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Abstract

There exists infinitely many ways to extend the classical propositional connectives to
the set [0, 1] such that the behavior in its extremes is as in the classical logic. Still, it
is a consensus that it is not sufficient, demanding that these extensions also preserve
some minimal logical properties of the classical connectives. Thus, the notions of
t-norms, t-conorms, fuzzy negations, and fuzzy implications were introduced.

In previous works, the authors generalize these notions to the set U = {[a, b]/0 ≤
a ≤ b ≤ 1} and provided canonical constructions to obtain, for example, an interval
t-norm which is the best interval representation of a t-norm.

In this paper, we considered the notion of interval fuzzy negation and generalized,
in a natural way, several notions related with fuzzy negations, such as equilibrium
point and negation-preserving automorphism, and we show that the main properties
of these notions are preserved for the proposed interval generalizations.
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1 Introduction

Intelligent computational systems using fuzzy logics, i.e. fuzzy systems, are
efficient to deal with uncertain information and therefore with approximate
reasoning [9]. For that, to each variable (linguistic terms) in the system the
membership degree is considered to each possible value that the variable could
take (universe of discourse). The membership degrees are usually obtained
from an expert evaluation. Moreover, an expert is able to determine his belief
degree with certain level of precision, for example he could easily distinguish
between his degree of belief 0.8 and 0.9, but it would be hard to distinguish
between 0.8 and 0.8001 [54], i.e. while more precision is considered in the be-
lief degree, more difficulty the expert will have to determine his belief degree.
An alternative is to consider interval mathematics, whose main objective is
the automatic and rigorous control of digital error of numerical computations
and therefore it is adequate to deal with the imprecision of the input values
and those caused by the roundoff errors which occur during the computation
[37,38,2]. Thus, fuzzy logics joined with interval mathematics could allow to
deal with uncertainty as well as with imprecision. Several ways to unite these
two areas have been researched, see for example [15,52,16,30,32,36,31,20]. In
[33], Weldom Lodwick points out four relationships between fuzzy set theory
and interval analysis. The fourth one uses intervals as degree of membership of
fuzzy sets with the goal of addressing the uncertainty associated with digital
computers. In this approach the membership degree of each object is a subin-
terval of the unit interval U = [0, 1] and therefore is also adequate to deal
with the imprecision of a specialist in providing an exact value to measure
membership uncertainty.

There exists infinitely many ways to extend the classical propositional connec-
tives to the set U such that the behavior in its extremes is as in the classical
logic. Still, it is a consensus that it is not sufficient, demanding that these
extensions also preserve some logical properties of the classical connectives.
From the seminal work of Lotfi A. Zadeh in [55] several approaches had been
proposed for fuzzy negations. Although Zadeh fuzzy negation C(x) = 1 − x
is the most used in fuzzy systems, there are important classes of fuzzy nega-
tion proposed with different motivations. The class of Sugeno complement is
obtained from a kind of special measures defined by Michio Sugeno himself in
[49], and Ronald Yager class of fuzzy negations, which results from the fuzzy
unions by requiring that N(x) ∨ x = 1 for each x ∈ U . Both, can derive most
of the fuzzy negations which are used in the practice [43]. Nevertheless, other
different fuzzy negations were defined in the end of the 70’s and beginning
of the 80’s, for example, in [34,51,18,25,42]. The axiomatic definition as it is
known today for the fuzzy negation can be found in [25].

On the other hand, the notion of fuzzy negations for the interval value uni-
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verse, i.e. U = {[a, b]/0 ≤ a ≤ b ≤ 1}, is newer. Several interval valued fuzzy
negations have been proposed, see for example [23,21,41,13,5,11]. In this work
the notion of interval fuzzy negation of [5] is considered which is a restriction
of the similar notion used in [13,11] by considering the monotonicity condi-
tion from two different interval orders. It is proved that several properties of
fuzzy negations and their strict and strong subclasses are preserved by their
interval counterpart. In this sense, we consider interval versions of the no-
tions of equilibrium point (or fixed point) of fuzzy negations investigated by
[25,30,53] among others; automorphisms and the characterization theorems
of Enric Trillas [51] and János Fodor [19] of strong and strict fuzzy nega-
tions, respectively, as well as their action on fuzzy negations; and the notion
of negation-preserving automorphism introduced by Mirko Navara in [40] and
a generalization of these concepts by considering an arbitrary strong fuzzy
negation instead of Zadeh fuzzy negation.

2 Fuzzy Negations and automorphisms

In order to make this paper self-contained we will present the main defi-
nitions and properties of fuzzy negations, automorphisms and other corre-
lated concepts. More details can be found by the readers in texts such as
[51,19,30,40,28,10,35].

2.1 Fuzzy Negation

A function N : U → U , where U denotes the unit interval [0, 1], is a fuzzy
negation if

• N1: N(0) = 1 and N(1) = 0.
• N2: If x ≤ y then N(y) ≤ N(x), ∀x, y ∈ U .

Fuzzy negations are strict if it satisfies the following properties

• N3: N is continuous,
• N4: If x < y then N(y) < N(x), ∀x, y ∈ U .

Fuzzy negations satisfying the involutive property, i.e.

• N5: N(N(x)) = x, ∀x ∈ U ,

are called strong fuzzy negations. Notice that each strong fuzzy negation is
strict but the reverse is not true. For example, the fuzzy negation N(x) = 1−x2

is strict but not strong.
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Notice that if N is a strong fuzzy negation, then N = N−1.

An equilibrium point of a fuzzy negation N is a value e ∈ U such that
N(e) = e.

Remark 2.1 Let N be a fuzzy negation. If e is an equilibrium point for N
then by antitonicity of N for each x ∈ U , if x ≤ e then e ≤ N(x) and if e ≤ x
then N(x) ≤ e.

Remark 2.2 Let N be a fuzzy negation. If e is an equilibrium point for N
and if x ≤ N(x) then x ≤ e and if N(x) ≤ x then e ≤ x.

George Klir and Bo Yuan in [30] proved that all fuzzy negations have at
most one equilibrium point and so if a fuzzy negation N has an equilibrium
point then it is unique. For example, the strict fuzzy negation N(x) = 1 −
x2 has

√
5−1
2

∼= 0.618034 as the unique equilibrium point. However, not all
fuzzy negations have an equilibrium point, for example the fuzzy negation
N⊥, defined below has no equilibrium point.

N⊥(x) =





0 if x > 0

1 if x = 0

Remark 2.3 Let N be a strict (strong) fuzzy negation. Then by continuity,
N has an equilibrium point. As noted above, its equilibrium point is unique.

Remark 2.4 Let e ∈ U . Then there exists infinitely many fuzzy negations
having e as equilibrium point. For example, if N is a strong fuzzy negation
then the function N ′ : U → U , defined as

N ′(x) =





N(N(e)x
e

) if x ≤ e

N(x)e
N(e)

if x > e,

is a strict fuzzy negation such that N ′(e) = e.

Analogously to a t-norm, it is also possible to establish a partial order on the
fuzzy negations in a natural way, i.e. given two fuzzy negations N1 and N2 we
say that N1 ≤ N2 if for each x ∈ U , N1(x) ≤ N2(x).

Proposition 2.1 Let N1 and N2 be fuzzy negations such that N1 ≤ N2. Then
if e1 and e2 are the equilibrium points of N1 and N2, respectively, then e1 ≤ e2.

Proof: Let e1 and e2 the equilibrium points of N1 and N2 respectively. Sup-
pose that e2 < e1 then e1 ≤ N1(e2). Thus, because N1 ≤ N2, e1 ≤ N1(e2) ≤
N2(e2) = e2 which is a contradiction. Therefore, e1 ≤ e2. �
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Clearly, for any fuzzy negation N ,

N⊥ ≤ N ≤ N> (1)

where

N>(x) =





0 if x = 1

1 if x < 1

Notice that neither N⊥ nor N> are strict. Then, it is natural to ask, there
exists a lesser and a greater strict (strong) fuzzy negation?

