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Abstract—Interval mathematics has been used in Signal Process-
ing as a tool for representing uncertainties that arise from finite
numeric representation, limited precision sensors and the quantization
process. In some control systems, such as soft computing or forecast
systems, the uncertainties are a consequence of variable instability,
signal variance, or the safety rate of some actuators. Papers with
specific applications in this area have been published, but few have
dealt with the theoretical foundation of interval mathematics applied
to signal processing. This essay is a starting point on interval
mathematics in the foundation of signal processing. It is an analytical
approach for dealing with interval linear systems with an application
perspective in signal processing. Interval linear systems will be used
as mathematical models in real systems representation, where the
intervals represent the uncertainty of the system. In this approach only
linear and time invariant systems with single input and single output
(SISO) are used. For this purpose the classical basic properties of
real linear systems will be extended. These properties are: causality,
stability, additivity and homogeneity. Finally, an interval convolution
definition is proposed to represent uncertainty systems and signals
more accurately; it is also an important tool for digital signal
processing.

Keywords—Interval Linear Systems, Digital Signal Processing,
Interval Mathematics.

I. INTRODUCTION

N
Owadays the users of signal processing encounter prob-

lems in representing real hardware or software-dedicated

systems in signal processing . Among these problems is the

treatment of uncertainty systems. This can be inherent to

the signal, to sensor bounds, the elected mathematic model,

hardware bound implementation or due to lack of precision

in some DSP operations. The use of interval mathematics

in digital signal processing is proposed to solve these prob-

lems. Due to the complexity of the signal area, this work

only deals with the linear system. Many signal processing

methods are based on the divide-and-conquer principle when

the superposition principle is used. This method is very

efficient because it breaks a complex problem into many small

ones. The superposition principle can be used only with

linear systems. It offers many signal processing techniques.

Linear systems provide the divide-and-conquer technique for

the signal processing area. This can be seen in the parallel

implementation of small systems to form a large and more

complex system. It also occurs with cascade implementation.

The aforementioned information shows that interval meth-

ods are very important for the signal processing area because
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the results of interval algorithms contain a set of infinite-

precision real numbers. The results preserve data uncertainties

and computational errors. Other examples of signal processing

applications are linear prediction, echo cancel, identification

systems and channel equalization.

Moore in [6] proposed intervals to control errors caused

by operations with finite representations of real numbers.

Intervals can offer several interpretations, depending on the

semantic field in which they are analyzed. In this work, the

semantics used by Santiago et al. [9] will be considered, where

intervals and interval functions are seen as representations of

real numbers and real functions respectively.

Signal uncertainty is present in several applications such

as space exploration, commercial applications, medicine,

telecommunications, military operations, electric circuits, in-

dustry and scientific research. Thus, in recent years intervals

have been used to model this type of uncertainty in signals.

On the other hand, considering that linear systems play a

fundamental role in signal processing, a well founded interval

extension of linear system and properties, such as causality,

linearity, invariance in time, stability, etc, would be needed for

signal processing. However, studies lack mathematical foun-

dations; particularly, for not presenting an interval extension

of linear systems for signal processing.

II. INTERVAL MATHEMATICS

The foundations of interval mathematics in this work can

be found in [6].

Let IR be the set of closed intervals with real end points.

If X, Y ∈ IR then for each � ∈ {+, −, :, ×},

X�Y = {a�b ∈ R | a ∈ X ∧ b ∈ Y } with 0 /∈ Y
in the division case1. The main characteristic of the interval

arithmetic defined by Moore is the property of monotonic

inclusion, which guarantees that if X and Y ∈ IR, x ∈ X
and y ∈ Y then x�y ∈ X�Y (0 /∈ Y in the division case).

Two projections are associated to each interval, π1 and π2

defined by π1([a, b]) = a and π2([a, b]) = b. For notational

simplicity X is used to represent π1(X) and X to represent

π2(X). Let X : Z → IR, be a semi-interval sequence, the

lower limit of X[n] is the semi-interval function X[n] : IR →
R, where X[n] = π1(X[n])) and the upper limit of X[n] is

the semi-interval function X[n] : IR → R, where X[n] =
π2(X[n]).

