, therefore, this new definition of the connective fuzzy Xor
extends the related classical approach. The definitions of fuzzy Xor-implications and fuzzy E-implications, induced by
the fuzzy Xor connective, are also studied, and their main properties are analyzed. The relationships between the fuzzy
Xor-implications and the fuzzy E-implications with automorphisms are explored.
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1 Introduction

The connective exclusive or (Xor, for short) plays an important role in computer program-
ming. For example, it is used as a primitive operation in many encryption algorithm (e.g,
DES, blowfish, RC5, CASR, RIJNDAEL) [29,47]. The one-time pad [43] is an encryption
algorithm where the plaintext is combined with a random key (called pad) by a modular
addition, or the operation XOR, when binary data are considered.

Several other applications of the Xor connective can be found, such as, e.g., in sim-
ple threshold activated neural networks [39], in the identification of elemental emission
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spectra [15], in algorithms to eliminate cache conflict misses [50], in the construction of
conflict-free hash functions [49], in techniques to exploit the parallelism in IP routers [11],
etc. Also, the boolean web search logic capability may be improved with the Xor op-
erator, in order to consider the search of mutually exclusive sites. Moreover, due to its
non-linearity, the connective Xor is frequently used as a problem, as, e.g., in Neural Net-
works [24], in support vector machines (SVM ) [25] and Quantum Computing [31,35].

Different versions of the fuzzy Xor connective have been used in the literature. In [34],
a fuzzy Xor operation ⊕, defined as x ⊕ y = x + y − 2xy, is used to identify preference
rules from interactions in the linear model. In [39], a generalized Xor operation is given
as a family of fuzzy Xor operations, based on a composition of the fuzzy negation, and
triangular conorms and norms (t-conorms and t-norms, for short). In [6,28], three distinct
definitions of the fuzzy Xor are considered, in order to introduce a semantics of interval
fuzzy logics related to the checklist paradigm:

x⊕⊥ y = max(x− y, y − x), (1)
x⊕> y = min(2− x− y, x + y), (2)
x⊕mid y = (1− x)y + x(1− y). (3)

In the literature, special attention has been given to the research on the validity of many
classical logic tautologies in fuzzy logic, especially those that are related to fuzzy implica-
tions. Fuzzy implications have been widely studied, playing an important roles in different
domains [18,19,46,48,51,52,54,55]. Recent papers studied different classes of fuzzy impli-
cations [2,4,5,12,18,44,53].

Several properties of classical implications can be generalized from the multivalued
implications: 4

(i) R-implication, related to a residuation concept from the intuitionistic logic [21,22];

(ii) S-implication, arising from the notion of disjunction and negation of classical logic,
and generated by a t-conorm and a fuzzy negation [4];

(iii) QL-implication, which may be generated from a left-continuous t-norm, a t-conorm,
joint with a strong fuzzy negation [44];

(iii) D-implication, whose definition is obtained as a contraposition concerning a fuzzy
negation of a QL-implication [32,33];

(iv) Łukasiewicz implication, whose definition is based on the Łukasiewics t-norm [1].

In this paper, we introduce an autonomous definition of the fuzzy Xor connective, which
is independent of the other connectives, generalizing the previous definitions referred above
(equations (1), (2) and (3)).

We also provide two canonical constructions based on the composition of other fuzzy
connectives. In particular, one of them constitutes a generalization of the fuzzy Xor con-
nective introduced in [39], by considering arbitrary fuzzy negations.

Since the main properties of the classical Xor connective are preserved, this new defi-
nition of the fuzzy Xor connective extends the related classical approach.

We use this definition of the fuzzy Xor connective to construct two new classes of fuzzy
implications, namely E-implications and Xor-implications, analyzing their main properties
and their relationship with automorphisms.

4 See also [3,5,53], for other different definitions of fuzzy implications.
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The results can be applied in soft computing, which deals with the design of flexible
information processing systems [36], with applications in control systems [14], decision
making [13], expert systems [45], pattern recognition [7,36], etc.