In the next subsection we will answer this question.

2.2 Automorphisms

A mapping ρ : U −→ U is an automorphism if it is bijective and monotonic,
i.e. x ≤ y ⇒ ρ(x) ≤ ρ(y) [29,40]. An equivalent definition was given in
[10], where automorphisms are continuous and strictly increasing functions
ρ : U −→ U such that ρ(0) = 0 and ρ(1) = 1. Automorphisms are closed under
composition, i.e. if ρ and ρ′ are automorphisms then ρ◦ρ′(x) = ρ(ρ′(x)) is also
an automorphism. The inverse of an automorphism is also an automorphism.
Thus, (Aut(U), ◦), where Aut(U) is the set of all automorphisms, is a group,
with the identity function being the neutral element and ρ−1 being the inverse
of ρ [21].

Let ρ be an automorphism and N be a fuzzy negation. The action of ρ on
N , denoted by Nρ, is defined as follows

Nρ(x) = ρ−1(N(ρ(x))) (2)

Notice that, if e is the equilibrium point of a fuzzy negation N , then ρ−1(e) is
the equilibrium point of Nρ.

Proposition 2.2 Let N : U −→ U be a fuzzy negation and ρ : U −→ U be
an automorphism. Then Nρ is also a fuzzy negation. Moreover, if N is strict
(strong) then Nρ is also strict (strong).

Proof: Let x, y ∈ U .

• N1: Trivially, Nρ(0) = ρ−1(N(ρ(0))) = ρ−1(N(0)) = 1.

5



• N2: If x ≤ y then ρ(x) ≤ ρ(y). Thus, by N2, N(ρ(y)) ≤ N(ρ(x)) and so
ρ−1(N(ρ(y))) ≤ ρ−1(N(ρ(x))). So, Nρ(y) ≤ Nρ(x).

• N3: Composition of continuous functions is also continuous.
• N4: Analogous to N2.
• N5: Nρ(Nρ(x)) = ρ−1(N(ρ−1(ρ(N(ρ(x)))))) = ρ−1(N(N(ρ(x))))

= ρ−1(ρ(x)) = x.
�

Proposition 2.3 Let N be a strict (strong) fuzzy negation and the automor-
phism ρ(x) = x2. Then, N < Nρ and Nρ−1

< N .

Proof: Note that ρ−1(x) =
√

x. Since x2 < x for each x ∈ (0, 1), then
N(x) < N(x2) and so ρ−1(N(x)) < ρ−1(N(ρ(x))) = Nρ(x). But, once that
x <

√
x for each x ∈ (0, 1), we have that N(x) < Nρ(x) for each x ∈ (0, 1).

So, N < Nρ. The proof that Nρ−1
< N is analogous. �

Corollary 2.1 There exists neither a lesser nor a greater strict (strong) fuzzy
negation.

Proof: Straightforward from propositions 2.2 and 2.3. �

The following theorem stated by Enric Trillas in [51], presents a strong relation
between automorphism and strong fuzzy negations.

Proposition 2.4 A function N : U −→ U is a strong fuzzy negation if and
only if there exists an automorphism ρ such that N = Cρ, where C is the
strong fuzzy negation C(x) = 1 − x.

Proof: See [51]. �

This theorem was generalized by János Fodor in [19] for strict fuzzy negations.

Proposition 2.5 A function N : U −→ U is a strict fuzzy negation if and
only if there exist automorphisms ρ1 and ρ2 such that N = ρ1 ◦ C ◦ ρ2, where
C is the strong fuzzy negation C(x) = 1 − x.

Proof: See [19]. �

Mirko Navara, in order to answer a question stated by himself in [39], intro-
duced in [40] the notion of negation-preserving automorphism as being
an automorphism which comutes with the usual negation C(x) = 1−x, i.e. an
automorphism ρ such that ρ(C(x)) = C(ρ(x)). Here it is introduced a natural
generalization of this notion.

Let N be a fuzzy negation. An automorphism ρ is N-preserving automor-
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phism if for each x ∈ U ,

ρ(N(x)) = N(ρ(x)). (3)

The next proposition is a generalization of [40, Proposition 4.2].

Proposition 2.6 Let N be a strong fuzzy negation and ρ be an automorphism
on [0, e], i.e. a continuous increasing function such that ρ(0) = 0 and ρ(e) = e,
where e is the unique equilibrium point of N . Then ρN : U → U , defined by

ρN (x) =





ρ(x) if x ≤ e

N(ρ(N(x))) if x > e,
(4)

is an N-preserving automorphism. All N-preserving automorphisms are of this
form.

Proof: If x < e then by N4, e = N(e) < N(x) and so

ρN(N(x)) = N(ρ(N(N(x)))) because N(x) > e

= N(ρ(x)) because N is strong

= N(ρN (x)) because x ≤ e.

If x > e then by N4, N(x) < e and so

ρN(N(x)) = ρ(N(x)) because N(x) < e

= N(N(ρ(N(x)))) because N is strong

= N(ρN (x)) because x > e.

If x = e then, trivially, ρN(N(x)) = e = N(ρN (x)).

On the other hand, if ρ′ is an N -preserving automorphism then ρ : [0, e] →
[0, e] defined by ρ(x) = ρ′(x) is such that ρ(e) = ρ′(N(e)) = N(ρ′(e)) =
N(ρ(e)) and so ρ(e) = e, the other properties that show that ρ is an automor-
phism on [0, e] are inherited from ρ′ which is an automorphism. Thus, if x ≤ e
then ρ′(x) = ρN (x). If x > e then

ρ′(x) = ρ′(N(N(x))) because N is strong

= N(ρ′(N(x))) by equation (3)

= ρN(x) by equation (4)
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Therefore, ρ′ = ρN , i.e. all N -preserving automorphism have the form of equa-
tion (4). �

Proposition 2.7 Let N be a strong fuzzy negation and ρ be an automorphism
on [0, e], where e is the equilibrium point of N . Then ρN−1

is an N-preserving
automorphism.

Proof: By Proposition 2.6 ρN is an N -preserving automorphism. Let x ∈ U .

ρN−1
(N(x)) = ρN−1

(N(ρN (ρN−1
((x)))))

= ρN−1
(ρN(N(ρN−1

((x))))) by equation (3)

= N(ρN−1
((x)))

So by equation (3), ρN−1
is also an N -preserving automorphism. �

3 Best Interval Representations

Let U be the set of subintervals of U , i.e. U = {[a, b]/0 ≤ a ≤ b ≤ 1}. The
interval set has two projections l : U −→ U and r : U −→ U defined by:

l([a, b]) = a and r([a, b]) = b.

As convention, for each X ∈ U, l(X) and r(X) will also be denoted by X and
X, respectively.

Some natural partial orders can be defined on U [12]. The most used in the
context of interval mathematics and which we consider in this work, are the
following.

(1) Product:

X ≤ Y if and only if X ≤ Y and X ≤ Y

(2) Inclusion order:

X ⊆ Y if and only if X ≥ Y and X ≤ Y

For each interval X ∈ U, these orders determine four sets, which form, up to
least of the boundary, a partition of U.

• ↑ X = {Y/X ≤ Y }
• ↓ X = {Y/Y ≤ X}
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• ⇑ X = {Y/X ⊆ Y }
• ⇓ X = {Y/Y ⊆ X}

These, partition is illustrated in Figure 1.

1

1

0

X

X

X

X

X

X

Fig. 1. Partition of U.

A function F : U −→ U is an interval representation of a function f :
U −→ U if, for each X ∈ U and x ∈ X, f(x) ∈ F (X).

Notice that this notion coincides with the notions of “inclusion function for
f” in [26, equation 2.83] and “interval extension of f” in [27, Definition 1.3].
Nevertheless, the idea of [46] to use a new name was to remark that intervals
can be seen as representations of the real numbers belonged to the interval
and associated with the correctness of interval computations pointed out
by Hicker in [24].

