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Abstract— The aim of this work is to analyze interval fuzzy
S-implications and interval automorphisms. Starting from any
fuzzy S-implication, it is shown how to obtain an interval fuzzy
S-implication canonically. We proved that the such interval
fuzzy S-implications meet the optimality property and preserve
the same properties satisfied by the fuzzy S-implication. In
addition, commutative diagrams are used in order to relate
fuzzy S-implications to interval fuzzy S-implications, and to
understand how interval automorphisms act on interval S-
implications, generating other interval fuzzy S-implications.

I. I NTRODUCTION

The tolerance for imprecision and the ability to make
decisions under uncertainties of control systems provide the
seminal motivation for development of fuzzy set theory.
Fuzzy logic has been developed as a system of formal
deductive systems with a comparative notion of truth to
formalize deduction under vagueness. Thus, fuzzy logic
gives foundations for approximate reasoning using impre-
cise propositions based on fuzzy set theory. And, all these
matters involve the knowledge of the basic characteristics
of approximative reasoning processes response from the
viewpoint of uncertainty or incomplete available information
and knowledge of the parameters that affect human reasoning
and need to be subjected to scientific investigation.

The extension of classical logic connectives to the real
unit interval is fundamental for the studies on fuzzy lo-
gic and therefore is essential to the development of fuzzy
systems. This extension must preserve the behaviors of
the connectives at the interval extremes (crisp values) and
important properties, such as commutative and associative
properties, which result in the notions of triangular norms
and triangular conorms. Fuzzy implications play an important
role in fuzzy logic, both in the broad sense (heavily applied
to fuzzy control, analysis of vagueness in natural language
and techniques of soft-computing) and in the narrow sense
(developed as a branch of many-valued logic which is able
to investigate deep logical questions). However, there is no
consensus among researchers which extra properties fuzzy
implications should be satisfied. In the literature, several
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fuzzy implication properties have already been considered
and their interrelationship with the other kinds of connectives
are generally presented. There exist three main classes of
fuzzy implications associated to fuzzy connectives named R-
implications, S-implications and QL-implications which are
generated by t-norm, t-conorm joint with fuzzy negation and
t-norm together with t-conorm and strong fuzzy negation,
respectively.

On the other hand, the correctness and optimality of
interval mathematics have been applied in technological [5]
and scientific computations [13] to provide accuracy of
calculations together with automatic and rigorous control
of digital error of numerical algorithms [20]. In this sense,
interval computation is adequate to deal with the imprecision
of the input values or caused by the round errors which occur
during the computation [27], [1]. The interval mathematics
is another form of information theory which is related to
but independent from fuzzy logic. However, when intervals
can be considered a particular type of fuzzy set or when the
interval degree of membership is considered to be an impre-
cision in the belief degree of a specialist, it seems natural
and interesting to deal with the interval fuzzy approach.

Among several papers connecting these areas (see,
e.g., [28], [10], [26], [14], [24], [18]), we adopted Bedregal
and Takahashi work’s [6], [7], where interval extensions for
the fuzzy connectives, considering both correctness (accu-
racy) and optimality aspects, were provided [31].

The aim of this present work is to introduce an interval ge-
neralization of S-implications, and to show that the action of
interval generalizations of automorphisms introduced in [18],
[19] preserve the interval generalizations of S-implications.
We present how to construct interval S-implications as the
best interval representations of S-implications.

The paper is organized as follows. In Section II, we discuss
the conditions to obtain the best interval representation
of a real function and present the related definitions and
results. Based on these considerations, we focus attention
on the interval extensions of fuzzy t-conorm and fuzzy
negation in Sections III and IV, respectively. Further analysis
of the properties met by fuzzy S-implications is done in
Section V. Section VI shows that minimal properties of
fuzzy implications may be extended from interval fuzzy
degrees, in a natural way. In addition, in Section VI-A,
a commutative diagram relating fuzzy S-implications with
interval fuzzy S-implications is also discussed. The action
of an interval automorphism on an interval S-implication is
analyzed in Section VII. The canonical construction of an
interval automorphism from an automorphism is presented



in Section VII-A, including its best interval representation
(Section VII-B) and the relation between interval implicati-
ons and automorphism (Section VII-C). In Section VIII, we
conclude with the main results of this paper and some final
remarks.

