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Abstract—The aim of this work is to analyze interval fuzzy fuzzy implication properties have already been considered
S-implications and interval automorphisms. Starting from any  and their interrelationship with the other kinds of connectives
fuzzy S-implication, it is shown how to obtain an interval fuzzy are generally presented. There exist three main classes of

S-implication canonically. We proved that the such interval f imolicati iated to f ti dR
fuzzy S-implications meet the optimality property and preserve uzzy implications associated to fuzzy connectives named k-

the same properties satisfied by the fuzzy S-implication. In implications, S-implications and QL-implications which are
addition, commutative diagrams are used in order to relate generated by t-norm, t-conorm joint with fuzzy negation and

fuzzy S-implications to interval fuzzy S-implications, and to  t-norm together with t-conorm and strong fuzzy negation,
understand how interval automorphisms act on interval S-

implications, generating other interval fuzzy S-implications respectively.
P ' 9 9 y P ' On the other hand, the correctness and optimality of
|. INTRODUCTION interval mathematics have been applied in technological [5]

) o N and scientific computations [13] to provide accuracy of

The tolerance for imprecision and the ability to makgg|cylations together with automatic and rigorous control
deci;ions um_jer.uncertainties of control systems provide thg digital error of numerical algorithms [20]. In this sense,
seminal motivation for development of fuzzy set theoryinierval computation is adequate to deal with the imprecision
Fuzzy logic has been developed as a system of formgt ihe input values or caused by the round errors which occur
deduc'Flve systems with a comparative notion of truth Y@uring the computation [27], [1]. The interval mathematics
formalize deduction under vagueness. Thus, fuzzy logig another form of information theory which is related to
gives foundations for approximate reasoning using impres,t independent from fuzzy logic. However, when intervals
cise propositions based on fuzzy set theory. And, all thegg, pe considered a particular type of fuzzy set or when the
matters involve the knowledge of the basic characteristiGgterval degree of membership is considered to be an impre-
of approximative reasoning processes response from tfgjon in the belief degree of a specialist, it seems natural
viewpoint of uncertainty or incomplete available informationg,q interesting to deal with the interval fuzzy approach.
and knowledge of the parameters that affect human reasoningo\,mmg several papers connecting these areas (see,
and need to be subjected to scientific investigation. e.g., [28], [10], [26], [14], [24], [18]), we adopted Bedregal

The extension of classical logic connectives to the reg),q Takahashi work’s [6], [7], where interval extensions for
unit interval is fundamental for the studies on fuzzy loyne fuzzy connectives, considering both correctness (accu-
gic and therefore is essential to the development of fuzzr)écy) and optimality aspects, were provided [31].
systems. This extension must preserve the behaviors ofthe aim of this present work is to introduce an interval ge-
the connectives at the interval extremes (crisp values) apgralization of S-implications, and to show that the action of
important properties, such as commutative and associatiyferyal generalizations of automorphisms introduced in [18],
properties, which result in the notions of triangular norms1 9] preserve the interval generalizations of S-implications.
and triangular conorms. Fuzzy implications play an importaijye present how to construct interval S-implications as the
role in fuzzy logic, both in the broad sense (heavily applieflest interval representations of S-implications.
to fuzzy control, analysis of vagueness in natural language The paper is organized as follows. In Section I, we discuss
and techniques of soft-computing) and in the narrow sengge conditions to obtain the best interval representation
(developed as a branch of many-valued logic which is ablgr 5 real function and present the related definitions and
to investigate deep logical questions). However, there is n@syits. Based on these considerations, we focus attention
consensus among researchers which extra properties fuzgy the interval extensions of fuzzy t-conorm and fuzzy
implications should be satisfied. In the literature, severglegation in Sections Ill and IV, respectively. Further analysis
. . _ , of the properties met by fuzzy S-implications is done in
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in Section VII-A, including its best interval representation [1I. I NTERVAL T-CONORM
(Section VII-B) and the relation between interval implicati-

q hi ) N Considering the interval generalization proposed in [6],
ons and automorphism (Section VII-C). In Section VIII, We3n interval triangular conormt-€onorm for short) may be