This paper is organized as follows. In Sect. 2, we review the main concepts related to
ordinary fuzzy connectives. Fuzzy t-conorms (and t-norms), negations and implications are
presented in the subsections 2.1, 2.2 and 2.3, respectively. The fuzzy Xor connective and
corresponding properties are considered in Sect. 3. In Subsect. 3.1, the canonical definition
of the fuzzy Xor operator is introduced. The fuzzy Xor implications and E-implications are
defined in Sect. 4, where we also show how to construct an E-implication as a composition
of a t-norm, a t-conorm, a negation and an Xor operator. Automorphisms are presented
in Sect. 5, where it is shown that the action of the generalization of an automorphism
introduced in [20,21] preserves the generalization of an E-implication. Section 6 is the
Conclusion.

2 Usual Fuzzy Connectives

In this section, basic definitions related to the fuzzy connectives t-norm, t-conorm and fuzzy
negation are considered.

2.1 T-norms and T-conorms

Let U = [0, 1] be the unitary interval. A t-norm is a function T : U2 → U satisfying, for
all x, y, z ∈ U , the following properties:

• T1: T (x, y) = T (y, x) (commutativity);
• T2: T (x, T (y, z)) = T (T (x, y), z) (associativity);
• T3: If y ≤ z then T (x, y) ≤ T (x, z)) (monotonicity);
• T4: T (x, 1) = x (boundary condition).

A t-conorm is a function S : U2 → U satisfying, for all x, y, z ∈ U , the following
properties:

• S1: S(x, y) = S(y, x) (commutativity);
• S2: S(x, S(y, z)) = S(S(x, y), z) (associativity);
• S3: If y ≤ z then S(x, y) ≤ S(x, z) (monotonicity);
• S4: S(x, 0) = 0 (boundary condition).

2.2 Fuzzy Negation

A function N : U → U is a fuzzy negation if

• N1: N(0) = 1 and N(1) = 0;
• N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

Fuzzy negations satisfying the involutive property are called strong fuzzy negations [12,27]:

• N3: N(N(x)) = x, ∀x ∈ U .
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2.3 Fuzzy Implications

Several definitions for fuzzy implications together with related properties have been given
in the literature (see, e.g., [2,5,12,17,18,23,30,42,51,52,53]). The unique consensus in these
definitions is that the fuzzy implication should have the same behavior as the classical
implication for the crisp case. Thus, a binary function I : U2 → U is a fuzzy implication if
I satisfies the minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0. (4)

Several reasonable properties may be required for fuzzy implications. The properties
considered in this paper are listed below:

I1: If x ≤ z then I(x, y) ≥ I(z, y) (first place antitonicity);

I2: If y ≤ z then I(x, y) ≤ I(x, z) (second place isotonicity);

I3: I(1, x) = x (left neutrality principle);

I4: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I5: I(x, y) = I(x, I(x, y)) (iterative boolean-like law);

I6: I(x,N(x)) = N(x), and N is a strong fuzzy negation;

I7: N(x) = I(x, 0) is a strong fuzzy negation;

I8: I(x, 1) = 1;

I9: I(x, y) ≥ y;

I10: I(x, y) = I(N(y), N(x)), and N is a strong fuzzy negation (contra-positive);

I11: I(0, x) = 1, dominance falsity.

3 The Connective Fuzzy Xor

In fuzzy logic, one can use the Xor connective in order to evaluate the degree with which
one and only one of its immediate antecedents is true. Unfortunately, in the literature,
there is no autonomous definitions for that fuzzy connective, in the sense that it would be
independent from the other connectives. In the following, we introduce a definition for the
fuzzy Xor connective satisfying this condition of independence.

Definition 3.1 A function E : U2 → U is a fuzzy Xor if it satisfies the properties:

• E1: E(x, y) = E(y, x) (symmetry);
• E2: E(x, E(y, z)) = E(E(x, y), z) (associativity);
• E3: E(0, x) = x (0-Identity);
• E4: E(1, 1) = 0 (boundary condition).

Example 3.2 The fuzzy Xor connective introduced in [34], defined by x⊕y = x+y−2xy,
trivially satisfies the properties E1, E3 and E4. It also satisfies the property E2, since:
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x⊕ (y ⊕ z) = x + (y ⊕ z)− 2x(y ⊕ z)

= x + (y + z − 2yz)− 2x(y + z − 2yz)

= x + y + z − 2yz − 2xy − 2xz + 4xyz

= x + y − 2xy + z − 2xz − 2yz + 4xyz

= x + y − 2xy + z − 2z(x + y − 2xy)

= (x⊕ y)⊕ z.