Let X = [r, s] and Y = [t, u], then X is less than or equal

to Y , denoted by X � Y , if r ≤ t and s ≤ u.

An interval X is called positive if X > 0. And negative

if X < 0.

1Division by 0 is not defined in Interval Arithmetic
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Fig. 1. Graphic representation of semi-interval function [0.5, 1] sin(x) for
−π ≤ x ≤ π

The arithmetic interval does not have a distributive property.

This is a problem for constructing a strong theory for an

interval linear system.

The arithmetic interval has pseudo-distributivity as shown

in: Let be A, B an C ∈ IR then: A(B + C) ⊆ AB + AC.

Proposition 1: An interval A is the infimum of a set of

intervals M w.r.t. �, if A = [inf{X : X ∈ M}, inf{X : X ∈
M}].

Proof: Straightforward from infimum definition of posets

and classical properties for the infimum of lower bounded sets

of real numbers.

Note that, analogous to the real case, all lower bounded

intervals have infimum.

A. Interval Sequences

This section is presented because discrete-time signals are

represented mathematically as number sequences [8].Thus, to

construct a mathematical foundation of Interval Digital Signal

Processing an interval version of sequences is required.

Definition 1 (Discrete Interval Sequence): A Discrete In-

terval Sequence is an application X : Z → IR, represented

by {X[n]}, where the nth term is denoted by X[n]2.

To simplify the notation, sequence {X[n]} is referred to as

X[n]. A practical discrete interval sequence can often arise

from periodic sampling of an interval analog signal. In this

case the numeric value of the nth term of the sequence is

equal to the value of the interval analog signal Xa[t] at time

nT ; i.e.

X[n] = Xa(nT ), where −∞ < n < ∞. T is the sampling

period; its reciprocal is the sampling frequency.

In this work all interval sequences are semi-interval se-

quences.

An example of signal discretization using an interval se-

quence can be seen in Figure 2, which represents an approx-

imation of the semi-interval function A sin(x) when A is the

interval [0.5, 1] and −π ≤ x ≤ π shown in Figure 1 by a

discrete interval sequence.

1) Discrete interval sequence operations: In the treatment

of the discrete-time signal, sequences are manipulated in

several basic ways. To extend the discrete-time signal to

its interval version, the discrete sequence operations must

2[ ] is used to denote functions whose independent variable is an integer
value and ( ) to denote the functions that have an independent variable in
continuous space.

Fig. 2. An example of discretization using interval sequence on the semi-
interval function [0.5, 1] sin(x) for −π ≤ x ≤ π
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Fig. 3. The graphic representation of a product of sequences δi[n] and
X[n] = [1, 2] ∀ n ∈ Z.

be extended to the interval version. In many cases this can

be done by simply changing the real operations for interval

operations.

The product and sum of two interval sequences X[n] and

Y [n] are defined as the sample-by-sample product and sum, re-

spectively. The multiplication of an interval sequence X[n] by

an interval constant C is defined as the interval multiplication

of each interval sample by C. In the case of multiplication by

a real number c, it is considered a degenerate interval [c, c] and

becomes peculiar to the case of multiplication by the interval

constant.

An Interval sequence Y [n] is said to be a delayed or shifted

version of a sequence X[n] if Y [n] with values Y [n] = X[n−
n0], where n0 is an integer.

Definition 2: Let be X1[i] and X2[k] two discrete interval

sequences. X1[n] � X2[n] if X1[i] � X2[k] ∀i = k.

2) Basic Interval Sequences: In digital signal processing

several basic sequences are of particular importance. These

are discussed below.

The Unit sample sequence, denoted by δ[n], is defined as

the sequence with values 0 if n 6= 0 and 1 if n = 0.

The interval unit sample sequence, denoted by δi[n], is

defined as the sequence δi[n] = [δ[n], δ[n]].

Figure 3 shows an example of the product of two sequences,

δi[n] and a constant sequence defined by X[n] = [1, 2] ∀n ∈
Z.

We refer in this work to interval unit sample sequence as a

discrete-time impulse or simply as an impulse.

Just as in real time discrete signal processing, the interval

discrete sequence can be expressed as

X[n] =

∞
∑

k=−∞
X[k]δi[n − k].
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Fig. 4. An interval exponential sequence

The unit step sequence, denoted by u[n], is defined as 0
if n < 0 and 1 if n ≥ 0.