An interval representation F : U −→ U of a function f : U −→ U is a better
representation of another interval representation G : U −→ U of f , denoted
by G v F , if for each X ∈ U, F (X) ⊆ G(X). Thus, for each real function,
there is a natural partial order between its interval representations.

Notice that, the notion of range of a real function applied to intervals; f([a, b]),
could be seen as an operator which maps those functions on interval functions.
Nevertheless, sometimes f([a, b]) is not an interval and therefore it is not a
valid object in Moore arithmetic (i.e. is not a total interval operation), which
is a fundamental requirement for interval operations [24]. Thus, in order to
obtain an operator which transforms real functions into interval functions,
the range is not a suitable operator. The next definition, introduced in [46],
overcomes this problem, by taking the hull interval ? of the range of f .

? The hull interval of a set X ⊆ R is the narrowest interval containing X [26].
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For each real function f : U −→ U , the interval function f̂ : U −→ U defined
by

f̂(X) = [inf{f(x)/x ∈ X}, sup{f(x)/x ∈ X}]

is called the canonical interval representation of f [46].

Notice that f̂ is well defined and therefore satisfies the totality Hickey require-
ment for interval operations [24]. Moreover, f̂ is an interval representation of
f and for any other interval representation F of f , F v f̂ . In other words, the
interval function f̂ returns a narrower interval than any other interval repre-
sentation of f ; i.e. f̂ is the optimal or the best interval representation of
f ; see Hickey et al. [24].

Both, range and best interval representations, i.e. f(X) and f̂(X), coincide
just when f is continuous, i.e. if f is continuous, then for each X ∈ U, f̂(X) =
{f(x)/x ∈ X} = f(X).

An interval function F : U −→ U preserves degenerate intervals if for
each x ∈ U , F ([x, x]) is a degenerate interval ?? .

An interval function F : U → U is representable ? ? ? if there exist func-
tions f1, f2 : U → U such that, for each X ∈ U, it holds that F (X) =
[f1(p1(X)), f2(p2(X))], where p1, p2 ∈ {l, r}.

4 Quasi-metrics and continuity

A quasi-metric over a set A is a function d : A × A → R, such that

(a) d(a, a) = 0,
(b) d(a, c) ≤ d(a, b) + d(b, c) and
(c) d(a, b) = d(b, a) = 0 ⇒ a = b

A quasi-metric space is a pair (A, q), where A is a set and q a quasi-metric
over A. For every quasi-metric q, it is always possible to define another quasi-
metric, called conjugated quasi-metric, defined by q(a, b) = q(b, a) [48].

A quasi-metric d is a metric if it also satisfies (d) d(a, b) = d(b, a) for each
a, b ∈ A. Clearly (d) implies (c). For every quasi-metric q it is possible to
define a metric q∗ : A × A → R as follows: q∗(a, b) = max{q(a, b), q(a, b)}.

??Intervals of the form [x, x] are called degenerate intervals.
? ? ?See [14], for representable t-norms.

10



An example of a metric on U is the usual distance for real numbers, d(x, y) =
|x − y|.

An interval can be seen as a set of real numbers, as a kind of number and as an
information of a real number. Each of these notions imply in a classification
for intervals and therefore determine a criteria of proximity. When intervals
are seen as a kind of number, the associated distance is the metric introduced
by Ramon Moore in [38].

Given two intervals X, Y ∈ IR, the distance of Moore between X and Y is
defined by dM(X, Y ) = max(|Y − X|, |X − Y |)

When intervals are seen as an information about a real number, the criteria of
proximity is established using the quasi-metric introduced by Benedito Acióly
and Benjamı́n Bedregal in [1].

Given two intervals X, Y ∈ IR, the Acióly-Bedregal quasi-metric between
X and Y is defined by qS(X, Y ) = max(Y − X, X − Y , 0)

Notice that q∗S = dM .

Given two real numbers x, y ∈ R, the right quasi-metric between x and y
is defined by qr(x, y) = max(x − y, 0). The conjugated of qr is denoted by ql,
the left quasi-metric.

Notice that q∗r = q∗l = d.

A function f : A → B, where (A, q) and (B, q′) are quasi-metric spaces, is
called (q, q′)-continuous at a ∈ A if, for every ε > 0, there is δ > 0, such
that for every x ∈ A, if q(x, a) < δ, then q′(f(x), f(a)) < ε. f is a (q, q′)-
continuous function, if it is continuous in every a ∈ A. When q and q′ are
clear from the context it will be omitted.

Example 4.1 The function deg : R → IR defined by deg(x) = [x, x] clearly is
(d, dM)-continuous and (d, qS)-continuous. In fact, d(x, y) = dM(deg(x), deg(y)) =
qS(deg(x), deg(y)), so it is sufficient to consider δ = ε.

Composition and Cartesian product preserve continuity:

Proposition 4.1 Let (A1, q1), (A2, q2), (A3, q3) and (A4, q4) be quasi-metric
spaces. Then

(1) For each i, j ∈ {1, 2, 3, 4}, (Ai ×Aj , qi× qj) is a quasi-metric space where
qi × qj : (Ai×Aj)× (Ai ×Aj) −→ R defined by qi× qj((x1, x2), (y1, y2)) =√

qi(x1, y1)2 + qj(x2, y2)2.

(2) f : A1 → A2, g : A2 → A3 and h : A3 −→ A4 are (q1, q2), (q2, q3)
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and (q3, q4)-continuous, respectively, if and only if, g ◦ f : A1 → A3 and
f ×h : A1 ×A3 −→ A2 ×A4 are (q1, q3) and (q1 × q3, q2 × q4)-continuous,
respectively.

Proof: It is a natural extension of well known properties in metric spaces. �

Functions which are (dM , dM)-continuous are said Moore continuous and func-
tions which are (qS, qS)-continuous are said Scott continuous, because this
notion of continuity coincides with the continuity based on Domain Theory
introduced by Dana Scott for the continuous domain (IR,⊇) (for more infor-
mation on this subject see [47,1,17,46]).

The relation between the continuity on real numbers and the above continu-
ities, adapted to our context. i.e. for U instead of R, are stated in the following
theorem and proposition:

Theorem 4.1 Let f, g : U −→ U be antitonic functions such that f ≤ g. The
following statements are equivalent:

(1) f and g are continuous;
(2) I[f,g] is Scott continuous;
(3) I[f,g] is Moore continuous.

where

I[f,g](X) = [f(X), g(X)]. (5)

Proof: Clearly the projections l and r are (qS, ql) and (qS, qr)-continuous,
respectively. On the other hand, the functions δ : U −→ U × U and i :
U × U −→ U defined by δ(X) = (X, X) and i(x, y) = [min(x, y), max(x, y)]
are (qS, qS × qS) and (d×d, qS)-continuous, respectively. Since, I[f,g] = i◦ (f ×
g) ◦ (r × l) ◦ δ, then by Proposition 4.1, I[f,g] is Scott continuous if and only if
f and g are continuous.

Analogously to the previous case, it is possible to prove that I[f,g] is Moore
continuous if and only if f and g are continuous. �

Theorem 4.2 Let f, g : U −→ U be isotonic functions such that f ≤ g. The
following statements are equivalent:

(1) f and g are continuous;
(2) I[f,g] is Scott continuous;
(3) I[f,g] is Moore continuous.
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where

I[f,g](X) = [f(X), g(X)]. (6)

Proof: Analogous to the previous theorem. �

Proposition 4.2 Let f : U −→ U be a function. The following statements
are equivalent:

(1) f is continuous;
(2) f̂ is Scott continuous;
(3) f̂ is Moore continuous.

Proof: See [46, theorems 5.1 and 5.2]. �

Notice that, in spite of I[f,f ] = f̂ and I[f,f ] = f̂ , this proposition is not a
corollary of theorems 4.1 and 4.2, because that in this proposition does not
require f to be monotonic.