It follows from properties E3 and E4 that the fuzzy Xor connective generalizes the
classical Xor connective.

Based on Definition 3.1, the following reasonable properties can be considered for the
fuzzy Xor connective:

• E5: E(x, x) = 0
• E6: E(E(x, y), x) = y

• E7: If x ≤ y ≤ z then E(x, y) ≤ E(x, z) and E(y, z) ≥ E(x, z)
• E8: NE(x) = E(x, 1) is a strong fuzzy negation.
• E9: If E(x, y) = 0 then x = y.
• E10: If E(x, y) = 1 then |x− y| = 1.
• E11: E(NE(x), x) = 1.
• E12: E is continuous.

These properties are not necessarily primitive, that is, some of them can be obtained
from some other properties.

Proposition 3.3 Let E : U2 → U be a fuzzy Xor connective. Then, the following relations
hold:

E5 ⇒ E6: If E satisfies E5 then E satisfies E6.

E7 ⇒ E8: If E satisfies E7 then E satisfies E8.

E6 ⇒ E11: If E satisfy E6 then E satisfies E11.

Proof. Let E : U2 → U be a fuzzy Xor connective. Then it follows that:

E5 ⇒ E6: E(E(x, y), x) = E(x,E(x, y)) = E(E(x, x), y)) = E(0, y) = y.

E7⇒ E8: The function NE : U → U , given by NE(x) = E(x, 1), satisfies the properties:
N1: NE(0) = E(0, 1) = 1 and NE(1) = E(1, 1) = 0.
N2: If x ≤ y, then, by the property E7, NE(x) = E(x, 1) ≥ E(y, 1) = NE(y).
N3: One has that NE(NE(x)) = NE(E(x, 1)) = E(E(x, 1), 1). Based on the asso-

ciativity (E2) and boundary condition (E4) properties in Definition 3.1, it holds that
E(E(x, 1), 1) = E(x,E(1, 1)) = E(x, 0) = x, and, thus, NE(NE(x)) = x.

Therefore, NE(x) = E(x, 1) is a strong fuzzy negation.

E6 ⇒ E11: If E(E(x, y), x) = y then E(NE(x), x) = E(E(x, 1), x) = 1.
2
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3.1 Obtaining the Xor Connective from Other Connectives

Proposition 3.4 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation, respec-
tively. A fuzzy Xor connective can be given by the function ET : U2 → U , defined by:

ET (x, y) = T (S(x, y), N(T (x, y))). (5)

Proof. The function ET : U2 → U , given by ET (x, y) = T (S(x, y), N(T (x, y))), satis-
fies the properties in Definition 3.1:

E1: Based on the commutativity of T and S, it follows that:

ET (x, y) = T (S(x, y), N(T (x, y))) = T (S(y, x), N(T (y, x))) = ET (y, x).

E2: Based on the associativity of T and S, it follows that:

ET (x,ET (y, z))
= ET (x, T (S(y, z), N(T (y, z))))
= T (S(x, T (S(y, z), N(T (y, z)))), N(T (x, T (S(y, z), N(T (y, z))))))
= T (S(T (S(x, y), N(T (x, y), z))), N(T (S(x, y), N(T (x, y))), z))
= ET (T (S(x, y), N(T (x, y))), z)
= ET (ET (x, y), z).

E3: Considering the boundary conditions in the definitions of T , N and S, it follows that:

ET (0, x) = T (S(0, x), N(T (0, x))) = T (x, N(0)) = T (x, 1) = x.

E4: The same conditions in the definitions of T , N and S assure that

ET (1, 1) = T (S(1, 1), N(T (1, 1))) = T (1, N(1)) = T (1, 0) = 0.

2

Example 3.5 Consider the Łukasiewicz t-norm, defined by TL(x, y) = max(x+y−1, 0),
the t-conorm (or bounded sum), defined by SL(x, y) = min(x + y, 1), and the fuzzy
negation, given by N(x) = 1 − x (see [44]). The fuzzy Xor operator ETL

, canonically
obtained as in Eq. (5), can be expressed as:

ETL
(x, y)

= max(min(x + y, 1) + (1−max(x + y − 1, 0))− 1, 0)

=

 x + y if x + y ≤ 1

2− (x + y) if x + y > 1

This operator only verifies the following two properties:

E8: It is straightforward, following from Proposition 3.8.

