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Abstract: Fuzzy segmentation is an effective way of segmenting out objects in pictures containing both random noise and shading. This
is illustrated both on mathematically created pictures and on some obtained from medical imaging. A theory of fuzzy segmentation is
presented. To perform fuzzy segmentation, a ‘connectedness map’ needs to be produced. It is demonstrated that greedy algorithms for
creating such a connectedness map are faster than the previously used dynamic programming technique. Once the connectedness map is
created, segmentation is completed by a simple thresholding of the connectedness map. This approach is efficacious in instances where

simple thresholding of the original picture fails.

Keywords: Dynamic programming; Fuzzy pattern recognition; Greedy algorithms; Medical imaging, Segmentation; Thresholding

1. INTRODUCTION AND OUTLINE

Segmentation is the process of recognising an object of
interest in a picture. Thresholding is not an appropriate
method of segmentation if there is some nonuniform shading
in the picture, or if what distinguishes the object of interest
is not the exact values assigned to the individual pixels,
but rather some textural property. In such cases, one can
usefully apply fuzzy segmentation.

We call a sequence of pixels in which consecutive pixels
are adjacent a chain, and a pair of adjacent pixels a link. In
fuzzy segmentation, the strength of any link is automatically
defined based on statistical properties of the links within
regions identified by the user as belonging to the object of
interest. The strength of a chain is the strength of its
weakest link. The fuzzy connectedness between any pair of
pixels is the strength of the strongest chain between them.
The fuzzy object containing a given pixel at a particular
threshold is the set of all those pixels whose fuzzy connec-
tedness to the given one exceeds or equals the threshold.

A potentially time-consuming step in fuzzy segmentation
is the calculation of the fuzzy connectedness of all other
pixels to the given one. Previously, this was done by a
dynamic programming technique. We investigate the useful-
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ness of replacing this by either of two greedy algorithms
that have asymptotically better worst-case running times.
We experimentally demonstrate that, even on quite small
pictures, the greedy algorithms are many times faster than
the dynamic programming technique.

2. THE THEORY OF FUzzyY
SEGMENTATION

The idea of fuzzy connectedness goes back to the seminal
work of Rosenfeld [1]. Our approach is based on that
advocated by Udupa and Samarasekera [2], but generalised
to arbitrary digital spaces [3].

A digital space is a pair (V,7), where V is a set and 7
is a symmetric binary relation on V such that V is connected
under 7. We can obtain a digital space, for example, as
follows. Let us consider a tessellation of the plane into
identical regular hexagons. We select V as the set of all
such hexagons whose centres lie within a much larger closed
regular hexagon, and we say that two hexagons in V are in
the relation r if, and only if, they are distinct and share
an edge. In this case V is finite, as it is likely to be in
most practical applications. We refer to elements of V as
spels (short for ‘spatial elements’), and we call two spels
which are in the relation 7 to each other proto-adjacent.
We observe that for a finite V, (V,7) can be interpreted as
a connected graph [4], with V as the set of nodes and
as the set of arcs.  We define a real-valued picture over the
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digital space (V,m) as a triple (V,m,f), where f is a function
which maps V into the real numbers R. Binary pictures are
real-valued pictures in which the range of f is the two-
element set {0,1}. One way of identifying an object of
interest in a real-valued picture is to produce from it a
binary picture (over the same digital space), in which the
spels of value 1 are exactly the spels that are contained in
the object of interest. This is referred to as segmentation.
A commonly used method of segmentation is thresholding.
For any teR, the t-level set of the real-valued picture (V,,f)
is defined as the set of spels {c[f(c)=t}. Each such t give rise
to a threshold picture, which is the binary picture (V,,f) with

1, iff(e) =t
MO=0" iff(c) <t @

(The selection of the threshold t may be based on principles
of fuzzy pattern recognition; see, for example, Pal and
Majunder [5, Section 4.5.6]. This is not what refer to in
this paper as ‘fuzzy segmentation’. In our terminology, the
process of turning a real-valued picture into a binary picture
according to Eq. (1) is called thresholding, irrespective of
how the value of the threshold is selected.)