II. I NTERVAL REPRESENTATIONS

Consider the real unit intervalU = [0, 1] ⊆ <. Let U be
the set of subintervals ofU , i.e. U = {[a, b] | 0 ≤ a ≤ b ≤
1}. The interval set has two projectionsl, r : U → U defined
by l([a, b]) = a and r([a, b]) = b, respectively. ForX ∈ U,
l(X) andr(X) are also denoted byX andX, respectively.

Several natural partial orders may be defined onU [9].
The most used orders in the context of interval mathematics
and considered in this work, are as it follows:

1) Product: X ≤ Y if and only if X ≤ Y andX ≤ Y .
2) Inclusion order: X ⊆ Y if and only if X ≥ Y and

X ≤ Y

An intervalX ∈ U is said to be an interval representation
of a real numberα if α ∈ X. Considering two interval
representationsX and Y of a real numberα, X is said a
better representation ofα thanY if X is narrower thanY ,
that is, if X ⊆ Y . This notion could be easily extended for
tuples ofn intervals( ~X) = (X1, . . . , Xn).

Definition 2.1: A function F : Un −→ U is an interval
representation of a function f : Un −→ U if, for each
~X ∈ Un and~x ∈ ~X, f(~x) ∈ F ( ~X) [31].

Based on the previous discussion, an interval function may
be seen as a representation of a subset of real numbers. Thus,
extending the previous definition, an interval functionF :
Un −→ U is a better interval representationof the function
f : Un −→ U than G : Un −→ U, denoted byG v F , if
for each ~X ∈ Un, the inclusionF ( ~X) ⊆ G( ~X) holds.

A. Best interval representation

Definition 2.2: For each real functionf : Un −→ U , the
interval functionf̂ : Un −→ U defined by

f̂( ~X) = [inf{f(~x) : ~x ∈ ~X}, sup{f(~x) : ~x ∈ ~X}] (1)

is calledthe best interval representation off [31].
The interval function f̂ is well defined and for any

other interval representationF of f , F v f̂ . The interval
function f̂ returns a narrower interval than any other interval
representation off . Thus, f̂ has theoptimality propertyof
interval algorithms mentioned by Hickey et al. [20], when it
is seen as an algorithm to compute a real functionf .

Notice that iff is continuous in the usual sense, then for
eachX ∈ Un, f̂( ~X) = {f(~x) : ~x ∈ ~X} = f( ~X). The
main result in [31] can be adapted to our context, i.e. forUn

instead of<, as shown in the following:
Theorem 2.1:Let f : Un −→ U be a function. The

following statements are equivalent: (i)f is continuous; (ii)
f̂ is Scott continuous; (iii)f̂ is Moore continuous.

Moore and Scott continuities are the two most common
continuity notions used in interval mathematics [31]. Another
approach based on Coherence Spaces can be found in [12],
[11].

III. I NTERVAL T-CONORM

Considering the interval generalization proposed in [6],
an interval triangular conorm (t-conorm for short) may be
considered as an interval representation of a t-conorm. This
generalization fit with the fuzzy principle, which means that
the interval degree of membership may be thought as an
approximation of the exact degree.

Notice that a t-conorm is a functionS : U2 → U which is
commutative, associative, monotonic and has0 as neutral
element. In the following definition, an extension of the
t-conorm notion forI is considered, following the same
approach introduced in [6].

Definition 3.1: A function S : U2 → U is an interval
t-conorm if it is commutative, associative, monotonic with
respect to the product and inclusion order and[0, 0] is a
neutral element.

Proposition 3.1: If S is a t-conorm then̂S : U2 → U is
an interval t-conorm.
Proof: See [7]. N

A characterization of̂S can be expressed by:

Ŝ(X, Y ) = [S(X,Y ), S(X,Y )] (2)

IV. I NTERVAL FUZZY NEGATION

A function N : U → U is a fuzzy negationif

• N1: N(0) = 1 andN(1) = 0.
• N2: If x ≥ y thenN(x) ≤ N(y), ∀x, y ∈ I.

