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Abstract 

A new multiagent programming paradigm based on 
the transactional logic model' is  developed. This 
paradigm enables us to construct a Distributed agent 
transactional program (DATRAP). Such a 
construction is carried out in two stages: first 
expressing a program into a production rule system , 
and then converting the rule applications into a set of 
transactions on a database of active objects 
represented using high-level datastructures. The 
formal specification ana' refinement calculus are key 
features in the development of a DATRAP. We also 
indicate how to specify granularity of parallelism and 
also achieve several opes of parallelism. One can 
associate with a DATRAP two different types of 
execution semantics called set-based and instance- 
based semantics. We also show how to prove 
correctness of DATRAP, achieve maximal 
concurrence and reduce the complexity of a 
distributed program. 

1. Introduction 

The interplay between artificidi intelligence(AI) 
and software engineering has led to an extremely 
useful area of research that has commercial and 
industrial applications. In particular, the problem 
involved in the design of a distributed agent program 
is  analogous to the distributled problem solving 
paradigm in AI, where given an initial state of a 
problem we attempt to reach the goal by passing 
through a sequence of subgoals by applying a set of 
production rules [l], [2], [31. Hence, the AI problem 
solving paradigm can be alpplied to devise a 
distributed agent program, if each program is 
converted to a set of production rules and the rules 
are implemented as transactions acting on a database 
of active objects (represented using high-level 
datastructures), that describe the initial state, the 
intermediate states and the final s w e  of the program. 
The realisation of production rule applications as 
transactions will be referred it0 as a "Distributed 
Agent Transactional Program" (DATRAP). In a 
DATRAP, rule conditions are expressed as queries, 
while rule actions contain algebiaic description of the 
operations performed on the dalabase. Thus the state 
of computation consists of a collection of named 
values in an active database, where the names 
correspond to variables and the values are assigned 
from the problem domain. A state maps the variable 

to its corresponding value. The initial state specifies 
the initial condition of the problem, while the final 
state specifies the result. The rule actions activate the 
database through a successsion of states (transitions). 
The query or condition and updates or actions can be 
expressed using first order logic formula or 
equivalently by relational expressions. 

It is well known that [4] a transaction has the four 
properties - called ACID properties: Atomicity 
(indivisibility and either all or no actions or carried 
out), Consistency (before and after the execution of a 
transaction), Isolation (no interference among the 
actions), Durability (recovery under failure and 
achieving consistency). The transactional 
programming paradigm can hence provide for 
cooperation among competing actions or processes, 
by resolving conflicts due to data dependence and 
resource dependence. 

a logical model called the transactional logic model 
with three basic components [5] : 
1. A database D which expresses facts in first order 
logic; that is, the content of the database is specified 
as a list of predicates, with specific bindings 
(substitution of constant values) for all its arguments. 
2. A set S of transitions (elementary actions); S is 
more like ground rules free of any variables or atomic 
formula, called the name of the transition. 
3. A set T of formula in first order logic called 
"Transactional formula or transactions" that 
formulate queries and update the database D using set 
S. (We assume that a query does not update the 
database). Thus T contains rules defining queries and 
updates tells us what to do using primitive actions 
from S and changes D; The functions used in S can 
be absorbed by T, if necessary. The database D is 
independent of T. That is D does not define 
predicates in terms of transactions; or the predicate 
symbols occurring in rule-heads in T cannot occur as 
rule bodies in D. 
1.1 Operators in transactional logic 
The logic of transactional paradigm is an action 
logic paradigm that differs from the classical situation 
logic paradigm. Here, we need a new connective 
called "serial succession operator" to specify total 
order, namely a particular action has to temporally 
precede a particular action. This operator is denoted 
by $: for example x$y says; do x before and then do 
y. The $ operator therefore takes into account the side 
effects due to performing action x before and doing 
action y after. That is action x serves as precondition 

Associated with the transactional paradigm is 
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for action y, and realizing action y is a post condition 
for action x. In practical terms, $ sets up an a priori 
consistency for b and this ensures serializability of 
transactions. This operator $ can combine two 
successive subgoals or paths that lead to a solution. 
Note that $ is more general than the conventional 
conjunction 'And' that is applicable to the two paths 
or subgoals simultaneously. Also note that $ can be 
identified with the action "Begin-on-Commit'' (BCD) 
[6] which states that the Action b can only begin after 
a commits. This action is denoted by b BCD a; if a is 
not Committed then b is rejected. Similar operators 
have been suggested in linear logic [71. 

called 'serial choice" operator %- that permits choice 
of one or the other action path in a serial path, but not 
both. The combinator term a % b means: choose 
action a now or choose action b after. 
The serial connectives are useful in problem solving 
using transactional pardigm, where preconditions 
mgger actions. These operators lead to Serial Hom 
clauses that can specify a context in a production 
system [8]. Also these operators can describe 
concepts such as partial order and serializability. 

posteriori consistency as in:"End( Commit ) b only 
after a (Commits) ends" denoted by a#b.This is a 
conditional synchronization and describes a 
cooperative schedule (casacade abort free and 
recoverable) . In ACTA [6] this is equivalent to the 
Strong Commit action (SCD) :b SCD a; which 
means, if a commits b commits as well. 
Remark: The operator $ is similar to (,) in 
PROLOG but not identical ; the functor (,) specifies 
conjunction of goals; e.g. X,Y: the goal X,Y 
succeeeds if X succeeds and Y succeeds. If X 
succeeds and Y fails then, then an attempt is made to 
resatisfy X. If X fails the whole conjunction fails. 
This is the essence of backtracking. However, Prolog 
does not undo updates while backtracking. So we 
need to modify Prolog in order to introduce the 
Transaction logic approach. 