Thresholding is very often not an appropriate method of
segmentation. Examples of this are if there is some nonuni-
form ‘shading’ in the picture (i.e. the interesting information
is superimposed on a background whose darkness slowly
varies, as is often the case in many physically obtained
digital pictures), and if what distinguishes the object of
interest is not the exact values assigned to the individual
spels but rather some textural property. We illustrate below
that in these cases thresholding fails to provide satisfactory
segmentation, but an alternative approach, called fuzzy seg-
mentation, produces better results.

A fuzzy spel affinity on a digital space (V,) is a function
¢ 1 V2 —[0,1] (i.e. a function which assigns to each ordered
pair of spels a real value not less than 0 and not greater
than 1), such that

(i) forallc eV, () =1, and
(i) for all ¢, d e V, y(c,d) = y(dc).

The intuitive idea is that the value of the fuzzy spel affinity
indicates how close the relationship is (in some sense rel-
evant to the purpose of segmentation) between the spels in
question. In other words, it indicates our degree of confi-
dence that after segmentation the two spels should belong
to the same class (e.g. they should either both be identified
as bone or both be identified as not bone), with the value
1 indicating absolute certainty. The kinds of things that
might be considered in defining a fuzzy spel affinity include
the nearness of the spels to each other, the similarity of
the values assigned to them in the real-valued picture that
is to be segmented, and the similarity of the variances of
these assigned values in the immediate neighborhoods of the
two spels. For the definition to be useful for segmentation in
a specific application, it will usually have to take into
consideration the overall purpose of performing the segmen-
tation. We will return to this point below and will give
specific examples.

The definition of a fuzzy spel affinity is, intentionally,
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quite general. In particular, there is no requirement of
transitivity: it frequently happens that spels ¢ and d have a
high fuzzy spel affinity, d and e have a high fuzzy spel
affinity, and yet ¢ and e have a low fuzzy spel affinity. For
this reason we do not expect a fuzzy spel affinity, by itself,
to be immediately useful for segmentation. (It cannot be
that both ¢ and d are identified with the same type of tissue
and d and e are identified with the same type of tissue, and
yet ¢ and e are identified with different types of tissue.) To
do segmentation, we first associate with the fuzzy spel affinity
 a fuzzy connectedness function w,: V* — [0,1], defined by

ny(c,d) = max
,,,,, Ky oKL
c(0)=c, =g

min  Y(c® D cW) 2

1=k=K
Clearly, 0 = y(c,d) = p,(c,d) = 1 (the second inequality
follows from the choice (c,d) for the sequence from ¢ to d)
and so, in particular, n,(c,d) =1 if ¢ = d. (In the terminology
of the fuzzy pattern recognition literature [5,6] w,(c,d) is
the grade of membership of (c,d) in the fuzzy set of ‘connected
pairs of spels’.)

It is worthwhile to give an intuitive discussion of this
last definition. We call an arbitrary sequence (¢©, ..., ¢®)
of spels, a chain from ¢© to c®. We think of each pair of
consecutive elements (¢, ¢®) as a link in the chain and
of Y(c®D, c®) as the strength of the link. The strength of
the chain (¢©@, ..., ¢c®) is defined in Eq. (2) to be the
strength of its weakest link, i.e. the minimum of (c*=b,
¢®) over 1 = k = K. Then the fuzzy connectedness of the
pair of spels (c,d) is the strength of the strongest chain from
c to d. The use of this concept in segmentation depends
on the following quite general result. (The proofs of the
theorems in this section can be found in Section 5.2 of
Herman [3] and will not be reproduced here.)

Theorem 1. For any fuzzy spel affinity ¢ on a digital space
and for 0 = t = 1, the binary relation K,, on V defined by

(Cvd) € Klll.t Aad I‘Ll[l(cld) = t (3)

is an equivalence relation.