5 Interval fuzzy negations

Several ways to extend fuzzy negations and their subclasses of strict and strong
fuzzy negation are given in the literature, see for example [23,21,41,13,5,11].
The extension provided by Benjamı́n Bedregal and Adriana Takahashi in [5],
which is adopted here, takes into account the representation aspects of inter-
val constructions and the fact that interval mathematics admits two natural
partial order and two continuity notions. Nevertheless in [5,50] it was only
made a superficial study of the properties of interval fuzzy implications.

A function N : U −→ U is an interval fuzzy negation if ∀X, Y ∈ U

• N1: N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0].
• N2a: If X ≤ Y then N(Y ) ≤ N(X), and
• N2b: If X ⊆ Y then N(X) ⊆ N(Y ).

N is a strict interval fuzzy negation if it also satisfies the properties

• N3a: N is Moore Continuous,
• N3b: N is Scott Continuous,
• N4a: If X < Y then N(Y ) < N(X), and
• N4b: If X ⊂ Y then N(X) ⊂ N(Y ).

Theorem 5.1 Let N1 : U −→ U and N2 : U −→ U be fuzzy negations such
that N1 ≤ N2. Then I[N1,N2] : U → U defined as in equation (5) is an interval
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fuzzy negation. If N1 and N2 are strict then I[N1,N2] is also a strict interval
fuzzy negation.

Proof: Since, X ≤ X then by N2 property and because N1 ≤ N2, N1(X) ≤
N1(X) ≤ N2(X). Therefore, I[N1,N2](X) is well defined. The following items
prove that I[N1,N2] satisfies properties N1 to N4b.

• N1: straightforward.
• N2a: If X ≤ Y then X ≤ Y and X ≤ Y . So, by N2 property, N1(Y ) ≤

N1(X) and N2(Y ) ≤ N2(X). Therefore, I[N1,N2](Y ) = [N1(Y ), N2(Y )] ≤
[N1(X), N2(X)] = I[N1,N2](X).

• N2b: If X ⊆ Y then Y ≤ X and X ≤ Y and therefore, by N2 property,
N1(Y ) ≤ N1(X) and N2(X) ≤ N2(Y ). So, I[N1,N2](X) = [N1(X), N2(X)] ⊆
[N1(Y ), N2(Y )] = I[N1,N2](Y ).

• N3a and N3b: Follows straightforward from Theorem 4.1.
• N4a: If X < Y then 1) X < Y and X ≤ Y , or 2) X ≤ Y and X < Y .

For case 1), by N2 and N4, N1(Y ) < N1(X) and N1(Y ) ≤ N1(X), and
so, [N1(Y ), N1(Y )] < [N1(X), N1(X)]. Therefore, I[N1,N2](Y ) < I[N1,N2](X).
Case 2) is analogous.

• N4b: Analogous to N4a.
�

When N1 = N2 we will denote I[N1] instead of I[N1,N2].

The following theorem guarantees that interval fuzzy negations are repre-
sentable.

Theorem 5.2 Let N be an interval fuzzy negation. Define N : U −→ U and
N : U −→ U by

N(x) = l(N([x, x])) and N(x) = r(N([x, x])) (7)

Then N and N are fuzzy negations and N = I[N,N]. Moreover, if N is strict then

N and N are also strict.

Proof: First we will prove that N and N are fuzzy negations.

• N1: N(0) = l(N([0, 0])) = l([1, 1]) = 1 and N(1) = r(N([1, 1])) = r([0, 0]) =
0

• N2: if x ≥ y then [x, x] ≥ [y, y] and therefore N([x, x]) ≤ N([y, y]). So,
N(x) ≤ N(y).

Analogously, for N.

Since clearly N ≤ N, then I[N,N] is well defined. Thus, it only remains to prove
that N = I[N,N].
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Since, X ≤ [X, X], then by N2a, N([X, X]) ≤ N(X). So, l(N([X, X])) ≤
l(N(X)). But, [X, X] ⊆ X and therefore, by N2b, N([X, X]) ⊆ N(X). So,
l(N(X)) ≤ l(N([X, X])). Thus, l(N([X, X])) = l(N(X)). Analogously, it is
possible to prove that, r(N([X, X])) = r(N(X)). Thus,

I[N,N](X) = [N(X), N(X)]

= [l(N([X, X])), r(N([X, X]))]

= [l(N(X)), r(N(X))]

= N(X)

Now, we will prove that if N is strict then N and N are also strict.

If N is strict then by N3b, N is Scott continuous and therefore, by Theorem
4.1, N as well as N are continuous.

Let x, y ∈ U such that x < y. Then [x, y] < [y, y] and therefore, by strict-
ness of N, N([y, y]) < N([x, y]). But, from equation (5), l(N([y, y])) = N(y) =
l(N([x, y])) and so N(y) = r(N([y, y])) < r(N([x, y])) = N(x). Analogously,
considering that [x, x] < [x, y] it is possible to prove that N(y) < N(x). There-
fore, N and N are strict. �

Corollary 5.1 Let N : U −→ U. N is an interval (strict) fuzzy negation if
and only if N and N are (strict) fuzzy negations.

Proof: Straightforward from theorems 5.1 and 5.2. �

Thus, the interval (strict) fuzzy negation set coincides with the set of interval
functions which are representable by (strict) fuzzy negations.

5.1 Strong Interval Fuzzy Negations

An interval fuzzy negation N is strong if it also satisfies the involutive
property, i.e. ∀X ∈ U

• N5: N(N(X)) = X.

Notice that an analogous result to Theorem 5.1 for involutive (and therefore
for strong) fuzzy negations is not hold. For example, N1(x) = 1−x

1+x
and N2(x) =

1 − x are involutive fuzzy negations such that N1 ≤ N2. But, I[N1,N2] is not
involutive. Nevertheless, it does not mean that there are not involutive interval
fuzzy negations.

Lemma 5.1 Let f : A −→ A be a function. Then f is involutive if and only
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if f = f−1

Proof: Straightforward from definition of inverse. �

Lemma 5.2 Let N be an interval strong fuzzy negation. Then N preserves
degenerate intervals.

Proof: Suppose that for some degenerate interval [x, x], N([x, x]) is not a
degenerate interval, i.e. N([x, x]) = [a, b] for some a < b. By involution,
N(N([x, x])) = [x, x] and so N([a, b]) = [x, x]. Let c = b−a

2
, then because

[c, c] ⊆ [a, b] by N2b, N([c, c]) = [x, x] and so N has no inverse which is a
contradiction to Lemma 5.1. �

Proposition 5.1 Let N be an interval strong fuzzy negation. Then, N and N

are strong fuzzy negations.

Proof: By Theorem 5.2, N and N are fuzzy negations. Thus, it only remains
to prove that both are involutive.

N(N(x)) = N(l(N([x, x]))) By equation (7)

= l(N([l(N([x, x])), l(N([x, x]))])) By equation (7)

= l(N([l(N([x, x])), r(N([x, x]))])) By Lemma 5.2

= l(N(N([x, x]))) By definition of l and r

= x Because N is involutive

The case of N is analogous. �

Corollary 5.2 Let N be an interval strong fuzzy negation. Then, N
−1 = N

−1

and N−1 = N
−1

Proof: By Lemma 5.1, N = N
−1 and so N

−1 = N. By Proposition 5.1, N is
strong and therefore, by Lemma 5.1, N = N

−1. So, N
−1 = N

−1. �

Theorem 5.3 Let N be an interval fuzzy negation. Then, N is strong if and
only if there exists a strong fuzzy negation N , such that N = I[N ].

Proof: (⇒) From Theorem 5.2, N = I[N,N]. Then, because N is involutive, for
each x ∈ U ,
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[x, x] = N(N([x, x]))

= I[N,N](I[N,N]([x, x]))

= I[N,N]([N(x), N(x)])

= [N(N(x)), N(N(x))]

So, N(N(x)) = x and therefore, N(N(N(x))) = N(x). Thus, due to Proposition
5.1, N is involutive, we have that N = N.

