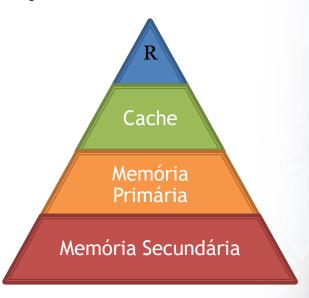
Aula 3 Bytes e Bits

DIM0103 Introdução à Informática

Nessa aula você verá...

- → Unidades de medida
- → Sistema Binário
- → Sistema Hexadecimal
- → Manipulação de dados numéricos
- → Álgebra Booleana

Unidades de medida


- Grandezas comuns na informática
 - Bits/s
 - É a menor unidade de informação que pode ser armazenada ou transmitida em um computador. Um **bit** pode assumir somente 2 valores: 0 ou 1. Também utilizada para mensurar largura de banda de redes de computadores
 - Byte
 - Usado para mensurar quantidade de dados
 - Hertz
 - Usados para mensurar processamento

Mensurando dados

Unidade	Equivalência
Byte	8 bits
Kilobyte (KB)	1024 bytes
Megabyte (MB)	1024 kilobytes
Gigabyte (GB)	1024 megabytes
Terabyte (TB)	1024 gigabytes
Petabyte (PB)	1024 terabytes
Exabyte (EB)	1024 petabytes
Zettabyte (ZB)	1024 exabytes
Yottabyte (YB)	1024 zettabytes

Mensurando dados

- → Registradores (x86 32 bits)
 - 8 registradores de 32 bits
- → Registradores (x64 64 bits)
 - 8 registradores de 64 bits
- Memória Cache
 - 4MB, 8MB, 12MB
- → Memória RAM
 - 1GB, 2GB, 4GB, 8GB
- → Disco rígido (HD)
 - 500GB, 1TB...

Vantagens do uso do x64

- → A principal é a possibilidade de se utilizar mais de 4 GB de memória.
- Infelizmente a arquitetura x86 possui esta limitação nesta área, ela só pode trabalhar com até 4 GB.
- → Já no caso das versões x64, elas podem trabalhar com até 192 GB de memória.

Vantagens do uso do x64

- Outra vantagem do x64 é que ele trabalha melhor em programas com aplicações pesadas.
- → Além de ter uma estabilidade muito maior e utilizar apenas de drivers assinados digitalmente.

Desvantagens do uso do x64

- → A maior desvantagem é que nem todos os softwares e acessórios foram projetados e otimizados para serem compatíveis para esta versão.
- Os softwares poderem ser utilizados mesmo com versão compatível, mas eles podem sofrer uma grande perda no desempenho.

Mensurando banda passante

Unidade	Taxa de transferência
bps	1 bit por segundo
Kbps	1024 bits por segundo
Mbps	1024 kilobits por segundo
Gbps	1024 megabits por segundo

Mensurando banda passante

Banda passante é o termo usado para se referir a velocidade da rede.

→ Planos Cabo Telecom

Internet

5 Mega	R\$ 59,90
10 Mega	R\$ 94,90
15 Mega	R\$ 144,90
25 Mega	R\$ 219,90
50 Mega	R\$ 349,90

Velocidade Internet

- → 5 Mega Enviar e receber e-mail, ler notícias e baixar músicas.
- → 10 / 15 Mega Realizar downloads, assistir vídeos e jogar on-line.
- → 25 Mega Jogar on-line assistir filmes e acessar vários sites ao mesmo tempo.
- → 50 Mega acessar vários sites ao mesmo tempo, download simultâneos.