Just as the impulse sequence, the interval unit step sequence

can be defined from the real unit step sequence, as shown

below.

The interval unit step sequence , denoted by ui[n], is

defined as ui[n] = [u[n], u[n]].
The interval unit step sequence can be represented by the

interval impulse as ui[n] =
∑∞

k=0 δi[n − k].
Two important sequence classes in real signal processing

and the analysis of linear time-invariant discrete-time systems

are exponential and sinusoidal sequences. The interval ver-

sion must then be done.

The interval exponential sequences have a general form

X[n] = Aαn, where A and α are intervals. An interval

exponential sequence is positive and decreases when n in-

creases, where A is a positive interval and α ⊂ (0, 1). When

α ⊂ (−1, 0), the sequence alternates in sign but the magnitude

decreases with an increase in n. If |α| > 1, the magnitude

of the sequence increases with n. The scope of this work is

not sufficiently large to perform a more detailed analysis of

interval sequence convergence.

An illustration of an exponential interval where A is positive

and α ⊂ (0, 1) is shown in Figure 4.

An interval sinusoidal sequence can be defined as

X[n] = A cos(ω0n + φ) for all n, or (1)

X[n] = A sin(ω0n + φ) for all n, (2)

Figure 2 shows an example of equation (2) where A =
[0.5, 1], ω0 = π

32 , φ = 0 and −31 ≤ n ≤ 32.

When the exponential interval sequence has A and α
complex A and α can be rewritten as |A|ejφ and |α|ejω0 ,

respectively. So equation 1can be rewritten as

X[n] = Aαn

= |A|ejφ|α|ejω0n

= |A||α|nej(ω0n+φ)

= |A||α|n cos(ω0n + φ) + j|A||α|n sin(ω0n + φ).
(3)

When α = 1 in equation 3 the result is a complex

exponential sequence as shown below.

X[n] = |A|ej(ω0n+φ)

= |A| cos(ω0n + φ) + |A| sin(ω0n + φ).
(4)

This paper does not explore the full interval complex

sequence version because it is too complex for the scope of this

article. This will be investigated in another study concerning

Interval Complex Variables.

It is easy to see that when |A| = [min{|a| : a ∈
A}, max{|a| : a ∈ A}], the equation (4) can be written

by the sum of equations (1) and (2). As a result, a type

of complex interval exponential sequence can be constructed.

This is peculiar to a general complex interval sequence, where

only the magnitude is interval. This sequence can be used to

represent the particular systems that have uncertainty only in

magnitude, not in phase. The reader can find more detailed

interval complex theory studies in the following articles [2],

[1], [4], [5], [7]. Boche pointed out the incompatibility of

the polar form of interval complex representation and its

rectangular form of representation[2]; this is still an open

question.

Let X : Z −→ IR be a semi-interval sequence, with a and

b the first and the last term respectively. The interval sum of

all X[n] from X[a] to X[b] is defined by

b
∑

i=a

X[i] =

[

b
∑

i=a

X[i],
b

∑

i=a

X[i]

]

. (5)

An extension of equation (5) for undefined terms can be

written as

+∞
∑

i=−∞
X[i] =

[

+∞
∑

i=−∞
X[i],

+∞
∑

i=−∞
X[i]

]

. (6)

Theorem 1: Let C be an interval constant. Then

C
∑b

i=a X[i] ⊆ ∑b
i=a CX[i].

Proof: A generalization of distributive property Due to

pseudo-distributivity, interval linear systems can be applied

only in positive systems or negative systems, because for

systems in sets IR+ or IR− the ⊆ of therem 1can be replaced

by =.

Theorem 2: Let X1[n] and X2[n] semi-interval sequences.

Then

b
∑

i=a

(X1[i] + X2[i]) =
b

∑

i=a

X1[i] +
b

∑

i=a

X2[i].
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Proof:

b
∑

i=a

(X1[i] + X2[i]) =

=

[

b
∑

i=a

(X1[i] + X2[i]),
b

∑

i=a

(X1[i] + X2[i])

]

=

[

b
∑

i=a

(X1[i] + X2[i]),
b

∑

i=a

(X1[i] + X2[i])

]

=

[

b
∑

i=a

X1[i],
b

∑

i=a

X1[i]

]

+

[

b
∑

i=a

X2[i],
b

∑

i=a

X2[i]

]

=

b
∑

i=a

X1[i] +

b
∑

i=a

X2[i].