(⇐) On the other hand, from equation (5), for each X ∈ U, N(N(X)) =
I[N ](I[N ](X)) = I[N ]([N(X), N(X)]) = [N(N(X)), N(N(X))] = X. �

Corollary 5.3 Let N be a strong interval fuzzy negation. Then N is strict.

Proof: Straightforward from theorems 5.3 and 5.1, and the fact that strong
fuzzy negations are strict. �

5.2 Interval Fuzzy Negations and Set Operations

Proposition 5.2 Let N be an interval fuzzy negation and X, Y ∈ U. If X ∩
Y 6= ∅ then N(X) ∩ N(Y ) = N(X ∩ Y )

Proof: By Theorem 5.2 N and N are fuzzy negations. Thus, by N2,

N(min{X, Y }) = max{N(X), N(Y )}
and

N(max{X, Y }) = min{N(X), N(Y )}.

So, N(X ∩ Y ) = N(X) ∩ N(Y ). �

Proposition 5.3 Let N be an interval fuzzy negation and X, Y ∈ U. Then
N(X) ∪ N(Y ) = N(X ∪ Y ), where X ∪ Y = [min{X, Y }, max{X, Y }].

Proof: Analogously to Proposition 5.2. �

5.3 Best Interval Representation of Fuzzy Negations

As follows, it will be presented a theorem which shows that I[N ] is the best
interval representation of N .

Theorem 5.4 Let N be a fuzzy negation. Then
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I[N ] = N̂

Proof: If x ∈ X then X ≤ x ≤ X and therefore, by N2 property, N(X) ≤
N(x) ≤ N(X). So, N(x) ∈ I[N ](X). Thus, N(X) ⊆ I[N ](X). Therefore,
because l(I[N ](X)) = N(X) and r(I[N ](X)) = N(X), I[N ](X) is the least

closed interval containing N(X), i.e. I[N ] = N̂ . �

Clearly, from Corollary 5.1, N is strict if and only if N̂ is strict and from
Theorem 5.3, N is strong if and only if N̂ is strong.

The partial order on fuzzy negations can be extended for interval fuzzy nega-
tions as follows. Let N1 and N2 be interval fuzzy negations, then

N1 � N2 if and only if for each X ∈ U, N1(X) ≤ N2(X)

Lemma 5.3 Let N1 and N2 be fuzzy negations. If N1 ≤ N2 then I[N1] �
I[N1,N2] � I[N2].

Proof: Straightforward. �

Proposition 5.4 Let N be an interval fuzzy negation. Then

N̂⊥ � N � N̂>.

Proof: Straightforward from Theorem 5.2, Lemma 5.3 and equation (1). �

However, analogously to the punctual case, there are not a lesser and a greater
strict and strong interval fuzzy negations.

6 Equilibrium Intervals

Analogously, to fuzzy negations, E ∈ U is an equilibrium interval for an
interval fuzzy negation N if N(E) = E. Trivially, [0, 1] is an equilibrium interval
of any interval fuzzy negation. Thus, if an equilibrium interval E is such that
E 6= [0, 1] then E is said a non-trivial equilibrium interval.

Proposition 6.1 Let N1 and N2 be fuzzy negations such that N1 ≤ N2. If
e1 and e2 are the equilibrium points of N1 and N2, respectively, then for each
equilibrium interval E of I[N1,N2], [e1, e2] ⊆ E.

Proof: Notice that by Proposition 2.1, e1 ≤ e2 and so [e1, e2] is well defined.
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Since, [E, E] ≤ E then, by N2a, E = I[N1,N2](E) ≤ I[N1,N2]([E, E]) and so, E ≤
N1(E). Therefore, by Remark 2.2, E ≤ e1. Analogously, since E ≤ [E, E] then,
by N2a, I[N1,N2]([E, E]) ≤ I[N1,N2](E) = E and so, by Remark 2.2, N2(E) ≤ E.
Therefore, e2 ≤ E. Hence, [e1, e2] ⊆ E. �

Notice that, it does not mean that for each pair of fuzzy negations N1 and
N2 with an equilibrium point, I[N1,N2] necessarily has a non-trivial equilibrium
interval.

Example 6.1 Let N1(x) = 1 − x and N2(x) = 1 − x2. Clearly, N1 ≤ N2

and its equilibrium points are 0.5 and
√

5−1
2

, respectively. However, if E is
an equilibrium interval for I[N1,N2], then N1(E) = E and N2(E) = E. So,
N2 ◦ N1(E) = E and N1 ◦ N2(E) = E. Therefore,

E = N1 ◦ N2(E) = N1(1 − E2) = 1 − (1 − E2) = E2.

So, E = 0 or E = 1.

Analogously,

E = N2 ◦N1(E) = N2(1−E) = 1− (1−E)2 = 1− (1− 2E + E
2
) = 2E −E

2
.

So, E
2

= E and therefore E = 0 or E = 1. Hence, I[N1,N2] has no non-trivial
equilibrium interval.

On the other hand, there are interval fuzzy negations with infinite equilibrium
intervals. For example, let N be the fuzzy negation N(x) = 1 − x, then for
each x ∈ U , E = [min{x, 1 − x}, max{x, 1 − x}] is an equilibrium interval of
N̂ .

Lemma 6.1 If E1 and E2 are equilibrium intervals of an interval fuzzy nega-
tion N, then E1 ⊆ E2 or vice-versa.

Proof: By Theorem 5.2, N = I[N,N] and so, E1 = N(E1) = [N(E1), N(E1)].

Therefore, N(E1) = E1 and N(E1) = E1. Analogously, N(E2) = E2 and
N(E2) = E2. Thus, if E1 ≤ E2 then, by N2, N(E2) ≤ N(E1) and so E2 ≤ E1.
Hence, E2 ⊆ E1. Analogously, if E2 ≤ E1 then it is possible to prove that
E1 ⊆ E2. �

Theorem 6.1 Let N be an interval fuzzy negation. Then there exists an equi-
librium interval E of N such that for any other equilibrium interval E ′ of N,
we have that E ⊆ E ′.
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Proof: Let ∆ be the set of all equilibrium intervals of N. By Lemma 6.1,⋂
E∈∆ E = [sup{E/E ∈ ∆}, inf{E/E ∈ ∆}]. Since, [0, 1] ∈ ∆ then,

⋂
E∈∆ E 6=

∅. So,

N(
⋂

E∈∆ E) = N([sup{E/E ∈ ∆}, inf{E/E ∈ ∆}])
= [N(inf{E/E ∈ ∆}), N(sup{E/E ∈ ∆})]
= [sup{N(E)/E ∈ ∆}, inf{N(E)/E ∈ ∆}]
=

⋂
E∈∆ N(E)

=
⋂

E∈∆ E.

�

Thus, this theorem states that in spite of some interval fuzzy negations admit
an infinite quantity of equilibrium intervals, there exists an equilibrium interval
which is the narrowest.

Proposition 6.2 Let N1 and N2 be fuzzy negations such that N1 ≤ N2. Then,
e is an equilibrium point of N1 and N2 if and only if [e, e] is an equilibrium
interval of I[N1,N2].

Proof: Straightforward. �

Corollary 6.1 Let N be a fuzzy negation. Then N has an equilibrium point
if and only if N̂ has a degenerate equilibrium interval.

Proof: Straightforward from Theorem 5.4 and Proposition 6.2. �

Proposition 6.3 Let N be an interval fuzzy negation and E be an equilibrium
interval of N. Then

(1) N(↓ E) ⊆↑ E,
(2) N(↑ E) ⊆↓ E,
(3) N(⇓ E) ⊆⇓ E, and
(4) N(⇑ E) ⊆⇑ E.

Proof:

(1) If X ≤ E then by N2a, E ≤ N(X) and so N(X) ∈↑ E.
(2) If E ≤ X then by N2a, N(X) ≤ E and so N(X) ∈↓ E.
(3) If X ⊆ E then by N2b, N(X) ⊆ E and so N(X) ∈⇓ E.
(4) If E ⊆ X then by N2b, E ⊆ N(X) and so N(X) ∈⇑ E.