In addition, fuzzy negations satisfying the involutive property
are calledstrong fuzzy negations[22], [8]:

• N3: N(N(x)) = x, ∀x ∈ U .

Definition 4.1: An interval functionN : U −→ U is an
interval fuzzy negation if, for any X, Y in U, the following
properties hold:

• N1: N([0, 0]) = [1, 1] andN([1, 1]) = [0, 0].
• N2: If X ≥ Y thenN(X) ≤ N(Y ).
• N3: If X ⊆ Y thenN(X) ⊇ N(Y ).

If N also meets the involutive property, it is astrong interval
fuzzy negation:

• N4: N(N(X)) = X, ∀X ∈ U.
Let N : U −→ U be a fuzzy negation. A characterization

of N̂ is presented in the following:

N̂(X) = [N(X), N(X)]. (3)

Theorem 4.1:Let N : U −→ U be a fuzzy negation. Then
N̂ is an interval fuzzy negation. In addition, ifN is a strong
fuzzy negation then̂N is a strong interval fuzzy negation.
Proof: N1: Trivially, N1 is satisfied.

N2: If X ≥ Y thenY ≤ X andY ≤ X. Therefore, by N2,
N̂(X) = [N(X), N(X)] ≤ [N(Y ), N(Y )] and N̂(X) ≤
N̂(Y ).

N3: If X ⊆ Y thenX ≤ Y andY ≤ X. Therefore, by N2,
N̂(X) = [N(X), N(X)] ⊆ [N(Y ), N(Y )] and N̂(X) ⊆
N̂(Y ).



N4: N̂(N̂(X)) = N̂([N(X), N(X)]) when N is a strong
negation. Therefore,̂N(N̂(X)) = [N(N(X)), N(N(X))]
and N̂(N̂(X)) = X. N

V. FUZZY IMPLICATION

Several definitions for fuzzy implication together
with related properties have been given (see
[2], [4], [8], [15], [17], [21], [25], [30], [33], [34],
[35]). The unique consensus in these definitions is that
the fuzzy implication should have the same behavior as
the classical implication for the crisp case. Thus, a binary
function I : U2 −→ U is a fuzzy implicationif I meets the
minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 andI(1, 0) = 0.

Several reasonable properties may be required for fuzzy
implications. The properties considered in this paper are
listed below:

• I1: If x ≤ z thenI(x, y) ≥ I(z, y);
• I2: If y ≤ z thenI(x, y) ≤ I(x, z);
• I3: I(1, x) = x (left neutrality principle);
• I4: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);
• I5: I(x, y) = I(x, I(x, y)).

A. S-implications

Let S be a t-conorm andN be a fuzzy negation. Then
a fuzzy implication, called S-implication, is given by the
equality

IS,N (x, y) = S(N(x), y). (4)

An S-implication arises from the notion of disjunction and
negation using the corresponding tautology of classical lo-
gic. Thus, S-implications are based on the classical logical
equivalence:α → β ≡ ¬α ∨ β.

One can notice that in some texts (like, e.g. in [8], [17],
[16]), an S-implication requires strong fuzzy negation. As the
approach presented in [22], [2], in this work this condition
is not required. The main results relating the S-implication
and the properties I1,. . ., I5 are presented in the following.

Proposition 5.1:Let I : U2 → U be a fuzzy implication.
I is an S-implication if and only if the properties I1, I2, I3
and I4 are met.
Proof: See [3]. N

Proposition 5.2:An S-implication I generated by a t-
conormS and a continuous fuzzy negationN satisfies the
property I5 if and only if S = SM , where SM (x, y) =
max(x, y) (maximum).
Proof: See corollary 2, in [32]. N

VI. I NTERVAL FUZZY IMPLICATION

According to the idea that values in interval mathema-
tics are identified with degenerate intervals, the minimal
properties of fuzzy implications can be naturally extended
from interval fuzzy degrees, when the respective degenerate

intervals are considered. Thus, a functionI : U2 −→ U is a
interval fuzzy implicationif the following conditions hold:

• I([1, 1], [1, 1]) = I([0, 0], [0, 0]) = I([0, 0], [1, 1]) =
[1, 1];

• I([1, 1], [0, 0]) = [0, 0].
Some extra properties can be naturally extended.