E11: ETL
(NETL

(x), x) = ETL
(1− x, x) = 1.

Proposition 3.6 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation, respec-
tively. A fuzzy Xor connective can be given by the function ES : U2 → U , defined by:

ES(x, y) = S(T (N(x), y), T (x,N(y))). (6)
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Proof. The function ES : U2 → U , given by S(T (N(x), y), T (x,N(y))), satisfies the
properties in Definition 3.1:

E1: ES satisfies the commutativity property, that is,

ES(x, y) = S(T (N(x), y), T (x,N(y))) = S(T (N(y), x), T (y, N(x))) = ES(y, x)

which is a consequence of the commutative properties of T and S.

E2: Based on the associativity of T and S, it follows that

ES(ES(x, y), z)

= ES(S(T (N(x), y), T (x, N(y))), z)

= S(T (N(S(T (N(x), y), T (x, N(y)))), z), T (S(T (N(x), y), T (x, N(y))), N(z)))

= S(T (N(x)), S(T (N(y), z), T (y, N(z))), T (x, N(S(T (N(y), z), T (y, N(z)))))

= ES(x, S(T (N(y), z), T (y, N(z))))

= ES(x, ES(y, z)).

E3: Considering the boundary conditions T4 and S4 in the definitions of T and S, respec-
tively, it follows that

ES(0, x) = S(T (N(0), x), T (0, N(x))) = S(T (1, x), 0) = S(x, 0) = x.

E4: Considering the boundary conditions T4 and S4 in definitions of T and S, respec-
tively, one has that

ES(1, 1) = S(T (N(1), 1), T (1, N(1))) = S(N(1), N(1)) = S(0, 0) = 0.

2

Example 3.7 Consider the Łukasiewicz t-norm, defined by TL(x, y) = max(x+y−1, 0),
the t-conorm (or bounded sum), defined by SL(x, y) = min(x + y, 1), and the fuzzy
negation, given by N(x) = 1 − x (see [44]). The fuzzy Xor operator ESL

, canonically
obtained as in Eq. (6), can be expressed as:

ESL
(x, y) = |x− y|.

This operator satisfies all the properties from E5 to E12. The fuzzy Xor operator ESL

coincides with the one introduced in [28] (Table 3), which we presented in the Introduction
(see Eq. (1)).

Proposition 3.8 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation, respec-
tively. Then it holds that NET

= NES
= N .

Proof. It follows that: NET
(x) = ET (x, 1) = T (S(x, 1), N(T (x, 1))) = T (1, N(x)) =

N(x) and NES
(x) = S(T (N(x), 1), T (x,N(1))) = S(N(x), T (x, 0)) = S(N(x), 0) =

N(x). 2

4 Fuzzy Implications Induced by the Fuzzy Xor Connective

The fuzzy Xor connective allows us to define two new fuzzy implications, which are pre-
sented in the next subsections.
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4.1 Xor-implications

Proposition 4.1 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor connec-
tive, respectively. Then, the function IE,S,N : U2 → U , defined by

IE,S,N (x, y) = E(x, S(N(x), N(y))). (7)

is a fuzzy implication, called a fuzzy Xor-implication.

Proof. It follows that IE,S,N satisfies the following properties:

IE,S,N (0, 0) = E(0, S(N(0), N(0))) = E(0, S(1, 1)) = E(0, 1) = 1;

IE,S,N (0, 1) = E(0, S(N(0), N(1))) = E(0, S(1, 0)) = E(0, 1) = 1;

IE,S,N (1, 1) = E(1, S(N(1), N(1))) = E(1, S(0, 0)) = E(1, 0) = 1;

IE,S,N (1, 0) = E(1, S(N(1), N(0))) = E(1, S(0, 1)) = E(1, 1) = 0.

Therefore, IE,S,N is a fuzzy implication. 2

Proposition 4.2 Let S be a t-conorm and E be a fuzzy Xor connective satisfying the prop-
erty E6. Then the fuzzy implication IE,S,NE

satisfies the properties I2 and I5.

Proof. It follows that

I2: IE,S,NE
(1, x) = E(1, S(NE(1), NE(x))) = E(1, S(0, NE(x))) = E(1, NE(x)) =

NE(NE(x)) = x.