�

Corollary 6.2 Let N be an interval fuzzy negation and E be an equilibrium
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interval of N. Then

(1) If X ≤ E then X ≤ E ≤ N(X),
(2) If E ≤ X then N(X) ≤ E ≤ X,
(3) If X ⊆ E then X ⊆ E ⊆ N(X), and
(4) If E ⊆ X then N(X) ⊆ E ⊆ X.

Proof: Straightforward from Proposition 6.3. �

Nevertheless, interval fuzzy negations do not have an analogous property to
Remark 2.2. For example, take into account the interval fuzzy negation I[N1,N2]

where N1 and N2 are the fuzzy negations defined by equations (8) and (9).

N1(x) =





1 − 3x
4

if x ≤ 0.8

2(1 − x) if x > 0.8.
(8)

N2(x) =





1 − x
2

if x ≤ 0.8

3(1 − x) if x > 0.8.
(9)

Clearly, the narrowest equilibrium interval of I[N1,N2] is E = [0.4, 0.8] and
I[N1,N2]([0.6, 0.7]) = [0.475, 0.7]. Thus, I[N1,N2]([0.6, 0.7]) ≤ [0.6, 0.7], however
E 6≤ [0.6, 0.7].

Moreover, Proposition 2.1 does not have either an analogous to interval fuzzy
negation. For example, consider the interval fuzzy negation I[N3,N4] where N3

and N4 are the fuzzy negations defined by equations (10) and (11).

N3(x) =





1 − 12x
31

if x ≤ 0.775

28(1−x)
9

if x > 0.775.
(10)

N4(x) =





1 − 9x
28

if x ≤ 0.775

10(1−x)
3

if x > 0.775.
(11)

Figure 2 shows the relation among the fuzzy negations N1, . . . , N4. From that
figure it is clear that I[N1,N2] � I[N3,N4] and from equations (10) and (11), we
have that the narrowest equilibrium interval of I[N3,N4] is E ′ = [0.7, 0.775] and
so, E 6≤ E ′, in fact E ′ ⊂ E.

Nevertheless, the next proposition presents a weaker interval version of Propo-
sition 2.1. Notice that the punctual version of this proposition is equivalent to
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Fig. 2. Comparative shape of four fuzzy negations.

Proposition 2.1.

Proposition 6.4 Let N1 and N2 be interval fuzzy negations such that N1 �
N2. If E1 and E2 are, respectively, equilibrium intervals of N1 and N2 then
E2 6< E1.

Proof: Since N1 � N2, then N1(E1) ≤ N2(E1). But N1(E1) = E1. So,

E1 ≤ N2(E1). (12)

Suppose that E2 < E1 then, by N2a, N2(E1) ≤ N2(E2). But N2(E2) = E2 and
so N2(E1) ≤ E2. Therefore, by equation (12), E1 ≤ E2 which is a contradiction.
�

An analogous result to Remark 2.4 is also possible for interval fuzzy negations.

Proposition 6.5 Let E ∈ U. Then there exists infinitely many interval fuzzy
negations having E as equilibrium interval.

Proof: Let β ∈ [E, 1[. Consider the functions N1, N2 : U → U defined by

N1(x) =





1 − (1−E)x

E
if x ≤ E

(1−x)E

1−E
if x > E

N2(x) =





1 − (1−E)x
E

if x ≤ β

(1−x)(1− (1−E)β
E

)

1−β
if x > β

Figure 3, which shows instances of both fuzzy negations, makes clear that
N1 as well as N2 are strict fuzzy negations and that N1 ≤ N2. Since, clearly,
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N1(E) = E and N2(E) = E, then I[N1,N2](E) = E. �

U

1.0

1.0

N
1

N
2

U
β=0.9
E=0.7

E=0.7

0.46

E =0.5 

E =0.5 

Fig. 3. Example of fuzzy negations, based on fator β = 0.9, having E = [0.5, 0.7] as
equilibrium interval.

6.1 Equilibrium interval of strict interval fuzzy negations

Since, in Example 6.1, N1 and N2 are strict, we can conclude that interval
strict fuzzy negations can have no non-trivial equilibrium interval.

Proposition 6.6 Let N be a strict interval fuzzy negation and e1 and e2 the
equilibrium points of N and N, respectively. Then [e1, e2] is an equilibrium
interval of N if and only if e1 = e2.

Proof: (⇒) By Proposition 6.1, e1 ≤ e2. By Theorem 5.2, N([e1, e2]) =
[N(e2), N(e1)]. Thus if [e1, e2] is an equilibrium interval of N, then N(e2) = e1

and N(e1) = e2. Since, e1 is the equilibrium point of N, then N(e2) = N(e1).
So, because N is strictly decreasing, e1 = e2.

(⇐) If e1 = e2 then N([e1, e2]) = [N(e2), N(e1)] = [N(e1), N(e2)] = [e1, e2]. �

Notice that this does not mean that N = N.

Example 6.2 Consider the strict fuzzy negations N1(x) = 1 − x and

N2(x) =





1 − 2x2 if x ≤ 0.5

1 − x if x > 0.5.
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Clearly N1 < N2 and both have 0.5 as equilibrium point. Therefore N = I[N1,N2]

has [0.5, 0.5] as an equilibrium interval.

Notice also that not all strict interval fuzzy negations with non-trivial equilib-
rium interval have a degenerate interval as equilibrium interval. For example,
consider the strict fuzzy negations N1 and N2 defined in equations (8) and (9).
The single non-trivial equilibrium interval of I[N1,N2] is the interval [0.4, 0.8].

6.2 Equilibrium interval of interval strong fuzzy negations

Proposition 6.7 If N is an involutive interval fuzzy negation, then N has a
degenerate equilibrium interval.

Proof: By Theorem 5.3, N = I[N ] for some involutive fuzzy negations N . By
Remark 2.3, there exists an unique equilibrium point for N . Let e be such
equilibrium point of N . Then, [e, e] = [N(e), N(e)] = I[N ]([e, e]) and so [e, e]
is an equilibrium interval for N. �

The converse of Proposition 6.7 does not hold. For example, the interval fuzzy
negation of Example 6.2 is not involutive and has an degenerate interval as
equilibrium interval.

Notice that Proposition 6.7 does not imply that the equilibrium interval of
an involutive interval fuzzy negation is unique. In fact, as it will be proved
as follows, they have an uncountable quantity of equilibrium intervals. For
example, for the case of N(x) = 1 − x, for each ε ∈ [0, 0.5], the interval
[0.5 − ε, 0.5 + ε] is an equilibrium interval of I[N ].

Theorem 6.2 If N is an involutive interval fuzzy negation, then N has an
uncountable quantity of equilibrium intervals.

Proof: By theorem 5.3, N = I[N ] for some involutive fuzzy negations N . By
Remark 2.3, there exists an unique equilibrium point e for N . Let ε ∈ [0, e].
Then by Remark 2.1, ε ≤ N(ε) and so N([ε, N(ε)]) = [N(N(ε)), N(ε)] =
[ε, N(ε)]. �

7 Interval Automorphism

A mapping % : U −→ U is an interval automorphism if it is bijective
and monotonic w.r.t. the product order [21,22], that is, X ≤ Y implies that
%(X) ≤ %(Y ). The set of all interval automorphisms % : U −→ U is denoted by
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Aut(U). Next, it is provided a bijection between the sets Aut(U) and Aut(U).
See [21, Theorem 3].

Theorem 7.1 Let % : U −→ U be an interval automorphism. Then there
exists an automorphism ρ : U −→ U such that % = I[ρ,ρ] as defined in equation
(6).

Proof: See [21, Theorem 2]. �

For notational simplicity I[ρ,ρ] will be denoted by I[ρ].

Interval automorphisms can be generated from a representation of automor-
phism point of view. In fact, interval automorphisms are the best interval
representations of automorphisms.