This theorem says that any fuzzy spel affinity and any
threshold t partitions the set of spels into equivalence classes.
If the threshold is low, then the equivalence classes will
tend to be large. In particular, t = 0 results in V being the
only equivalence class. Generally speaking, as the threshold
increases, so will the number of equivalence classes, and the
individual equivalence classes will tend to be smaller. If the
fuzzy spel affinity is strictly less than 1 for any two distinct
spels, then t=1 will result in each equivalence class being
a singleton set. The equivalence classes of K, are referred
to as yt-objects or, in general, as fuzzy objects. These objects
have some very desirable properties which we now indicate
without a precise definition of our terminology. (For the
corresponding mathematically precise statements, see Section
5.2 of Herman [3].) First, a fuzzy object is always connected.
Secondly, the boundary between a fuzzy object and a con-
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nected subset of its complement is always ‘Jordan’, in the
sense that it is always the boundary between its ‘interior’
(a connected set containing the fuzzy object) and its
‘exterior’ (a connected set containing the connected subset
of the complement), which partition V, are such that every
path from one to the other crosses the boundary.

In practice, we are probably not interested in all the fuzzy
objects that arise from a particular choice of fuzzy spel
affinity. We are more likely to be concerned with a particular
spel and ask which other spels belong to the same fuzzy
object as the given one. For example, let us assume that
we have found a fuzzy spel affinity appropriate for segmenting
bone in Computed Tomography (CT) images. To use this,
we may just wish to point at a particular displayed spel
which we are pretty sure is bone-containing (probably
because of its lightness), and then ask which other spels in
the three-dimensional array belong to the same piece of
bone. This is where the ‘fuzziness’ of the fuzzy segmentation
comes into play: the fuzzy object containing the given spel
is not uniquely determined by the fuzzy spel affinity (as we
decrease the threshold, the same spel is a member of a fuzzy
object of increasing size). This reflects the typical state of
knowledge in a practical application. From our data alone,
it is usually impossible to say with absolute certainty which
spels belong to the same object as the selected spel. The
larger thresholds give us smaller fuzzy objects, but also greater
confidence that we are including few spels which in reality
would not be judged to be in the same object. We
formalise the intuitive discussion of the previous paragraph
as follows. For any fuzzy spel affinity on a digital space
(V,m) and any spel o, we define the connectedness map for
o as the real-valued picture (V,m,f), where f(c) = u,(0,C).
The usefulness of this concept is reflected in the following
theorem.

Theorem 2. Let ¢ be a fuzzy spel affinity on a digital space
(V,m) and t be a real number, 0 =t = 1:

(i) The yt-object that contains a spel o is exactly the
t-level set of the connectedness map for o.

(ii) If c is in the t-level set of the connectedness map
for o, then the t-level set of the connectedness map
for ¢ is the same as the t-level set of the connec-
tedness map for o.

We can restate this result as follows. First, we can find
all fuzzy objects that contain a given spel by generating the
connectedness map for that spel and then thresholding this
map at various levels. Secondly, this procedure is robust: if,
instead of finding the connectedness map for o and thres-
holding at t to get a fuzzy object, we find the connectedness
map for any other element of this fuzzy object and threshold
that at t, then we end up with exactly the same fuzzy
object. In view of this, it is desirable to find an efficient
algorithm which, given a fuzzy spel affinity ¢ on a digital
space (V,m) with a finite V and an o € V, finds the connec-
tedness map for o.
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3. ALGORITHMS FOR FINDING
CONNECTEDNESS MAPS

From now on we assume that V is finite, and that y(c,d)
=0 if c and d are distinct but not proto-adjacent spels. The
first assumption is necessary for our algorithms to terminate.
The second assumption allows us to simplify the description
of our algorithms, but most of what follows would be true
even without it.

The design strategy that has been adopted in the literature
on fuzzy segmentation [2,3,7] in answer to the need stated
at the end of the last section is based on the principle of
Dynamic Programming [8]. Specifically, the following Dynamic
Program for Fuzzy Objects has been used.