I5: IE,S,NE
(x, 0) = E(x, S(NE(x), NE(0))) = E(x, S(NE(x), 1)) = E(x, 1), which,

by property E6, is a strong fuzzy negation.
2

4.2 E-Implications

Proposition 4.3 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor connec-
tive, respectively. Then the function IS,N,E : U2 → U , defined by

IS,N,E(x, y) = S(N(x), E(N(x), y)). (8)

is a fuzzy implication, called a fuzzy E-implication.

Proof. It follows that IS,N,E satisfies the following properties:

IS,N,E(0, 0) = S(N(0), E(N(0), 0)) = S(1, E(1, 0)) = S(1, 1) = 1;

IS,N,E(0, 1) = S(N(0), E(N(0), 1)) = S(1, E(1, 1)) = S(1, 0) = 1;

IS,N,E(1, 1) = S(N(1), E(N(1), 1)) = S(0, E(0, 1)) = S(0, 1) = 1;

IS,N,E(1, 0) = S(N(1), E(N(1), 0)) = S(0, E(0, 0)) = S(0, 0) = 0.

Therefore, IS,N,E is a fuzzy implication. 2

Proposition 4.4 Let S be a t-conorm and E be a fuzzy Xor connective satisfying the prop-
erty E6. Then the fuzzy implication IS,NE ,E satisfies the properties I2 and I6.

Proof. It follows that:
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I2: IS,NE ,E(1, x) = S(NE(1), E(NE(1), x)) = S(0, E(0, x)) = E(0, x) = x.

I5: IS,NE ,E(x, 0) = IS,NE ,E(0, x) = S(NE(0), E(NE(0), x)) = S(1, E(1, x)) =
E(x, 1), which, by Property E6, is a strong fuzzy negation.

2

5 Automorphism

Definition 5.1 A function ρ : U → U is an automorphism if it is bijective and monotonic,
that is: [26,37]

x ≤ y ⇒ ρ(x) ≤ ρ(y).

An equivalent definition is given in [12], where ρ : U → U is an automorphism if it is
a continuous and strictly increasing function such that ρ(0) = 0 and ρ(1) = 1.

Denote by Aut(U) the set of all automorphisms on U .
Automorphisms are closed under composition, that is, if ρ and ρ′ are automorphisms

then ρ ◦ ρ′(x) = ρ(ρ′(x)) is also an automorphism.
The inverse of an automorphism is also an automorphism.
The action of ρ on a function F : Un → U , denoted by F ρ, is defined as follows:

F ρ(x1, . . . , xn) = ρ−1(F (ρ(x1), . . . , ρ(xn))). (9)

As it is well known (see, e.g., [12,38]), the action of ρ preserves the fuzzy connec-
tives, that is, Sρ,T ρ, Nρ and Iρ are a fuzzy t-conorm, a t-norm, a (strong) negation and an
implication, respectively.

Proposition 5.2 If E is a fuzzy Xor connective, then Eρ is also a fuzzy Xor connective.

Proof. Considering that E is a fuzzy Xor connective, one has that Eρ satisfies the following
properties:

E1: Eρ(x, y) = ρ−1(E(ρ(x), ρ(y))) = ρ−1(E(ρ(y), ρ(x))) = Eρ(y, x), based on the
symmetry of E;

E2: One has that

Eρ(x,Eρ(y, z)) = ρ−1(E(ρ(x), ρ ◦ ρ−1(E(ρ(y), ρ(z)))))
= ρ−1(E(ρ(x), E(ρ(y), ρ(z))) = ρ−1(E(E(ρ(x)ρ(y)), ρ(z))),

considering that E satisfies the associativity property, and then it follows that

Eρ(x, Eρ(y, z)) = ρ−1(E(ρ ◦ ρ−1(E(ρ(x)ρ(y)), ρ(z)))) = Eρ(Eρ(x, y), z);

E3: Eρ(0, x) = ρ−1(E(ρ(0), ρ(x))) = ρ−1(E(0, ρ(x))) = ρ−1(ρ(x))) = x, since E

satisfies the 0-Identity property;

E4: Eρ(1, 1) = ρ−1(E(ρ(1), ρ(1))) = ρ−1(E(1, 1)) = ρ−1(0) = 0, based on the bound-
ary condition related to E.