III. BASIC PROPERTIES OF DISCRETE INTERVAL SYSTEMS

In this section the properties of discrete real systems are ex-

tended to discrete interval systems. A discrete interval system

L is a memoryless system if Y [n] depends only on its inputs

X[n] or on x[n] (in the semi-interval case). An interval system

is time-invariant when a variation in the time of the input

sequence causes the same variation in the time of the output

sequence, i.e. if X1(n) = X(n− n0) ⇒ Y1(n) = Y (n− n0).
An interval system L is additive if the response of the

addition of an input sequence is the addition of the respective

response to individual inputs. Mathematically: L(X1 +X2) =
L(X1) + L(X2).

An interval system is homogeneous if the output of the

system for an input times an interval constant is always

equal to this constant times the output of the system for the

respective input. Mathematically: L(CX) = CL(X). This is

not a general property in interval linear systems. It occurs only

in specific cases.

An interval system L is linear if for all interval sequences

X[n], X1(n) and X2(n) are interval constants A, L{X[n]},

L{X1(n)} and L{X2(n)} are interval sequences,

L{X1(n) + X2(n)} = L{X1(n)} + L{X2(n)} (7)

and

L{AX[n]} = AL{X[n]}. (8)

Equations (7) and (8) are called properties of additivity and ho-

mogeneity respectively and can be combined to form the over-

lapping principle:L{AX1(n) + BX2(n)} = AL{X1(n)} +
BL{X2(n)}.

An analysis of the existence condition of interval linear

systems will not be explored in this work, but a thorough

discussion of this subject can be found in [3], [10].

Proposition 2: Let L be an interval system. If L is homoge-

neous, then K ∈ IR such that for each X ∈ IR, L[X] = KX .

Proof: Let K = L[[1, 1]] then, by the homogeneity of

L, L[X] = L[X[1, 1]] = XL[[1, 1]] = KX . The impulse

response of a discrete interval linear system L denoted by H
is:

H[n] = L[δi[n]]. (9)

Theorem 3: If L : R → IR is a discrete semi-interval linear

system, then
∑b

i=a L[i] = L
[

∑b
i=a i

]

.

Proof: If L is a discrete semi-interval linear system, then

there is an interval K for each real x, such that L[x] = Kx.

Therefore,

b
∑

i=a

L[x] =
b

∑

i=a

Kx = K
b

∑

i=a

x = L

[

b
∑

i=a

x

]

.

Theorem 4: Let L be an interval time-invariant linear sys-

tem, X[n] a discrete interval signal represented by a semi-

interval sequence, H[n] the impulse response of L and Y [n]
the output of the system. Then Y [n] =

∑∞
i=−∞ X[i]H[n− i].

Proof: For the interval system

Y [n] = L[X[n]]

X[n] can be rewritten as an infinite sum of impulse responses

and, therefore,

Y [n] = L
(
∑∞

i=−∞ X[i]δi[n − i]
)

=
∑∞

i=−∞ L[X[i]δi[n − i]] ( linearity of L )

=
∑∞

i=−∞ X[i]L[δi[n − i]] ( by the equation (9))

=
∑∞

i=−∞ X[i]H[n − i].

The causality notion is basic for signal processing in R or C.

The interval extension of this property is trivial. An interval

system is causal if for all values n0 of the output sequence

value at index n = n0, it depends only on the input sequence

values for n ≤ n0.

An interval system is stable, (bounded-input bounded-

output BIBO), if for each limited input a limited output is

produced. The input X[n] is limited if there is a fixed positive

real value bX such that:∀ n, |X[n]| ≤ bX < ∞. An output

Y [n] is bounded if for each limited input there is a real positive

fixed value, bY , such that: ∀n, |Y [n]| ≤ bY < ∞.