Dynamic Program for Fuzzy Objects
Auxiliary Data Structures: a spel queue O, and
a real-valued array f with one
element f(c) for each spel c.

1. Initialisation:
(a) Put o into O.
(b) Set f(o) = 1, and set f(c) = 0 if ¢ # o.

2. Remove an element d from O. For each spel c¢ that is
proto-adjacent to d, do the following:

a Set v = min{f(d),y(c,d)}.
b If v > f(c), then
e Put ¢ into O.
e Set f(c) = v.
3. Check if O is empty.
If it is, STOP.
If it is not, go back to step (2).

The rationale for step 2(b) is that if v > f(c) then we
have discovered a chain from o to c that is stronger than
any previously discovered chain from o to c; we put ¢ in O
so that extensions of the newly discovered chain will be
considered. Essentially, the same algorithm is implemented
in the software system 3DVIEWNIX [9]; the algorithm has
successfully segmented a wide variety of medical images [2,
7,10]. It has been found to be an efficacious, robust and
acceptably efficient technique, which can provide high qual-
ity segmented pictures in spite of the presence of shading
and noise; practitioners seem to be quite satisfied with its
performance. Nevertheless, it occurred to us that there is a
possibility of replacing this algorithm by one which is sig-
nificantly more efficient.

One possibility of improvement is offered by the use
of so-called greedy algorithms [8]. In particular, the earlier
observation that a digital space with a finite V is essentially
a connected graph suggests that some known-to-be efficient
graph algorithms may well be applicable here. Observing
further that we may consider the cost of the arc (c,d) to
be 1 — (c,d), we see that there is a possibility of adapting
algorithms which find paths of lowest cost to our problem.

One such algorithm which is particular near in its descrip-
tion to the Dynamic Program for Fuzzy Objects is Dijkstra’s
algorithm [8]. To obtain a version of this algorithm that
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solves our problem we need to make only two changes to
the Dynamic Program for Fuzzy Objects: make O a set
rather than a queue, and replace the first sentence of step
(2) by ‘Remove an element d from O for which f(d) is
maximal’. (Since O is now a set, in step 2(b), if ¢ is already
in O, then ‘put ¢ into O’ is an empty action; but we still
need to update f(c).) An important effect of these changes
is that spels which have been removed from O are never
put into O again. As opposed to this, the Dynamic Program
for Fuzzy Objects may find a stronger chain to d after d has
been removed from O (once or repeatedly), in which case
subchains starting from d have to be reinvestigated. This is
the reason why Dijkstra’s algorithm has the potential of
being faster than the Dynamic Program for Fuzzy Objects.
However, there is a price to be paid: each time we execute
step (2) we must find an element d in O for which f(d)
is maximal.

In most applications, the number of spels proto-adjacent
to a given spel is bounded by a small integer (six, in the case
of the above example with hexagonal spels). As described by
Cormen et al [8, p.530], in such a case one can use a
binary heap implementation of O to achieve an O(|V|lg|V|)
running time. We have been able to prove that even in
such cases the worst-case running time of the Dynamic
Program for Fuzzy Objects is ©(|V|?). More importantly from
the point of view of practical applications, we demonstrate
below that Dijkstra’s algorithm performs much faster even
on pictures of quite limited size.

Another greedy algorithm that we have investigated is
Prim’s algorithm [8] for finding a minimal spanning tree. This
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is because it can be shown that, if we consider the cost of
each arc (c,d) to be 1 — ¢(c,d), then in any minimal
spanning tree the unique path between any two spels is a
chain of maximal strength. The performance of this algor-
ithm was found to be very similar to that of Dijkstra’s algor-
ithm.

4. APPLICATION TO SEGMENTATION

One of the beauties of fuzzy segmentation is that in many
applications an appropriate fuzzy spel affinity can be auto-
matically created by a computer program, based on some
minimal information supplied by a user. It is easiest to
demonstrate this with an example.