Theorem 7.2 (Automorphism representation theorem) Let ρ : U →
U be an automorphism. Then ρ̂ is an interval automorphism.

Proof: Straightforward from Theorem 7.1 and [4, Theorem 5.2]. �

Corollary 7.1 Let % : U −→ U. % is an interval automorphism if and only if
there exists an automorphism ρ : U −→ U such that % = I[ρ].

Proof: Straightforward from theorems 7.1 and 7.2. �

Remark 7.1 As a consequence of this corollary, all the properties of auto-
morphism are preserved for interval automorphism. For example, it can be
concluded that, (Aut(U), ◦) is a group.

Proposition 7.1 Let ρ : U −→ U be an automorphism . Then I
−1
[ρ] = I[ρ−1].

Proof: Let X ∈ U.

I[ρ](I[ρ−1](X)) = I[ρ]([ρ
−1(X), ρ−1(X)])

= [ρ(ρ−1(X)), ρ(ρ−1(X))]

= X.

So, I[ρ−1] = I
−1
[ρ] . �

Corollary 7.2 Let % : U −→ U be an interval automorphism. Then %−1 is
also an interval automorphism.

Proof: Straightforward from Theorem 7.1 and Proposition 7.1. �

Notice that fuzzy negations were required by definition to satisfy ⊆-monotonicity.
Nevertheless, this property was not required by the definition of interval auto-
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morphism. As showed in [4, Corollary 5.1], from the definition of interval auto-
morphism it is possible to prove that interval automorphisms are ⊆-monotonic.

Corollary 7.3 If % is an interval automorphism then % is inclusion mono-
tonic, that is, if X ⊆ Y then %(X) ⊆ %(Y ).

Analogously, to the alternative definition of automorphism used by [10], there
is an alternative characterization for interval automorphisms based on the
Moore and Scott continuity. A function % : U −→ U is strictly increasing if,
for each X, Y ∈ U, when X < Y (i.e. X ≤ Y and X 6= Y ) then %(X) < %(Y ).

Proposition 7.2 A function % : U −→ U is an interval automorphism if
and only if % is Moore-continuous, strictly increasing, %([0, 0]) = [0, 0] and
%([1, 1]) = [1, 1].

Proof: See [4, Proposition 5.1]. �

The case of Scott-continuity follows the same setting.

7.1 Interval automorphisms acting on interval fuzzy negations

The following theorems show the properties preserved by interval automor-
phisms acting on an arbitrary interval fuzzy negation N.

Let N be an interval fuzzy negation and % be interval automorphism. Then
the action of % on N is the function N

% : U −→ U defined by

N
%(X) = %−1(N(%(X))). (13)

Theorem 7.3 Let N be an interval (strict, strong) fuzzy negation and % be
interval automorphism. Then N

% is also an interval fuzzy negation.

Proof: By Corollary 7.2 %−1 is an interval automorphism. So,

• N1: N
%([0, 0]) = %−1(N(%([0, 0]))) = %−1(N([0, 0])) = %−1([1, 1]) = [0, 0].

Analogously, it is easy to prove that N
%([1, 1]) = [1, 1].

• N2a: Let X, Y ∈ U such that X ≤ Y . Then %(X) ≤ %(Y ). So, N(%(Y )) ≤
N(%(X)) and therefore, %−1(N(%(Y ))) ≤ %−1(N(%(X))), i.e. N

%(Y ) ≤ N
%(X).

• N2b: Straightforward, because interval automorphisms and interval fuzzy
negations are ⊆-monotonic.

• N3a: By Proposition 7.2, % and %−1 are Moore-continuous. Thus, if N satisfies
N3a then N is Moore-continuous and therefore N

% is also Moore-continuous.
• N3b: Analogous to N3a.
• N4: If X < Y then by Proposition 7.2, %(X) < %(Y ). So, by N4, N(%(X)) <

N(%(Y )). Therefore, by Proposition 7.2, %−1(N(%(X))) < %−1(N(%(Y ))), i.e.
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N
%(X) < N

%(Y ).

�

In the next proposition, it will be proved an analogous result of Proposition
2.3 and Corollary 2.1.

Proposition 7.3 Let N be a strict (strong) interval fuzzy negation and the

interval automorphism %(X) = X2, i.e. %(X) = [X2, X
2
]. Then, N < N

% and
N

%−1
< N.

Proof: Clearly, %−1(X) =
√

X, i.e. %−1(X) = [
√

X,
√

X]. Since X2 < X for
each X ∈ U−{[0, 0], [1, 1]}, then by N4a, N(X) < N(X2) and so %−1(N(X)) <
%−1(N(%(X))) = N

%(X). But, once X <
√

X for each X ∈ U − {[0, 0], [1, 1]},
then N(X) < N

%(X) for each X ∈ U−{[0, 0], [1, 1]}. The proof that N
%−1

< N

is analogous. �

Corollary 7.4 There exists neither a lesser nor a greater strict (strong) in-
terval fuzzy negation.

Proof: Straightforward from Proposition 7.3. �

Proposition 7.4 Let N be an interval fuzzy negation and % be an interval au-
tomorphism. If E is an equilibrium interval of N then %−1(E) is an equilibrium
interval of N

%.

Proof: N
%(%−1(E)) = %−1(N(%(%−1(E)))) = %−1(E). �

Next it will be proved an analogous result for Proposition 2.5.

Theorem 7.4 A function N : U → U is a strict interval fuzzy negation if and
only if there exists interval automorphisms %1 and %2 such that

N(X) = %1([1, 1] − %2(X)). (14)

Proof: (⇒) Let N be a strict interval fuzzy negation. Define % : U → U

by %(X) = [1, 1] − N(X). Clearly, %([0, 0]) = [0, 0] and %([1, 1]) = [1, 1] and,
because N is a strict interval fuzzy negation, % is Moore-continuous and strictly
increasing. So, by Proposition 7.2, % is an interval automorphism.

(⇐) Suppose that N is defined by equation (14). Then,

• N1: N([0, 0]) = %1([1, 1]−%2([0, 0])) = %1([1, 1]− [0, 0]) = [1, 1]. Analogously,
N([1, 1]) = %1([1, 1] − %2([1, 1])) = [0, 0].

• N2a: If X ≤ Y then %2(X) ≤ %2(Y ) and so, [1, 1] − %2(Y ) ≤ [1, 1] − %2(X).
Therefore, N(Y ) = %1([1, 1] − %2(Y )) ≤ %1([1, 1] − %2(X)) = N(X).
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• N2b: If X ⊆ Y then %2(X) ⊆ %2(Y ) and so, [1, 1] − %2(X) ⊆ [1, 1] − %2(X).
Therefore, N(Y ) = %1([1, 1] − %2(Y )) ⊆ %1([1, 1] − %2(X)) = N(X).

• N3a and N3b: Notice that the function F (X) = [1, 1] − X is Moore and
Scott-continuous and, by Proposition 7.2, %1 and %2 are also Moore and
Scott-continuous. Thus, because function N defined by equation (14) is a
composition of these functions, then N is also Moore and Scott-continuous.

Therefore, N is a strict interval fuzzy negation. �

In the next proposition, it will be proved an analogous result for Proposition
2.4.

Theorem 7.5 A function N : U → U is a strong interval fuzzy negation if
and only if there exists an interval automorphism % such that

N(X) = %−1([1, 1] − %(X)). (15)

Proof: (⇒) By Theorem 5.3, there exists a strong fuzzy negation N such
that N = I[N ] and by Proposition 2.4 there exist and automorphism ρ such
that N(x) = Cρ(x), i.e. N(x) = ρ−1(1 − ρ(x)). So,

N(X) = I[N ]

= [N(X), N(X)]

= [ρ−1(1 − ρ(X)), ρ−1(1 − ρ(X))]

= I[ρ−1]([1 − ρ(X), 1 − ρ(X)])

= I[ρ−1]([1, 1] − [ρ(X), ρ(X)])

= I[ρ−1]([1, 1] − I[ρ](X))

= I
−1
[ρ] ([1, 1] − I[ρ](X))

(⇐) Notice that equation (15) is a particular case of equation (14). Thus, if
N is defined by equation (15), then, straightforward from Corollary 7.2 and
Theorem 7.4, N is an (strict) interval fuzzy negation. So, it only remains to
prove N4 property, i.e.:
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N(N(X)) = N(%−1([1, 1] − %(X)))

= %−1([1, 1] − %(%−1([1, 1] − %(X))))

= %−1([1, 1] − ([1, 1] − %(X)))

= %−1(%(X))

= X.