Therefore, Eρ is a fuzzy Xor connective, whenever E is a fuzzy Xor connective. 2

Proposition 5.3 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor connec-
tive, respectively. Then it holds that ISρ,Nρ,Eρ(x, y) = (IS,N,E)ρ(x, y).
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Proof. Considering x, y ∈ U , one has that:

ISρ,Nρ,Eρ(x, y) = Sρ(Nρ(x), Eρ(Nρ(x), y)) by Eq. (8)

= Sρ(ρ−1N(ρ(x)), Eρ(ρ−1N(ρ(x), y))) by Eq. (9)
= Sρ(ρ−1N(ρ(x)), ρ−1E(N(ρ(x), ρ(y)))) by Eq. (9)
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) by Def. 5.1
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) by Eq. (8)
= ρ−1IS,N,E(ρ(x), ρ(y)) = (IS,N,E)ρ(x, y) by Def. 9

2

Corollary 5.4 If I is a fuzzy E-implication then Iρ is also a fuzzy E-implication.

Proof. It follows from the definition of E-implication and the Property 5.3. 2

Proposition 5.5 Let S be a t-conorm, E be a Xor and N be a fuzzy negation. Then it holds
that IEρ,Sρ,Nρ(x, y) = (IE,S,N )ρ(x, y).

Proof. Considering x, y ∈ U , one has that

IEρ,Sρ,Nρ(x, y) = Eρ(x, Sρ(Nρ(x), Nρ(y))) by Eq.(8)

= Eρ(x, Sρ(ρ−1N(ρ(x), ρ(y)))) by Eq.(9)
= Eρ(x, ρ−1(S(N(ρ(x)), N(ρ(y))))) by Eq.(9)
= ρ−1E(ρ(x), S(N(ρ(x)), N(ρ(y)))) by Def. 5.1
= ρ−1E(ρ(x), ρ(S(N(x), N(y)))) by Eq.(7)
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) = (IE,S,N )ρ(x, y) by Def. 9

2

Corollary 5.6 Let I be a fuzzy E-implication then Iρ is also a fuzzy E-implication.

Proof. It follows from the definition of E-implication and Proposition 5.5. 2

6 Conclusion and Further Work

Fuzzy implications play an important role in fuzzy logic, both in a broad sense (heavily
applied to fuzzy control, analysis of vagueness in natural language and techniques of soft-
computing) and in a narrow sense (developed as a branch of many-valued logic which are
able to investigate deep logical questions).

One of the main contributions of this paper is the introduction of an autonomous defini-
tion of the fuzzy Xor connective, independently of the other fuzzy connectives. Also, two
canonical constructions of the fuzzy Xor connective, denoted by ET and ES , were obtained
by the composition of t-conorms, t-norms and fuzzy negations.

Based on this definition of the fuzzy Xor connective, this paper introduced two
new fuzzy implications called Xor-implication and E-implication, denoted by IS,N,E and
IE,S,N , respectively.

Moreover, considering an automorphism ρ, we showed that the action of ρ on the fuzzy
implications IS,N,E and IE,S,N preserves these connectives, that is, Iρ

S,N,E and Iρ
E,S,N are

both fuzzy implications.
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Important properties, such as commutative and associative properties of Xor-
implications and E-implications were considered in this paper, which resulted in a canonical
definition concerned with the notions of triangular norms and triangular conorms. Although
these implications are still in an early analysis phase, new properties can be explored and
general comparisons concerning their relationships with the other interesting implications
(R-implications, S-implications, QL-implications, D-implications) can be developed.

The definition of interval-valued Xor-implications and E-implications is an ongoing
work, following our previous works [8,9,10,16,40,41] on the study of the the various
interval-valued implication functions derived from interval t-norms and interval t-conorms.

Also, additive and multiplicative generators to obtain the fuzzy Xor connective and
the new implications can be considered in further work. So, the investigation of the most
important properties preserved under the action of automorphisms and the related interval
extension can be carried out.

Finally, since bounded lattices may be considered from the point of view of fuzzy logic,
it seems interesting to extend the notions of E-implications and Xor-implications from the
unit interval to an arbitrary bounded lattice. The interval extensions of such implications
also motivates the study of their general properties on bounded lattices.
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