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INTRODUCTION

As it 1s well-known, the shading information in two
or more images of a surface, obtained under differ-
ent illuminations from a single eamera, can be used
for shape estimation in the process known as photo-
metric stereo (PS). In the standard approach to this
process, a set of image irradiance equations of the
form

are solved for the surface-gradient components, p and
q, at each point s = (z, y) in the image plane — where
p and g are given in terms of the surface-height func-
tion, z{z,y), as

= (5)- = (5)

In equation (1), the function R;(p,q) = R(p,q,5:)

(2)

is the reflectance-map function for the i—th illumi-
nation direction S;, and f;(s) is the corresponding
image-intensity function [Horn (1), Woodham (2)].

From the observation of the fact that pairs of
photometric-stereo images viewed under a stereo-
scope produce an impression of depth which can be
almost as striking as that produced by stereoscopic
pairs, we have been led to the study of photometric
stereo as a geometric image-matching process. We
have thus analysed the possibility of extracting shape
information from the optical flow which results from
the change of illumination in PS images.

Two main results have arised from our analysis: we
have found that, 1) under quite general conditions,
the photometric-stereo optical flow (henceforth, PS
flow) can be related to the spatial derivatives of p
and ¢, and can thus be employed for the estimation
of surface curvature; and ii) under the assumption
that a linear approximation to the reflectance map is
appropriate, estimates of the relative-depth function,
z(z, y), can also be obtained from such flow. In what
follows, we discuss these results.
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PS FLOW AND SURFACE CURVATURE

Let us consider a pair of photometric-stereo images,
I1(s) and I,(s), corresponding to the illuminations
51 and S.. If those illumination vectors are not far
apart, and if the imaged surface is smooth, we can
attempt to match the intensities in the two images,
to obtain a disparity field D(s) = (Dx(s), Dy (s)),
for which I(s) & I3(s+ D(s)) at each point s in the
image plane. Employing a Taylor-series expansion on
the right-hand side of the above relation, it is easy to
see that the photometric-disparity field satisfies the
following constraint:
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Al(s)~ Dx(s) 5=+ DY(S)a—y (3)
which is
Al(s)

derivative of the image intensity, and with the dispar-

the standard optical flow equation, with

11{s) — I1(s) playing the role of the time

ity vector playing the role of the flow velocity [Horn
and Schunk (3)].

Instead of dealing with the most general form of the
disparity field, let us here consider the disparities
arising from a match along a fixed direction in the
image planc. For instance, for a match along the
X —direction, equation (3) becomes

I,

ar

-0 [(2) (8- () (3)]

with a similar result obtaining for a match along the

Al(s) =~ Dx(s)

Y —direction:
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If another PS image pair is constdered, e.g., {11, I3},

Al(s) = Dy (

equations similar to (4) and (5) can be obtained for

the X— and Y — matches, involving new disparities,



D’y and DY, the intensity difference AI' = Iy — I3,
and the reflectance map Rz, of the third image. Giv-
en this set of equations, it is straightforward to show
that the derivatives of p and ¢ — which correspond to
surface curvature — can be estimated from the pho-
tometric disparity fields through
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Pz Q=
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of z(z,y) (The z—, y—, p— and g— subscripts denote

where H = is called the Hessian matrix

differentiation with respect to those variables).

From the Hessian and the gradient of the surface
(which can be obtained by the standard PS process),
intrinsic object-centered representations of the cur-
vature can be obtained — given for instance in terms
of the gaussian and mean curvatures. The relation-
ship between the gaussian curvature and the Hessian,
for example, is given by

detH
BT "
and thus the sign of the determinant of the Hes-
sian matrix gives the sign of the gaussian curvature,
therefore allowing the classification of the surface as
elliptic (K > 0), hyperbolic (K < 0), or parabolic
(K = 0) [Besl and Jain (4)].

PS FLOW AND RELATIVE DEPTH

Given an image region corresponding to the mean
surface orientation (po,ga), a linear approximation
to the reflectance-map function can be obtained
through a Taylor-series expansion around (pg,¢o),
and equation (1) can then be rewritten as

Lz, ) = b + 6 (p—po) + £ (g —q0)  (8)

with
kgi) = Ri(po, q0), kﬁ“ = (———6Ri(p’ q)) , and
dp 0
: JR;(p, 4))
£ = (————— 9
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For a smooth surface, this kind of expansion will give
an accurate approximation to the observed intensi-
ties around a given point in the image, provided that
the neighborhood is chosen small enough so that it
contains only a restricted range of (p, ¢) values [Pent-

land (5)].