• I1: If X ≤ Z then I(X, Y ) ≥ I(Z, Y ),
• I2: If Y ≤ Z then I(X, Y ) ≤ I(X, Z),
• I3: I([1, 1], X) = X,
• I4: I(X, I(Y, Z)) = I(Y, I(X, Z)),
• I5a: I(X, Y ) ⊆ I(X, I(X, Y ))
• I5b: I([x, x], Y ) = I([x, x], I([x, x], Y ))
Considering any fuzzy implication, it is always possible

to obtain canonically an interval fuzzy implication. The
interval fuzzy implication also meets the optimality property
and preserves the same properties satisfied by the fuzzy
implication. In the following two propositions, the best
interval representation of a fuzzy implication is shown as an
inclusion-monotonic function in both arguments. The related
proofs are straightforward, following from the definition of
Î as a particular case of the equation (1).

Proposition 6.1: If I is a fuzzy implication then̂I is an
interval fuzzy implication.
Proof: See [7]. N

Proposition 6.2:Let I be a fuzzy implication. Then for
eachX1, X2, Y1, Y2 ∈ U, if X1 ⊆ X2 and Y1 ⊆ Y2 then
Î(X1, Y1) ⊆ Î(X2, Y2).
Proof: It is straightforward. N

Theorem 6.1:Let I be a fuzzy implication. IfI satisfies
a property Ik, for somek = 1, . . . , 5, then Î satisfies the
propertyIk.
Proof: I1: If u ∈ Î(X, Y ) then there existsx ∈ X and
y ∈ Y such asI(x, y) = u. If X ≤ Z then there exists
z ∈ Z and x ≤ z. So, by I1,u = I(x, y) ≥ I(z, y). On
the other hand, ifv ∈ Î(Z, Y ) then there existsz ∈ Z and
y ∈ Y such asI(z, y) = v. If X ≤ Z thenx ≤ z for some
x ∈ X. So, by I1,I(x, y) ≥ I(z, y) = v. Therefore, for each
u ∈ Î(X, Y ) there isv ∈ Î(Z, Y ) and u ≥ v. In addition,
for eachv ∈ Î(Z, Y ) there isu ∈ Î(X, Y ) such asu ≥ v.
Hence,Î(X, Y ) ≥ Î(Z, Y ).
I2: If u ∈ Î(X, Y ) then there existsx ∈ X and y ∈ Y
such asI(x, y) = u. If Y ≤ Z then there existsz ∈ Z
such asy ≤ z. So, by I2,u = I(x, y) ≤ I(x, z). On the
other hand, ifv ∈ Î(X, Z) then there existsz ∈ Z and
x ∈ X such asI(x, z) = v. If Y ≤ Z theny ≤ z for some
y ∈ Y . So, by I2, I(x, y) ≥ I(x, z) = v. Therefore, for
eachu ∈ Î(X, Y ) there isv ∈ Î(X, Z) such asu ≤ v and
for eachv ∈ Î(X, Z) there isu ∈ Î(X, Y ) such asu ≤ v.
Hence,Î(X, Y ) ≤ Î(X, Z).
I3: Trivially, by I3, for each x ∈ X, I(1, x) = x and
so {I(1, x) : x ∈ X} = X. Thus, sinceÎ([1, 1], X) is
the narrowest interval containing{I(1, x) : x ∈ X}, then
Î([1, 1], X) = X.