Mensurando banda passante

- → Redes cabeadas
 - 100 Mbps, 1Gbps

- → Redes Wifi
 - 64 Mbps

Mensurando processamento

Unidade	Taxa de transferência
Hertz (Hz)	1 operação por segundo
Kilohertz (KHz)	1000 Hz
Megahertz (MHz)	1000 KHz
Gigahertz (GHz)	1000 MHz

Sistemas de Numeração

Sistema Decimal

- → 10 dígitos
- $\rightarrow 0 a 9$
- → Baseado em potências de 10
- → Representação: (X)₁₀
 - X = número na base 10

Sistema Decimal

→ 123 → Unidade, Dezena, Centena

$$100 = 1 \times 100 = 1 \times 10^{2}$$
+ $20 = 2 \times 10 = 2 \times 10^{1}$
+ $3 = 3 \times 1 = 3 \times 10^{0}$

$$1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} = 123$$

Sistema Binário

- → 2 dígitos
- → 0 e 1

- → Baseado em potências de 2
- → Representação: (X)₂
 - X = número na base 2

Sistema Binário

Decimal	Binário	Decimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Tabela de Conversão de Binários para Decimais

1024	512	256	128	64	32	16	8	4	2	1
										P

- → Basta inserir o número binário na tabela acima (da direita para a esquerda) e somar o valor dos itens iguais a 1
- → Por exemplo:
 - → Binário 1001 = 1+8 = 9 Decimal
 - \rightarrow Binário 11 = 1+2 = 3 Decimal
 - → Binário 100100 = 4+32 = 36 Decimal

Vamos a um exemplo prático

- → Vamos converter o binário 1001101
- → Inserimos na tabela abaixo...

1024	512	256	128	64	32	16	8	4	2	1
				1	0	0	1	1	0	1

- → Vamos somar agora...
- \rightarrow 64 + 8 + 4 + 1 = 77
- Temos o número 77 em Decimal

Vamos agora fazer o inverso

- → Vamos converter o decimal 135
- Vamos decompondo começando de número abaixo do 135
- → E marcando com 1 os números cuja soma de 135
- Completamos com zeros o intervalo
- Então vamos obter o número binário correspondente 10000111

1024	512	256	128	64	32	16	8	4	2	1
			1	0	0	0	0	1	1	1

Sistema Hexadecimal

Sistema Hexadecimal

- → 16 dígitos
- → 0 a 9, A a F
- → Baseado em potências de 16
- → Representação: (X)₁₆
 - X = número na base 16

Sistema Hexadecimal

Decimal	Binário	Hexadecimal	Decimal	Binário	Hexadecimal
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	Α
3	0011	3	11	1011	В
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

Álgebra de Boole

Álgebra de Boole

- Ou álgebra booleana
- → Criada por George Boole em 1947
- Lógica representada através de equações
- → Resultados do tipo falso ou verdadeiro

Álgebra de Boole

- → Falso ou Verdadeiro (binário)
 - Não ou Sim
 - Desligado ou Ligado
 - 0 ou 1

→ Correspondência com circuitos eletrônicos

Operadores

- → Negação
 - Não, NOT, ¬
- → Conjunção
 - E, AND, ∧
- → Disjunção
 - Ou, OR, V
- → Disjunção Exclusiva
 - Ou-Exclusivo, XOR, ⊕

Tabela Verdade

→ Tabela com todas as possibilidades de valores para as expressões nela contidas

 Utilizada para visualização ou comparação de valores entre expressões

Negação

→ Não, NOT, ¬

→ A expressão resultante é o oposto da expressão inicial

A	¬A
V	F
F	V

Conjunção

- → E, AND, ∧
- → Mais restritivo dos operadores
- → A expressão final só será verdadeira se todas as expressões forem verdadeiras

Α	В	АЛВ
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção

- → Ou, OR, V
- Menos restritivo dos operadores
- → A expressão final será verdadeira se pelo menos uma das expressões for verdadeira

Α	В	AVB
V	V	V
V	F	V
F	V	V
F	F	F

Disjunção Exclusiva

- → Ou-Exclusivo, XOR, ⊕
- → Oposto do "tudo ou nada"
- A expressão final será verdadeira apenas se uma for verdadeira e a outra falsa

Α	В	A ⊕ B
V	V	F
V	F	V
F	V	V
F	F	F

Resumo dos operadores

A	В	$\neg \mathbf{A}$	¬В	A \wedge B	AVB	$A \oplus B$
V	V	F	F	V	V	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	F	V	V	F	F	F