Therefore, N is a strong interval fuzzy negation. �

7.2 N-preserving interval automorphisms

Let N be an interval fuzzy negation. An interval automorphism % is N-preserving
interval automorphism if for each X ∈ U,

%(N(X)) = N(%(X)). (16)

The next theorem shows that N-preserving interval automorphism is strongly
related with the notion of N -preserving automorphism.

Theorem 7.6 Let % be an interval automorphism, N be a strong interval fuzzy
negation, ρ the automorphism such that % = I[ρ] (see Theorem 7.1) and N the
strong fuzzy negation such that N = I[N ] (see Theorem 5.3). Then, % is a
N-preserving interval automorphism if and only if ρ is a N-preserving auto-
morphism.

Proof: (⇒) Let x ∈ U , then

ρ(N(x)) = l(%([N(x), N(x)])) by Theorem 7.1

= l(%(N([x, x]))) by Theorem 5.3

= l(N(%([x, x]))) by equation (16)

= l(N([ρ(x), ρ(x)])) by Theorem 7.1

= N(ρ(x)) by Theorem 5.3

(⇐) Let X ∈ U then
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%(N(X)) = %([N(X), N(X)]) by Theorem 5.3

= [ρ(N(X)), ρ(N(X))] by Theorem 7.1

= [N(ρ(X)), N(ρ(X))] by equation (3)

= N([ρ(X), ρ(X)]) by Theorem 5.3

= N(%(X)) by Theorem 7.1

�

The next proposition is an interval version of Proposition 2.6 which extends
[40, Proposition 4.2].

Proposition 7.5 Let IE = {[a, b]/0 ≤ a ≤ b ≤ e}, N be a strong interval
fuzzy negation with [e, e] as the degenerate equilibrium interval of N and % :
IE → IE be an interval automorphism, i.e. a bijective and monotonic function.
Then %N : U → U defined by

%N(X) =





%(X) if X ≤ [e, e]

N(%(N(X))) if X > [e, e]

[%(X), N(%(N(X)))] if X < e < X

(17)

is an N-preserving interval automorphism. All N-preserving interval automor-
phisms are of this form.

Proof: By Theorem 7.1, there exists an automorphism ρ (on [0, e]) such
that for each X ∈ IE, %(X) = [ρ(X), ρ(X)]. Analogously, by Theorem 5.3,
there exists a strong fuzzy negation N such that for each X ∈ U, N(X) =
[N(X), N(X)]. Thus,

[%(X), N(%(N(X)))] = [ρ(X), N(ρ(N(X)))] (18)

If X < [e, e] then by N4a, [e, e] = N([e, e]) < N(X) and so

%N(N(X)) = N(%(N(N(X)))) because N(X) > [e, e]

= N(%(X)) because N is strong

= N(%N(X)) because X ≤ [e, e].
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If X > [e, e] then by N4a, N(X) < [e, e] and so

%N(N(X)) = %(N(X)) because N(X) < [e, e]

= N(N(%(N(X)))) because N is strong

= N(%N(X)) because X > [e, e].

If X = [e, e] then, trivially, %N(N(X)) = [e, e] = N(%N(X)).

If X < e < X then N(X) < N(e) < N(X) and so

%N(N(X)) = [ρ(N(X)), N(ρ(N(N(X))))] by equation (18)

= [ρ(N(X)), N(ρ(N(N(X))))] by Theorem 7.1

= [ρ(N(X)), N(ρ(X))] because N is strong

= [N(ρ(X)), N(ρ(X))] by theorem 7.6

= N([ρ(X), ρ(X)]) by Theorem 7.1

= N([ρ(X), ρ(N(N(X)))]) because N is strong

= N([ρ(X), N(ρ(N(X)))]) by equation (3)

= N(%N(X)) by equations (17) and (18)

On the other hand, if %′ : U → U is a N-preserving interval automorphism then
by Theorem 7.6, ρ′ : U → U defined by ρ′(x) = l(%′([x, x])) is a N -preserving
automorphism. But, by Proposition 2.6, there exist an automorphism ρ′′ :
[0, e] → [0, e] such that ρ′ = ρ′′N . Let %′′ = I[ρ′′]. Thus, if X ≤ [e, e] then

%′(X) = [ρ′(X), ρ′(X)] by Theorem 7.6

= [ρ′′N (X), ρ′′N (X)] by Proposition 2.6

= [ρ′′(X), ρ′′(X)] by equation (3)

= %′′(X) by Corollary 7.1

= %′′N(X) by equation (17)

If [e, e] < X then
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%′(X) = [ρ′(X), ρ′(X)] by Theorem 7.6

= [ρ′′N (X), ρ′′N(X)] by Proposition 2.6

= [N(ρ′′(N(X))), N(ρ′′(N(X)))] by equation (3)

= N([ρ′′(N(X)), ρ′′(N(X))]) by Theorem 5.3

= N(%′′([N(X), N(X)])) by Corollary 7.1

= N(%′′(N(X))) by Theorem 5.3

= %′′N(X) by equation (17)

If X < e < X then

%′(X) = [ρ′(X), ρ′(X)] by Theorem 7.6

= [ρ′′N (X), ρ′′N(X)] by Proposition 2.6

= [ρ′′(X), N(ρ′′(N(X)))] by equation (3)

= %′′N(X) by equations (18) and (17)

Therefore, %′ = %′′N, i.e. all N-preserving interval automorphisms have the
form of Equation (17). �

Next, an analogous proposition to Proposition 2.7.

Proposition 7.6 Let N be a strong interval fuzzy negation. Then %N−1
is a

N-preserving interval automorphism.

Proof: By Proposition 7.5, %N is a N-preserving interval automorphism. Let
X ∈ U.

%N−1
(N(X)) = %N−1

(N(%N(%N−1
((X)))))

= %N−1
(%N(N(%N−1

((X))))) by Equation (16)

= N(%N
−1

(X))

Therefore, by Equation (16), %N−1
is also a N-preserving interval automor-

phism. �
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8 Conclusion

In the previous works of the authors [3–5,8,44,7,6,45] it was introduced a gen-
eralization for the t-norm, t-conorms, several classes of fuzzy implications and
fuzzy negation notions to the set U. These generalizations were made consid-
ering the interval representation notion introduced in [46] which is adequate
to formalize two fundamental principles of interval computations [24]. 1) cor-
rectness, where the real output is in the interval output whenever a real input
is in an input interval, which is guaranteed by principle of maximum exactness
(roundoff ”outward”, i.e. rounded down and rounded up) and optimal scalar
product [2] and 2) optimality, where an interval operation is optimal w.r.t.
a real operation if the interval result is the narrowest possible containing all
possible results of the real operation. In this paper, it was considered the in-
terval generalization for fuzzy negations made in [5] which is also based on
the interval representation notion. Notice that this notion is equivalent to the
notion of interval valued fuzzy negation in [13,11] which are representable.

The idea in this paper was related to this notion of interval fuzzy negation
and its usual subclasses with the interval extension of other concepts that
usually is related to fuzzy negations. Thus, it can be noted that most of the
usual properties of fuzzy negation are preserved in some sense by these interval
extensions.

Others little contributions were made in the context of punctual fuzzy nega-
tions, such as the generalization of the concept and properties of N -preserving
automorphisms, the preservation of strict and strong fuzzy negation when sub-
mitted to the action of an automorphism and their Corollary 2.1.
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