Figure 1(a) is a real-valued picture defined for a V con-
sisting of regular hexagons which are inside a large hexagon
(with 60 spels on each side). The rectangular region in the
upper half in which the brightness increases slowly from
left to right cannot be segmented by thresholding; no choice
of threshold would produce a much better result than the
binary picture in Fig. 1(b). (We chose to use hexagonal
spels partly because the previous papers reporting on fuzzy
segmentation [2,7,10] illustrated its use only on pictures with
square spels, and we wished to demonstrate the generality of
the underlying concepts by choosing spels of a different
shape. However, there are actually many reasons to prefer
hexagonal spels to square spels; see Herman [3, Chapter 2]
for a general discussion, and Preston [11] for why such spels
are advantageous in pattern analysis).

{bap

{dk

Fig. 1. Example of fuzzy segmentation. (a) A real-valued picture, (b) a binary picture obtained by thresholding, (c) a connectedness map,

(d) a binary picture obtained by fuzzy segmentation.
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The automation of finding an appropriate fuzzy affinity
function for segmentation of such pictures depends upon
the following observation: even though a user may not be
able to describe the precise nature of the difference between
the region of interest and its background in Fig. 1(a), it is
easy to identify some spels which are definitely in that
region. We can compute some statistics of the spels that
are identified, and then the fuzzy spel affinity can be auto-
matically defined on the basis of such information.

To demonstrate this on our example, let us assume (as is
the case here and as is also the case in many applications)
that the important distinguishing characteristics of regions
have to do with the real values assigned to spels in them
and also with the likely differences of these values between
adjacent spels. Given a real-valued picture (V,,f) we select
the fuzzy spel affinity ¢ such that, for ¢ # d,

P(cd) = 4
0, if (cd) ¢ o
H0.(f(©) +1(d)) + go(|f(c)—F(d)|], otherwise
where, for i e {1,2},
c—m?
5 =e" 22 (5)

It is easy to check that this ¢ is indeed a fuzzy spel affinity
on (V,m). Appropriate values of the m; and o; can be
obtained as follows. The user identifies some regions in the
real-valued picture which definitely lie in the object that
should be segmented out from its background (such as
regions containing only heart muscle in a CT image). Then
m, and o, can be defined to be the mean and standard
deviation, respectively, of f(c) + f(d) over all protoadjacent
spels ¢ and d in the identified regions and m, and o, can
be defined to be the mean and standard deviation, respect-
ively, of [f(c) — f(d)| over all proto-adjacent spels ¢ and d
in the identified regions. This implies that for any pair of
proto-adjacent spels ¢ and d, their fuzzy spel affinity will be
large if both f(c) + f(d) and |f(c) — f(d)| have values that
are typical of the identified regions and will be low if
neither f(c) + f(d) nor |f(c) — f(d)| has a value typical of
the identified regions. In the programs which produced
Fig. 1, the regions were defined to consist of a hexagonally-
shaped spel selected by the user and the six spels adjacent
to it. The user was asked to select two such spels, providing
us with a total of 24 pairs of proto-adjacent spels in the
identified regions (of seven spels each) to calculate the m;
and o;. (This is, of course, only one of many reasonable
choices of fuzzy spel affinity; for alternatives, see the ideas
presented by Pal and Majunder [5] and Kandel [6].

Figure 1(c) is the connectedness map produced by Dijk-
stra’s algorithm when the two spels provided by the user
were near the two ends the rectangular region in the upper
half. The brightest spel is the o of the algorithm, which is
also one of the two spels identified by the user. Figure 1(d)
is obtained by thresholding the connectedness map. It is a
fuzzy object that is a much better approximation of the
rectangular region than can be obtained by thresholding the
original real-valued picture, irrespective of the technique
used for selecting the threshold.
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Results such as the one shown in Fig.1 and successful
application of the approach to medical data [2,7,10] in
cases where other segmentation approaches seemed to be
inappropriate have convinced some practitioners of the value
of fuzzy segmentation. Unfortunately, there is no publication
reporting on a careful evaluation of fuzzy segmentation as
compared to other methods of segmentation. The aim of
the current paper is not to fill this gap; rather, we also
assume that fuzzy segmentation is worth doing (further
examples of its usefulness are presented in the next section)
and concentrate on the problem of speeding up the process
by choosing an appropriate search strategy for producing the
connectedness map. We note that once the connectedness
map has been obtained, the cost of fuzzy segmentation is
the same as that of thresholding.