conclude with the main results of this paper and some fingh\ijered as an interval representation of a t-conorm. This
remarks. generalization fit with the fuzzy principle, which means that
Il. INTERVAL REPRESENTATIONS the interval degree of membership may be thought as an
Consider the real unit interval = [0,1] C ®. Let U be @PProximation of the exact degree. , o
the set of subintervals df, i.e. U= {[a,b] | 0<a<b< Notice that a t-conorm is a functiofi : U — U which is
1}. The interval set has two projectiohs- : U — U defined COmmutative, associative, monotonic and fiags neutral
by I(Ja,b]) = a andr([a,b]) = b, respectively. ForX € U, element. In the following definition, an extension of the

I(X) andr(X) are also denoted b and X, respectively. t-conorm potion forH' is considered, following the same
Several natural partial orders may be definedirjo]. ~@PProach introduced in [6].

The most used orders in the context of interval mathematics Pefinition 3.1: A function § : U° — U is aninterval
and considered in this work. are as it follows: t-conorm if it is commutative, assoclative, monotonic with

1) Product X <Y if and only if X < ¥ andX < Y. respect to the product and inclusion order dad] is a
> a

. . : neutral element.
2) Inclusion order X C Y if and only if X nd . . = :
) X<V - yird Proposition 3.1:If S is a t-conorm ther : U? — U is
o . . . ._an interval t-conorm.
An interval X € U is said to be an interval representatlonp )
. o ; roof: See [7]. A
of a real numbera if & € X. Considering two interval
representationsy andY of a real numbewr, X is said a
better representation ef thanY if X is narrower thart’,

<
Y

A characterization of5 can be expressed by:

thatis, if X C Y. Thi§ notion could be easily extended for §(X7y) =[9(X,Y),S(X,Y)] (2)
tuples ofn intervals(X) = (X1,...,X,).

Definition 2.1: A function F : U — U is aninterval IV. INTERVAL FUZZY NEGATION
representation of a function f : U" — U if, for each A function N : U — U is afuzzy negatiorif
X e U™ andZ € X, f(¥) € F(X) [31]. « N1: N(0) = 1 and N(1) = 0,

Based on the previous discussion, an interval function may N2: If z >y then N (z) < N(y), Va,y € I.
be seen as a representation of a subset of real numbers. Tt?us,dd. on. f - . L h’ involuti
extending the previous definition, an interval functiéh: h addition, fuzzy negations s_at|sfy|ngt .elnvo utive property
U™ — U is abetter interval representationf the function are calledstrong fuzzy negation¢22], [8]:
f:U" — U thanG : U" — U, denoted byG C F, if ¢ N3: N(N(z)) =z, Vz e U.
for eachX € U", the inclusionF (X) C G(X) holds. Definition 4.1: An interval functionN : U — U is an
interval fuzzy negationif, for any X, Y in U, the following
properties hold:

» N1: N([0,0]) = [1,1] andN([1,1]) = [0, 0].

o N2: If X >V thenN(X) < N(Y).

F(X) = [inf{f(@): ¥ € X},sup{f(F): € X} (1) o N3: If X CY thenN(X) D N(Y).

is calledthe best interval representation of f [31]. If N also meets the involutive property, it isrong interval

The interval functionf is well defined and for any fUZZy negation
other interval representatiof’ of f, ¥ C f. The interval ~ + N4 N(N(X)) = X, VX € U.
function f returns a narrower interval than any other interval Let N': U — U be a fuzzy negation. A characterization
representation of. Thus, f has theoptimality propertyof 0f NV is presented in the following:
s ey S B R gm0
Notice that if f is continuous in the usual sense, then for Theorem 4.1:Let N : U — U be a fuzzy negation. Then

eachX e U", FX) = {f@) : 7 e X} = f'(X)- The N is an interval fuzzy negation. In addition, ¥ is a strong
main result in [31] can be adapted to our context, i.ef6r  fuzzy negation thenV is a strong interval fuzzy negation.
instead ofR, as shown in the following: Proof: N1: Trivially, N1 is satisfied.