I4: If u ∈ Î(X, Î(Y, Z)) then there existsx ∈ X,
y ∈ Y and z ∈ Z such asI(x, I(y, z)) = u. But,
by I4, u = I(y, I(x, z)). So, u ∈ Î(Y, Î(X, Z)) and
therefore Î(X, Î(Y, Z)) ⊆ Î(Y, Î(X, Z)). Analogously, if
u ∈ Î(Y, Î(X, Z)) then there existsx ∈ X, y ∈ Y andz ∈ Z
such asI(y, I(yx, z)) = u. But, by I4, u = I(x, I(y, z)).
So, u ∈ Î(X, Î(XY,Z)) and thereforeÎ(Y, Î(X, Z)) ⊆
Î(X, Î(Y,Z)). Hence,Î(X, Î(Y,Z)) = Î(Y, Î(X, Z)).
I5a: If u ∈ Î(X, Y ) then there existsx ∈ X andy ∈ Y such
as I(x, y) = u. So, by I5,u = I(x, I(x, y)) and therefore
u ∈ Î(X, Î(X, Y )). Hence,Î(X, Y ) ⊆ Î(X, Î(X, Y )).
I5b: By I10a, Î([x, x], Y ) ⊆ Î([x, x], Î([x, x], Y )).
So, it only remains to prove thatÎ([x, x], Y ) ⊇
Î([x, x], Î([x, x], Y )). Let u ∈ Î([x, x], Î([x, x], Y )),
then there existsy ∈ Y such asu = I(x, I(x, y)). But,
by I5, I(x, I(x, y)) = I(x, y). So, u ∈ Î([x, x], Y ) and
thereforeÎ([x, x], Y ) ⊇ Î([x, x], Î([x, x], Y )). N

Proposition 6.3:Let I : U2 −→ U be a fuzzy implication
satisfying the properties I1 and I2. Then an characterization
of Î can be obtained as

Î(X, Y ) =[I(max(X,Y ),min(X,Y )),

I(min(X,Y ),max(X,Y ))]. (5)
Proof: If X ≤ x ≤ X and Y ≤ y ≤ Y then
min(X,Y ) ≤ x, y ≤ max(X,Y ). By the properties
I1 and I2, I(max(X,Y ),min(X,Y )) ≤ I(x, y) ≤
I(min(X,Y ),max(X,Y )). So, I = {I(x, y)|x ∈ X, y ∈
Y } ⊆ Î(X, Y ) and I(max(X,Y ),min(X,Y )) are
lower and upper bound ofI, respectively. Hence, because
I(min(X,Y ),max(X,Y )) belongs to I, they are the
infimum and supremum ofI. N

A. Interval S-implication

An interval fuzzy implication IS,N is an interval S-
implication if there is an interval t-conormS and an interval
fuzzy negationN such as

IS,N(X, Y ) = S(N(X), Y ). (6)

Theorem 6.2:Let S be a t-conorm andN be a fuzzy
negation. ThenI

bS, bN = ÎS,N .
Proof: Let X, Y ∈ U. Then
I
bS, bN (X, Y ) = Ŝ(N̂(X), Y ) = Ŝ([N(X), N(X)], Y )

= [S(N(X), Y ), S(N(X), Y )]
= [IS,N (X,Y ), IS,N (X,Y )]
= ÎS,N (X, Y ). N

The next corollary follows directly.
Corollary 6.1: If I is an S-implication then̂I is an interval

S-implication.
The above results together with Theorem 6.2 state the

commutativity of the diagram in Figure 1, whereC(S)
(C(S)) denotes the class of (interval) t-conorms,C(N) (C(N))
indicates the class of (interval) fuzzy negation andC(I)
(C(I)) is the class of (interval) S-implications.

C(S)× C(N)
eq(4) - C(I)

C(S)× C(N)

(eq(2), eq(3))

? eq(6) - C(I)

eq(5)

?

Fig. 1. Commutative diagram relating S-implication with interval S-
implications

Proposition 6.4:Let I be an interval fuzzy implication.I
is an interval S-implication if and only if the propertiesI1,
I2, I3 and I4 hold.
Proof: It is analogous to Proposition 5.1. N

Proposition 6.5:An interval S-implicationI generated by
an interval t-conormS and an interval continuous fuzzy
negationN satisfies the propertyI5a and I5b if and only
if S = SM , whereSM (X, Y ) = [SM (X,Y ), SM (X,Y )].
Proof: It is similar to Proposition 5.2. N

VII. I NTERVAL AUTOMORPHISM

Definition 7.1: A mapping ρ : U −→ U is an auto-
morphism if it is bijective and monotonic (x ≤ y implies
that ρ(x) ≤ ρ(y)) [23], [29]. Aut(U) denotes the set of
automorphisms.