5. EXPERIMENTAL COMPARISON

In our experimental comparison we used five basic images,
each digitized four diffeent ways. One of the basic images
is illustrated in Fig. 1(a); the other four are shown in Fig. 2.
(These were created to provide us with a variety of images
of different natures so that the timing experiments reported
in this section become indicative of the expected behavior
of our algorithms on images in general.) In Figs 1 and 2
the images are digitized so that there are 60 hexagonal spels
on each edge; in the other digitisations the numbers of
hexagonal spels on each edge were 30, 40 and 50. On each
of the 20 pictures each of the algorithms was run 49 times
using all possible pairs of spels from a regular sampling of
the picture. In Table 1 we report on the timings. Since the
major influence on the running time of each algorithm was
the number of spels, the numbers for each algorithm in
Table 1 are the sums of the CPU times of 245 runs (49
runs on each of the five images which are digitised in the
same way). Since all algorithms find the same connectedness
maps, there is no difference in the quality of segmentations
obtained by them; this is why they are compared only
in terms of their CPU time requirements. (The memory
requirements of the Dijkstra’s and Prim’s algorithms are
essentially identical and are never much greater than that
of the Dynamic Program for Fuzzy Objects.)

We see from the table that for our test images there
is no significant difference between Dijkstra’s and Prim’s
algorithms, but they are both several times more efficient
than the Dynamic Program for Fuzzy Objects. We also see
that the superiority of Dijkstra’s and Prim’s algorithms
increases with the number of spels, but not as quickly as
the theoretical worst-case running times might suggest. (If
we used an affinity function that was less expensive to
compute, then the superiority of Dijkstra’s and Prim’s algor-
ithms probably would not be as great.) Since in many
applications [2,7,10] the number of spels can be in the order
of millions, we expect the running time to be reduced by
more than an order of magnitude when either of the greedy
algorithms is used instead of the Dynamic Program for
Fuzzy Objects.

We illustrate in Figs 3 and 4 the performance of fuzzy
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{1l

Fig. 2. Four real-valued pictures used in the experimental study.

Table 1. Total CPU time in seconds (measured on a SUN
SPARCstation20 workstation) of the algorithms on five
images (digitized so that the number of spels is as indicated
in the left column) with 49 runs on each picture (DP:
Dynamic Program for Fuzzy Objects, DA: Dijkstra’s algorithm,
PA: Prim’s algorithm). Each time is for 245 runs

W DP DA PA DP/DA
2,611 247 37 36 6.7
4,681 472 67 65 7.0
7,351 837 110 107 76

10,621 1,350 164 163 8.2

segmentation on images obtained by Magnetic Resonance
Imaging (MRI). We see that both the whole brain and just
the white matter can be segmented out more efficaciously
by fuzzy segmentation than by thresholding. The timings of
the algorithms on these images are similar to those reported
in Table 1.

6. DISCUSSION

The examples above, together with those given earlier
[2,7,10], show that fuzzy segmentation is an effective
approach. Nevertheless, it is not universally applicable. For

example, if the region of interest is separated from another
region of similar characteristics by a narrow wall, then noise
in the image may cause a break in this wall and make the
two regions ‘leak’ into each other. This is illustrated in the
attempt to segment out a cardiac left ventricle in an MRI
image in Jones and Metaxas [12]. Nevertheless, it is also
shown there that a correct segmentation can be achieved
when a ‘deformable model’ is combined with the fuzzy
affinity concepts. In the rest of this discussion, we concen-
trate on the relative capabilities of the various algorithms.