Theorem 2.1:Let f : U® — U be a function. The N2 If X > Yihen? <X andY < X. Therefore, by N2,

following statements are equivalent: (f)is continuous; (ii) =
f is Scott continuous; (iii)f is Moore continuous. N(X) = [N(X), N(X)] < [N(Y), N)] and N(X) <

Moore and Scott continuities are the two most commorq](y)‘ o
continuity notions used in interval mathematics [31]. AnotheN3: If X C Y then X <Y andY < X. Therefore, by N2,
approach based on Coherence Spaces can be found in [12].X) = [N(X), N(X)] C [N(Y),N(Y)] and N(X) C
[11]. N(Y).

A. Best interval representation

Definition 2.2: For each real functiorf : U" — U, the
interval functionf : U" — U defined by



N4: N(N(X)) = N(iNLY),N(X)]) when N is a strong intervals are considered. Thus, a functibnU? — U is a

negation. ThereforeN(N (X)) = [N(N(X)),N(N(X))] interval fuzzy implicationf the following conditions hold:

and N(N(X)) = X. A L I([1,1][1,1) = I([0,0],[0,0)) = I([0,0],[1,1]) =
[171];
« 1([1,1],0,0]) = [0,0].
Several definitions for fuzzy implication together Some extra properties can be naturally extended.
with related properties have been given (see ¢ I1IIf X < Zthenl(X,Y) >1(Z,Y),
[21, [4], [8], [15], [17], [21], [25], [30], [33], [34] o 12:1f Y < Z thenl(X,Y) < I(X, Z),
[35]). The unique consensus in these definitions is that+ 13: I([1, 1], X) = X,
the fuzzy implication should have the same behavior as e« I4: (X, I(Y, 2)) = L(Y,I(X, Z)),
the classical implication for the crisp case. Thus, a binary ¢ I5a:I(X,Y) C I(X,I(X,Y))
function I : U2 — U is afuzzy implicationif I meets the ~ « I5b: I([z,2],Y) = I([z, 2], I([z,z],Y"))
minimal boundary conditions: Considering any fuzzy implication, it is always possible
1(1,1) = 1(0,1) = 1(0,0) = 1 and I(1,0) = 0. Fo obtain canonic_ally an interval fuzzy implicgtion. The
interval fuzzy implication also meets the optimality property
Several reasonable properties may be required for fuzaynd preserves the same properties satisfied by the fuzzy
implications. The properties considered in this paper afenplication. In the following two propositions, the best

V. FUzzY IMPLICATION

listed below: interval representation of a fuzzy implication is shown as an
o I1:If x < zthenI(z,y) > I(z,y); inclusion-monotonic function in both arguments. The related
o 12:1f y < 2z thenl(z,y) < I(x, 2); proofs are straightforward, following from the definition of
o 13: I(1,x) = z (left neutrality principle); I as a particular case of the equation (1). R
o 14: I(x,I(y,2)) = I(y,I(x,z)) (exchange principle); Proposition 6.1:If T is a fuzzy implication thernl is an
o I5: I(x,y) = I(x,I(x,y)). interval fuzzy implication.
Proof: See [7]. A

A. S-implications

Let S be a t-conorm andV be a fuzzy negation. Then  Proposition 6.2:Let I be a fuzzy implication. Then for
a fuzzy implication, called S-implication, is given by theeach X, X,,Y;,Y> € U, if X; € X, andY; C Y5 then

equality I(X1,Y7) CI(X5,Ys).
Isn(z,y) = S(N(z),y). (4)  Proof: It is straightforward. A

An S-implication arises from the notion of disjunction and
negation using the corresponding tautology of classical lo-
gic. Thus, S-implications are based on the classical Iogicgl
equivalencen — 5 = —a V . propertyIk. ~ )

One can notice that in some texts (like, e.g. in [g], [17]PT0°F IL: If u € I(X,Y) then there exists € X and
[16]), an S-implication requires strong fuzzy negation. As thd € ¥ such asl(z,y) = u. If X < Z then there exists
approach presented in [22], [2], in this work this conditiorf € Z @nd@ < z. So, by I1,u = I(z,y) > I(z,y). On
is not required. The main results relating the S-implicatiof"® Other hand, i € I(Z,Y) then there exists € Z and
and the properties I1,. ., 15 are presented in the following. ¥ € ¥ such asl(z,y) = v. If X < Z thenz < z for some