Under the linear approximation, the left-hand side
of equation (4) becomes

ol
AI(s) & ko-+ki(p—po) + k(g = 0) ¥ Dx 52 (10)
with

ko = ké“ - k[(,Q), ki = k§1) - kgz)‘ and

ky = & — kY (11)

Quite generally, by choosing the appropriate illumi-
nation directions, it is possible to eliminate one of the
factors, k1 or kg, in (10). For instance, for a lamber-
tian surface illuminated from $; = {¢, 7 = «}, and
Sy = {o,7 = 0} (where ¢ and T are the slant and
tilt angles, respectively), it is easy to show that ks is
much smaller than kg and k1, when (po, ¢o) is close to
(0,0). With k; eliminated from (10), we thus obtain

dDx
dz

0
ko +ki(p —po) = o (DxT2) — I» (12)

As a first approximation, noting that the disparity
field varies slowlier than the image intensities, we
can neglect the second term on the right-hand side
of equation (12), which can then be manipulated to
yield

. DPx1 " kipo — ko

2(z,y) = ™ T z+ F(y) (13)

where F(y) is a function only of the y—coordinate,
and where use was made of equation (2). As a partic-
ular instance of (13), for lambertian reflectance and
po=qo =0, we get

Dx 1y
2sing

z(z,y) ™ + F(y) (14)
It is interesting to remark that the first term on the
right-hand side of (14) is exactly the relative depth
estimate that would be obtained from a convergent
stereoscopic system with vergence angle 20, if Dx I

were the stereoscopic disparity.

The foregoing development can be repeated for a pair
of illumination directions such that the p—coefficient
in the linear expansion of AJ becomes negligible,




when compared to the other two (e.g., for lamber-
tian reflectance and (po, go) = (0, 0), with the illumi-
nations S} = {o, 7 = —7r/2} and 5{, ={o,7=7/2}).
In this case, for a match along the Y —direction, we
get

Dy L,

k290 — kg

e, y) ~ 4

y+ G(z) (15)
where primed quantities have been employed to em-
phasize that new illumination directions are being

considered.

From the z(z,y) estimates in (13) and (15), we can
obtain expressions for the unknown functions F(y)
and G{x), up to constant factors. Rewriting relations
(13) and (15), for simplicity, as z(z,y) = Az, y) +
F(y) and z(x.y) = B(x,y) + G(z), it is easy to find,
by equating the two, that

Fly) = %/(B(x,y) — A y)de  (16)
and .
Gla)= 1 [(Aen) = Bty (1)

where the integrations are performed over the image
domain, which has been assunied to be of dimension

Lx L.

Depth estimates can also be obtained which take in-
to account a non-negligible, though small, disparity
gradient in equation (12). For a match along the
X —direction, for instance, a staightforward manipu-

lation yields

sz, y) =
o Dl =7+ k) (K (8D Y
- k’l k] (91‘
LRapo — ko 1—E(1_2.)(—3DX> e+ H(y) (18)
by kr \ow Y

which, for lambertian reflectance and pg = g9 = 0,

becomes
Dx (Is — cosa) 1 /dDx
z 1= =
(=.9) 2sino 2\ Oz +
+H(y) (19)
EXPERIMENTS

Figures 1 and 2 show results of the application
of our approach to the estimation of depth from
photometric-stereo images. In each of the experi-

ments, two pairs of such images have been matched
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through the stochastic algorithm of [Barnard (6],
producing the required photometric-diparity maps.

[n the two figures shown. letters (a) and (b) depict
one of the input image pairs, while Figure 1(c) and
Figure 2(c) represent depth maps which have been
recovered via the approximations (14) and (19), re-
spectively.

REFERENCES

1. Horn B.K.P., 1977, “Understanding Image Inten-
sities”, Artif. Intell., 8(11), 201-231

2. Woodham, R.J., 1980 “Photometric Method for
Determining Surface Orientation from Multiple Im-
ages”, Optical Engineering. 19(1), 139-144

3. Horn B.K.P. and Schunck B.G ., 1981, “Determin-
ing Optical Flow”, Artif. Intell.. 17, 185-203

4. Besl P.J. and Jain R., 1985, “Three-Dimensional
Object Recognition”, Computing Surveys, 17(1), 75-
145

5. Pentland. A.P., 1990 “Linear Shape from Shad-
ing”, Intl. Journal of Computer Vision, 4 153-162

6. Barnard S.T., 1989, “Stochastic Stereo Matching
over Scale”, Intl, Journal of Computer Vision, 3, 17-
32




363

LE. 2 =3
i

Figure 1 : Depth reconstruction from PS disparities - Equation (14)
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Figure 2 ;: Depth reconstruction from PS disparities - Equation (19)