An advantage of Prim’s algorithm over the other two is
that once a minimal spanning tree is found, it can be used
to calculate the fuzzy connectedness between an arbitrary
pair of spels at very little cost. However, since regions other
than the one which is our current interest should be defined
by their own spel affinities, this observation may be of
limited practical use. It may be applicable when there are
two or more objects with the same characteristics in the
data set (such as the two Kkidneys). Then the minimal
spanning tree can be used to inexpensively recalculate the
connectedness maps with respect to a spel in each of
the objects.

A simple alteration of any of the algorithms allows us to
recover, for any spel ¢, a chain of maximal strength from c
to 0. This can have useful applications: it can be used to
find a path entirely within a region between two user-
selected spels in that region (see Fig. 5).

Typically, there will be many strongest chains between
any two specified spels. It may be desirable in this case to
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(a} {bh

{d}

Lch

Fig. 3. Example of fuzzy segmentation on a coronal head section obtained from an MRI scan of a patient. (a) The real-valued picture (10,621
spels), (b) a binary picture obtained by thresholding which attempts to identify the brain, (c) a connectedness map obtained by specifying
two spels in the brain, (d) a binary picture of the brain region obtained by fuzzy segmentation.

LER

ich
Fig. 4. Example of fuzzy segmentation on a transverse head section obtained from an MRI scan of a patient. (a) The real-valued picture
(10,621 spels), (b) a binary picture obtained by thresholding which attempts to segment the white matter (values below the threshold are

displayed as white in this picture), (c) a connectedness map obtained by specifying two spels in the white matter region, (d) a binary picture
of the white matter region obtained by fuzzy segmentation.
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Fig. 5. The user points at two hexagonal spels of the real-valued
picture. Based on these, a fuzzy spel affinity is calculated as explained
in the text. In both images, the indicated chain is a strongest
possible chain (for the calculated fuzzy spel affinity) between the
two user-selected spels (it has been generated using a version of
Dijkstra’s algorithms that also tries to optimize with respect to a
secondary criterion, as explained in the text).

select one among these which is optimal with respect to
some secondary criterion. For example, we might try to find
(among the strongest chains) a chain for which the product
of the strengths of the links is as large as possible. (Note
that if all the links between proto-adjacent spels have the
same strength and this common strength is less than 1, this
secondary criterion aims for the shortest path.) We do not
have an efficient algorithm which is guaranteed to find such
a chain, but both the Dynamic Program for Fuzzy Objects
and Dijkstra’s algorithm can easily be adapted to find an
approximation to it. We just keep a record, for each spel ¢
that has been visited, of the product of the strengths of
links for the chain from o to ¢ that is ‘best so far’, and we
modify step (2) so that when v =f(c) it puts ¢ into O if
the new chain to ¢ has a higher link—strength product than
the previously best chain to c. (In the case of Dijkstra’s
algorithm, the heap representation of O also needs to take
into consideration the secondary criterion.) We have
implemented this option as well; in fact, Fig. 5 was produced
using it. We have found that the cost of both algorithms
goes up, but while for Dijkstra’s algorithm the increase is
only 50%, the Dynamic Program for Fuzzy Objects becomes
three to four times more expensive. Also, the chain output
by Dijkstra’s algorithm will always be at least as good with
respect to the secondary criterion as the chain output by
the Dynamic Program for Fuzzy Objects (but will sometimes
be better).

Finally, we note that if our aim is not to get a fuzzy
segmentation, but only to find the strongest chain between
two given spels ¢ and d, then we need not compute a
connectedness map for the entire image. We can just inter-
leave two instances of Dijkstra’s algorithm which start at ¢
and d, respectively, and stop both instances as soon as the
two connectedness maps meet at any spel. If s is the spel
where the two maps meet, then it is not hard to prove that
a strongest chain from ¢ to d is obtained when we combine
the chains from each of ¢ and d to s that have been found
by the two instances of Dijkstra’s algorithm.

B. M. Carvalho et al
7. CONCLUSION

The two greedy algorithms discussed in this paper are clearly
superior to the currently used Dynamic Program for Fuzzy
Objects in the fuzzy segmentation process.
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