Proposition 5.1:Let I : U2 — U be a fuzzy implication. * € X- S0, by ILI(z,y) > I(z,y) = v. Therefore, for each

~

I is an S-implication if and only if the properties I1, 12, 134 € 1(X,Y) there isv € I(Z,Y) andu > v. In addition,

~

and 14 are met. for eachv € I(Z,Y) there isu € I(X,Y) such asu > v.
Proof: See [3]. A Hencel(X.Y)>1I(Z)Y).

I2: If w € I(X,Y) then there existyx € X andy € Y

Proposition 5.2:An S-implication I generated by a t- Such asl(z,y) = u. If Y < Z then there existy € Z
conorm S and a continuous fuzzy negatiad satisfies the Such asy < z. So, by 12,u = I(z,y) < I(z,z). On the

Theorem 6.1:Let I be a fuzzy implication. If/ satisfies
property Ik, for somek = 1,...,5, then ] satisfies the

property I5 if and only ifS = S,;, where Sy;(z,y) = Other hand, ifv € I(X,Z) then there existy € Z and
maz(z,y) (maximum). x € X such asl(z,z) =v. If Y < Z theny < z for some
Proof: See corollary 2, in [32]. A Y EY.So byl2I(z,y) = I(x,z) = v. Therefore, for

eachu € I(X,Y) there isv € I(X, Z) such asu < v and
for eachv € I(X, Z) there isu € I(X,Y) such asu < v.
VI. INTERVAL FUZZY IMPLICATION Hence,f(X, Y) < 1(X,2).

According to the idea that values in interval mathemal3: Trivially, by 13, for eachz ¢ X, I(l,Aac) = z and
tics are identified with degenerate intervals, the minimado {I(1,z) : * € X} = X. Thus, sincel([1,1],X) is
properties of fuzzy implications can be naturally extendethe narrowest interval containinf/(1,z) : « € X}, then

from interval fuzzy degrees, when the respective degenerzife{l, 1], X) = X.



I4: If w € I(X,I(Y,Z)) then there existsz € X,
y € Y and z € Z such asl(z,I(y,2)) = u. But,
by 14, v = I(y,I(z,2)). So, u € I(YI(X Z)) and
thereforeI(X 1(Y,Z)) C I(Y,1(X, Z)). Analogously, if
u € I(Y I(X 7)) then there exists € X,y € Y andz € Z
such asl(y,I(yz,z)) = u. But, by 14, u = I(z,I(y, 2)).
So,u € I(X,I(XY,Z)) and thereforeI(Y 1(X,7)) C
I(X,1(Y, Z)). Hence I(X,1(Y, 2)) = I(Y,1(X, Z)).
I5a: If uw € I(X,Y) then there exists € X andy € Y such
asI(z,y) = u. So, by 15,4 = I(z,I(x,y)) and therefore
we I(X,I(X,Y)). Hence,I(X,Y) C I(X,I(X,Y)).

I5b: By 110a, I([z,z],Y) C I([z,a],1([z,z],Y)).
So, it only remains to prove that/([z,z],Y) 2
I([z, 2], I([z,2],Y)). Let u € I([:IJ,J:],I [, 2],Y)),
then there existyy € Y such asu = I(z,I(x,y)). But,
by 15, I(z,1(z,y)) = I(z,y). So,u € I(fz,z],Y) and
thereforel([z, z],Y) 2 I([z, ], I([z,2],Y)). A

Proposition 6.3:Let I : U2 — U be a fuzzy implication

eq(4)

C(S) x C(N) c(I)
(eq(2),eq(3))
6
c(s) x ey —4) - C(I)
Fig. 1. Commutative diagram relating S-implication with interval S-
implications

Proposition 6.4:Let I be an interval fuzzy implicatiori
is an interval S-implication if and only if the propertiés,
2, I3 andI4 hold.