An equivalent definition is given in [8], whereρ : U −→ U
is an automorphism if it is a continuous and is a strictly
increasing function such thatρ(0) = 0 andρ(1) = 1.

Automorphisms are closed under composition, i.e., ifρ and
ρ′ are automorphisms thenρ ◦ ρ′(x) = ρ(ρ′(x)) is also an
automorphism. In addition, the inverse of an automorphism
is also an automorphism.

Let ρ be an automorphism andI be a fuzzy implication.
The action of ρ on I, denoted byIρ, defined as

Iρ(x, y) = ρ−1(I(ρ(x), ρ(y))), (7)

is a fuzzy implication. Moreover, ifI is an S-implication
thenIρ is also an S-implication.

A. Canonical construction of an interval automorphism

A mapping% : U −→ U is an interval automorphism
if it is bijective and monotonic w.r.t. the product order [18],
[19] (X ≤ Y implies that%(X) ≤ %(Y )). The set of all
interval automorphisms% : U −→ U is denoted byAut(U).

Theorem 7.1:Let % : U −→ U be an interval auto-
morphism. Then there exists an automorphismρ : U −→ U
such that

%(X) = [ρ(X), ρ(X)]. (8)
Proof: See Theorem 2 of [18]. N

The equation (8) also provides a canonical construction of
interval automorphisms from automorphisms and therefore a
bijection between the setsAut(U) andAut(U) (Theorem 3
of [18]).



B. The best interval representation of an automorphism

In the following, we will see interval automorphisms from
a representation of automorphism point of view.

Theorem 7.2 (Automorphism representation theorem):
Let ρ : U → U be an automorphism. Then̂ρ is an interval
automorphism and its characterization can be obtained as:

ρ̂(X) = [ρ(X), ρ(X)]. (9)
Proof: See [6]. N

So, interval automorphisms are the best interval represen-
tations of automorphisms.

Notice that t-conorms were required, by definition, to
satisfy⊆-monotonicity. Nevertheless, this property was not
required by the definition of interval automorphism. In the
following, we show that interval automorphisms also are⊆-
monotonic [6].

Corollary 7.1: If % is an interval automorphism then% is
inclusion monotonic, i.e., ifX ⊆ Y then%(X) ⊆ %(Y ).
Proof: See [6]. N

Analogously, considering the alternative definition of au-
tomorphism used by [8], we can provide alternative charac-
terizations for interval automorphisms based on the Moore
and Scott continuity.

Consider% : U −→ U. % is strictly increasing if, for each
X, Y ∈ U, wheneverX < Y (i.e.,X ≤ Y andX 6= Y ) then
%(X) < %(Y ).

Proposition 7.1:Consider% : U −→ U. % is an interval
automorphism iff% is Moore-continuous, strictly increasing,
%([0, 0]) = [0, 0] and%([1, 1]) = [1, 1].
Proof: See [6]. N

Corollary 7.2: Let % : U −→ U be a Moore-continuous
and strictly increasing function such that%([0, 0]) = [0, 0]
and%([1, 1]) = [1, 1]. Then there exists an automorphismρ
such that% = ρ̂.
Proof: See [6]. N

The case of Scott-continuity follows the same setting.
Lemma 7.1:Let %1 and %2 be interval automorphisms.

Then (%1 ◦ %2)−1 = %−1
2 ◦ %−1

1 .
Proof: See [6]. N

C. Interval automorphism acting on interval S-implication

In the following theorem, we will show how interval
automorphisms act on interval S-implications, generating
new interval S-implications.

Theorem 7.3:Let % : U −→ U be an interval auto-
morphism andI : U2 −→ U be an interval S-implication.
Then the mappingI% : U2 −→ U defined by

I%(X, Y ) = %−1(I(%(X), %(Y ))) (10)

is an interval S-implication.
Proof:

I%(X, Y ) = %−1(I(%(X), %(Y )))Equation(10)
= %−1(S(N(%(X), %(Y ))))Equation(6)
= %−1(S(% ◦ %−1)(N(%(X), %(Y ))))
= %−1(S(%(N%(X), %(Y ))))
= S%(%(N%(X), Y )))

N

Proposition 7.2:Let I be an interval S-implication and%1

and%2 be interval automorphisms. Then
(I%1)%2 = I%1◦%2 .