A. Convolution

Convolution is the most important operation of digital signal

processing. It is a linear system. If a linear system is fully

specified by impulse response then it satisfies all mathematical

convolution conditions. It can also be used for average move

filter implementation. The concept of convolution is strongly

correlated with the concept of mobile average. The output of

a linear system can be given by the convolution of input with

the impulse response of the system. In statistics, the density

function of the probability of the sum of two independent

variables X and Y is given by the convolution of the respective

probability density function. In the multiplication of polynomi-

als, the coefficients of the product is given by the convolution

of the coefficients of input polynomials.

B. Interval Convolution

Let L be a discrete time-invariant interval linear system

and H[n] its impulse response. The interval convolution of

a discrete signal is defined by the infinite sum of H[n] times

the sequence of interval inputs X[n]. Formally,

X[n] ∗ H[n] =
+∞
∑

i=−∞
X[i]H[n − i]. (10)
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In the following lines two properties of interval convolution

are presented.

Proposition 3 (commutative): The interval convolution is

commutative, that is, H[n] ∗ X[n] = X[n] ∗ H[n].
Proof: Given that H and X are discrete interval time-

invariant systems and owing to the commutative property of

the interval product, we have

X[n] ∗ H[n] =
∑+∞

i=−∞ X[i]H[n − i]

=
∑+∞

i=−∞ H[n − i]X[i].

=
∑+∞

i=−∞ H[v]X[n − v]
= H[n] ∗ X[n].

In this property the order of the signal is not important. Thus,

a cascade system can be used.

Proposition 4 (Associative): The semi-interval convolution

is associative, i.e.

[X[n] ∗ H[n]] ∗ G[n] = X[n] ∗ [H[n] ∗ G[n]].

Proof: Let W [n] = X[n]∗H[n] and Z[n] = H[n]∗G[n].
Then,

[X[n] ∗ H[n]] ∗ G[n] = W [n] ∗ G[n]

=
∑+∞

i=−∞ W [i]G[n − i]
(by the equation (10))

W [i] =
∑+∞

v=−∞ X[v]H[i − v]
( by the equation (10))

So,
∑+∞

i=−∞ W [i]G[n − i] =

=
∑+∞

i=−∞

[

∑+∞
v=−∞ X[v]H[i − v]

]

G[n − i]

=
∑+∞

i=−∞
∑+∞

v=−∞ X[v]H[i − v]G[n − i]

Changing the variable and putting u = i − v, we have
∑+∞

i=−∞
∑+∞

v=−∞ X[v]H[i − v]G[n − i] =

=
∑+∞

u=−∞
∑+∞

v=−∞ X[v]H[u]G[[n − v] − u]

=
∑+∞

v=−∞
∑+∞

u=−∞ X[v]H[u]G[[n − v] − u]

=
∑+∞

v=−∞ X[v]
∑+∞

u=−∞ H[u]G[[n − v] − u],
( by the theorem 1),

Z[n − v] =
∑+∞

u=−∞ H[u]G[[n − v] − u]
( by the equation (10)).

So,
∑+∞

v=−∞ X[v]
∑+∞

u=−∞ H[u]G[[t − v] − u] =

=
∑+∞

v=−∞ X[v]
[

∑+∞
u=−∞ H[u]G[[t − v] − u]

]

=
∑+∞

v=−∞ X[v]Z[t − v]
= X[n] ∗ Z[t]
= X[n] ∗ [H[t] ∗ G[t]].

The associative and distributive properties provide the parallel

implementation of systems.

IV. CONCLUSION

The interval approach was confirmed as being almost in-

tuitive, because all discrete systems that represent continuous

systems can contain errors. These errors can not be only of

data reading, but also of float point arithmetic, or inherent to

the variance of the system. In this paper, several basic prop-

erties of digital signal processing in its interval version were

presented as well as the discrete interval convolution. However,

it should be pointed out that only discrete time-invariant linear

systems were investigated. With the mathematical foundation

for the discrete interval linear system described in this work,

several signal processing tools can be defined, such as discrete

interval filters and the analysis of system stability. This paper

can provide the designers of digital signal processing with

another way of dealing with the uncertainty of digital systems.

In future articles, the authors will investigate the complex

version. But first, a study proposing equivalence between the

polar form of interval complex numbers and their rectangular

form will be carried out as well as work on the Z transform

interval version.
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