Proof: It is analogous to Proposition 5.1. A

Proposition 6.5: An interval S-implicationl generated by
an interval t-conormS and an interval continuous fuzzy
negationN satisfies the propert§sa and I5b6 if and only
if S= Sas, WhereSM(X, Y) = [S]V[(K7X)7SM(Y7?)}

satisfying the properties 11 and 12. Then an characterizatidryoof: It is similar to Proposition 5.2. A

of I can be obtained as

I(X,Y) =[I(maz(X, Y
I(mm@,m,mam,?))].

Proof: If X < z < y
min(X,Y) < z,y < ma:r(y
n(

NG

< Y then
y the properties
I1 and 12, I(maz(X,Y),m < I(zyy) <
I(min(X,Y), maz(X, 7)) So, I(z,y)|lr € X,y €
Y} <€ I(X,Y) and I(max(X Y),min(X,Y)) are

VII.

Definition 7.1: A mappingp : U — U is an auto-
morphism if it is bijective and monotonicA < y implies
that p(z) < p(y)) [23], [29]. Aut(U) denotes the set of
automorphisms.

An equivalent definition is given in [8], whege: U — U
is an automorphism if it is a continuous and is a strictly

| NTERVAL AUTOMORPHISM

lower and upper bound df, respectively. Hence, becauseincreasing function such tha{0) = 0 andp(1) = 1.

I(min(X,Y),maz(X,Y)) belongs tol, they are the
infimum and supremum df. A

A. Interval S-implication

An interval fuzzy implicationlsy is an interval S-
implication if there is an interval t-conorr§ and an interval
fuzzy negationN such as

In(X,Y) = S(N(X), Y). ®)

Theorem 6.2:Let S be a t-conorm andV be a fuzzy
negation. Therg g = ISN
Proof: Let X, Y eIU Then
I 5(X,Y) =S(N(X),Y)=5(IN(X),N(X)],Y)
= [S(N(X),Y), S(N(X),Y)]
= [Isn(X,Y), Is 5 (X, V)]
= IS,N(X, Y) A

)

The next corollary follows directly. R
Corollary 6.1: If I is an S-implication thed is an interval
S-implication.

Automorphisms are closed under composition, i.en,@hd
p' are automorphisms themo p'(x) = p(p’(z)) is also an
automorphism. In addition, the inverse of an automorphism
is also an automorphism.

Let p be an automorphism anflbe a fuzzy implication.
The action of p on I, denoted byl”, defined as

IP(z,y) = p~ " (I(p(z), p(y))), ©)

is a fuzzy implication. Moreover, iff is an S-implication
then” is also an S-implication.

A. Canonical construction of an interval automorphism

A mappingo : U — U is aninterval automorphism
if it is bijective and monotonic w.r.t. the product order [18],
[19] (X < Y implies thato(X) < o(Y)). The set of all
interval automorphismg : U — U is denoted byAut(U).

Theorem 7.1:Let o : U — U be an interval auto-
morphism. Then there exists an automorphismlU — U
such that

o(X) = [p(X), p(X)]. €S)

Proof: See Theorem 2 of [18]. A

The above results together with Theorem 6.2 state the

commutativity of the diagram in Figure 1, whei®S)
(C(S)) denotes the class of (interval) t-conorr@$N) (C(N))
indicates the class of (interval) fuzzy negation af@)
(C(D)) is the class of (interval) S-implications.

The equation (8) also provides a canonical construction of
interval automorphisms from automorphisms and therefore a
bijection between the setéut(U) and Aut(U) (Theorem 3
of [18]).