Proof:
(T%1)%2(X, Y ) = %−1

2 (T%1(%2(X), %2(Y )))
= %−1

2 (%−1
1 (T(%1(%2(X)), %1(%2(Y )))))

= %−1
2 ◦ %−1

1 (T(%1 ◦ %2(X), %1 ◦ %2(Y )))
= (%1 ◦ %2)

−1(T(%1 ◦ %2(X), %1 ◦ %2(Y )))
Lemma 7.1

= T%1◦%2(X, Y )
N

Theorem 7.4:Let I be a an S-implication andρ be an
automorphism. Then

Îρ = Îbρ.
Proof:
bIρ(X, Y ) = [Iρ(max(X, Y ), min(X, Y )),

Iρ(min(X, Y ), max(X, Y ))]
Equation(5)

= [ρ−1(I(ρ(max(X, Y )), ρ(min(X, Y )))),
ρ−1(I(ρ(min(X, Y )), ρ(max(X, Y ))))]
Equation(7)

= dρ−1[I(max(ρ(X), ρ(Y )), min(ρ(X), ρ(Y ))),
I(min(ρ(X), ρ(Y )), max(ρ(X), ρ(Y )))]
Definition(7.1)

= bρ−1[I(max(bρ(X), bρ(Y )), min(bρ(X), bρ(Y ))),

I(min(bρ(X), bρ(Y )), max(bρ(X), bρ(Y )))]
Remark(5.1)[7] and Equation(9)

= bρ−1(bI(bρ(X), bρ(Y ))))Equation(7)
= bI bρ(X, Y )

N

According to Theorem 7.4, the commutative diagram
pictured in Figure 2 holds.

C(I)
eq(7) - C(I)

C(I)

eq(5)

? eq(10) - C(I)

eq(5)

?

Fig. 2. Commutative diagram relating S-implication, automorphisms,
interval S-implications and interval automorphisms

Based on Theorem 7.4, (interval) S-implications and
(interval) automorphisms can be seem as objects and
morphism, respectively, of the categoryC(C(I), Aut(I))
(C(C(I), Aut(I))), respectively. In a categorical appro-
ach, the action of interval automorphism on interval S-
implication can be conceived as a covariant functor whose
application over the S-implications and automorphisms in
C(C(I), Aut(I)) returns the related best interval representa-
tions in C(C(I), Aut(I)).

VIII. F INAL REMARKS

This work emphasized that both interval mathematics
and fuzzy set theory are firmly integrated with principles



of information theory used to underlying logic system for
expert systems. Thus, this paper complements the results
of previous works [6] in order to extend the generalization
of the main properties of interval fuzzy S-implication and
interval automorphisms. The interval extension considers the
best interval representation of a real function to deal with
the imprecision of a specialist in providing an exact value to
measure membership uncertainty.

Throughout this paper, intervals were used to model the
uncertainty of a specialist’s information related to truth
values in the fuzzy propositional calculus: the basic systems
are based on interval t-conorm, i.e., using subsets of the
real unit interval as the standard sets of truth degrees and
applying continuous t-conorms and negation as standard truth
interval functions, the standard truth interval function of an
S-implication can be obtained.

In addition, we mainly discussed under which conditions
generalized fuzzy S-implications applied to interval values
preserve properties of canonical forms generated by interval
t-conorms. It was shown that properties of fuzzy logic may
be naturally extended for interval fuzzy degrees considering
the respective degenerate intervals. The significance of in-
terval fuzzy S-implication was emphasized, showing that S-
implications can be constructed from interval automorphisms
that are preserved by the interval canonical representation.

These results are important not only to analyze deductive
systems in mathematical depth but also as foundations of
methods based on interval fuzzy logic. They integrate two
important features: the accuracy criteria and the optimality
property of interval computations, and a formal mathematical
theory for the representation of uncertainty, concerned with
fuzzy set theory. The former gives a more reliable modelling
of real systems and the latter is crucial for their management
and control.
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