B. The best interval representation of an automorphism 1“(X;Y) = 9—1(]1(@()(),Q(Y)))Equation(;O)
_ present P — 07 (S(N(a(X), o(Y))))Equation(6)
In the following, we will see interval automorphisms from =07 (S(e0 07 )(N(0(X), o(Y))))
a representation of automorphism point of view. =07 (S(e(N4(X), o(Y)))) A
Theorem 7.2 (Automorphism representation theorem): =5(e(N*(X),Y)))
Let p: U — U be an automorphism. Thenis an interval  proposition 7.2: Let I be an interval S-implication angk
automorphism and its characterization can be obtained asypq ,, be interval automorphisms. Then
N J— 01)02 — JQ1002
p(X) = [p(X), p(X)]. ©) b ey =1
Proof: See [6]. A (T x)Y) = Q—l(Tgl(g2(X) 2(Y))
_ _ _ =0 (01" (T(Ql(gz( ), 01(e2(Y)))))
So, interval automorphisms are the best interval represen- =05 007 (T(01 0 02(X), 01 0 02(Y)))
tations of automorphisms. = (010 02) " (T(01 0 02(X), 01 0 02(Y)))
Notice that t-conorms were required, by definition, to Lemma 7.1 A

satisfy C-monotonicity. Nevertheless, this property was not =T (X, Y)

required by the definition of interval automorphism. In the Theorem 7.4:Let I be a an S-implication ang be an
following, we show that interval automorphisms also are automorphism. Then

monotonic [6]. Ir =17,

Corollary 7.1: If g is an interval automorphism thenis  Proof: _
inclusion monotonic, i.e., it C Y theno(X) C o(Y). IP(X)Y) = [I"(maz(X,Y), min(X,Y)),
Proof: See [6]. A IP(min(X, Y), maz(X,Y))]

Equation(b)
—[,1 v ;

Analogously, considering the alternative definition of au- =l p(,jl((pl(gfégi ; )%)g(zl(ﬁi%’%)%i))]
tomorphism used by [8], we can provide alternative charac- __Equation(7) - ’
terizations for ?ntgrval automorphisms based on the Moore - [[(mw(p(x%p(?)),mm(pg ,p(Y))),
and Scott continuity. o I(min(p(X), p(Y), maz(p(X), p(¥)))]

Considerp : U — U. g is strictly increasing if, for each Definition(7.1)

X,Y € U, wheneverX <Y (i.e.,, X <Y andX # Y) then = p HI(maz(p(X), p(Y)), min(p(X), p(Y))),
o(X) < o(Y). I(min(p(X), p(Y)), maz(p(X), p(Y)))]

Proposition 7.1:Considerp : U — U. p is an interval Remark(5.1)[7] and Equation(9)
automorphism iffp is Moore-continuous, strictly increasing, =p_'(1(p(X), p(Y))))Equation(7) A
o([0,0]) = [0,0] and o([1,1]) = [1,1]. = P(X.Y)

Proof: See [6]. A According to Theorem 7.4, the commutative diagram
) pictured in Figure 2 holds.

Corollary 7.2: Let o : U — U be a Moore-continuous
and strictly increasing function such that[0,0]) = [0, 0] eq(7)
and o([1,1]) = [1, 1]. Then there exists an automorphigm C(I) - C(I)
such thatp = p.

Proof: See [6]. A eq(5) eq(5)

The case of Scott-continuity follows the same setting. eq(10)

Lemma 7.1:Let o; and go be interval automorphisms. c(m - C(I)

Then (91 o 92)*1 — 92—1 o 91—1_ Fig. 2. Commutative diagram relating S-implication, automorphisms,

interval S-implications and interval automorphisms

Proof: See [6].

Based on Theorem 7.4, (interval) S-implications and
C. Interval automorphism acting on interval S-implication (interval) automorphisms can be seem as objects and
morphism, respectively, of the catego®(C(I), Aut(I))
¢(C(I), Aut(L))), respectively. In a categorical appro-
ch, the action of interval automorphism on interval S-
implication can be conceived as a covariant functor whose
application over the S-implications and automorphisms in
€(C(I), Aut(I)) returns the related best interval representa-

In the following theorem, we will show how interval
automorphisms act on interval S-implications, generatin
new interval S-implications.

Theorem 7.3:Let o : U — U be an interval auto-
morphism andl : U? — U be an interval S-implication.

Then the mapping? : U? — U defined by tions in €(C(T), Aut(T))
12(X,Y) = 07" (I(e(X), o(Y))) (10) VIIl. FINAL REMARKS
is an interval S-implication. This work emphasized that both interval mathematics

Proof: and fuzzy set theory are firmly integrated with principles
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