The operator(:) in Prolog specifies a disjunction: if 
X and Y are goals then X;Y succeeds if X or Y 
succeeds; again % resembles (;) but they are not 
identical since Prolog does not undo updates in 
backtracking. Essentially we need to undo all $ and 
% actions if the total chain fails. 

We can associate with $ , a dual operator 

We also use another operator # for a 

12. Serializability, cooperation and recovery 

concerned with the conflict equivalence of an 
interleaved schedule to a serial schedule (namely, the 
conflicting actions in the non- aborted transactions 
are performed in the same temporal order). Hence it 
ensures a priori (means :from what is before) 
consistency in a competitive environment (or 
provides for the well-being of an individual 
transaction). 
However, this does not ensure 

how other transactions that read from a given 
transaction in a schedule have been affected and what 
steps are to be taken to ensure them to be healthy, 

The notion of serializability is essentially 

free from abort and are recoverable (well-being of a 
set of interleaved transactions, called a schedule) 
after a transraction terminates. This provides for a 
cooperative environment. In order to make a 
schedule recoverable, we need to ensure that a 
transaction j that read(R) from a write(W) of a 
transaction i, must ensure that j is committed (C) only 
after i commits. This is a posteriori (from what comes 
after) consistency check. 

a transaction j always reads a committed transaction i. 
Strict schedulles (S) are schedules in which all reads 
and writes for any object take place only after those 
transactions that wrote the object have committed or 
aborted; this (ensures the restorability of values. The 
set of recovemble schedules contains the set of 
cascadeabont-free schedules (CA) and CA contans 
the set of strict schedules [4]. 

We call a set of tmnsactions cooperative if they are 
helping each other and prevent chain aborts and allow 
each other tal recover under failure. Strict schedules 
try to optirmize cooperation and competition. 
However, they may not be serializable. The class of 
serial schedules is properly contained within both the 
classes of serializable and the strict schedules. To 
maximize concurrency we must find a class of 
competing schedules larger than the class of serial 
schedules and yet cooperative [41. 
Remark: There are some interesting correspondences 
between the Transactional and action paradigms 
[9],[101. These will be discussed elsewhere. 

2. Transactional problem solving 

Problem solving consists in finding a partially 
ordered sequence of application of desired operators 
that can transform a given initial state to a desired 
final state - called goal. Reaching a goal through a 
sequence of totally ordered subgoals- is called a 
linear solution. For many problems a totally ordered 
concatenation of subgoals may not exist. Such 
problems require a nondeterministic search. A 
solution based on a nondeterministic search is called 
a nonlinear solution. Such a solution uses an act - 
venfy strategy. Human problem solving also uses 
this strategy through preconditions and actions. The 
transactional paradigm provides for an act and verify 
strategy by offering a nonprocedural style of 
programming: (called 'subjunctive programming') 
in which a hypothetical action ( what if changes) 
is followed by verification and restoration. So this 
paradigm is well-suited for a nondeterministic / 
probabilistic solutions [Ill.  If the granuiatities of the 
transactions are chosen suitably we can provide for 
maximum cooperation among competing subgoals. 

The subjunctive program uses a tentative execution; 
if the condition is safe the actions are made 
permanent el,% aborted and the recovery to the initial 
state begins. 

Various strategies used in automating problem 
solving, namely, forward or backward chaining, 
means-end analysis, least commitment approach can 
be realised using a transactional paradigm. 

To avoid cascade aborts we must ensure that 
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3. Transactional paradigm 

The transactional paradigm L! a concurrent 
programming paradigm. In order to understand its 
semantics- namely termination and confluence 
propeaties, we need to associate with it a basic 
computational model. Parallel computational models 
such as PRAM are basically derived from the Turing 
machine model. However, the Post production system 
model (and the related language) [2],[3] seems 
ideally suited to implement the transactional 
paradigm since the condition- action pair is realised 
through database- query, namely Read (or Refer) 
and Write (delete, insert or update) actions. 

3.1. Production systems 
The production system paradigm occupies 
a prominent place in AI. This system consists of a set 

of rewrite rules consisting of a left-hand-side 
expression (LHS) and a right-hand side- expression 
(RHS). Given any string drawn from a database that 
matches the LHS, the corresponding RHS is 
substituted. Thus we may substitute expressions, 
constants or null elements permitting update, 
evaluation, insertion or deletion1 operations. 

1. Monotonic : Here the application of one rule does 
not prevent the application of mother rule that could 
have also been applied at the time when the first rule 
was selected. 
2. Nonmonotonic: Here the application of one rule 
prevents the application of another rule. 
3.Partially commutative: If ithe application of a 
particular sequence of rules transforms the sytem 
from State 1 to State 2 , then m y  interleaved set of 
rules in the sequence would equally well do the same 
transformation from State 1 to State 2. 
4.Commutative: A system that is both monotonic and 
partially commutative is called commutative. Any 
problem that can be solved by any other production 
system can be solved by com:mutative system- but 
may not be efficiently. Non-monotonic commutative 
systems are useful for problems in which changes 
occur but can be reversed and the order in which 
operations occur is not critical. Non-partially 
commutative production systems are useful when 
irreversible changes occur; here the order is 
important. 

The implementation of a prodluction 
system operates in three-phase cycles: matching, 
selecting and execution. The cycle halts when the 
database fulfills a termination crondition. The task of 
match phase is similar to query matching - that is 
unification of the rules with the: database.This phase 
returns a conflict set that satisfies the conditions of 
different rules. In the select phase we select those 
compatible rules after conflict reso1ution.h the 
execution phase all selected rules are fired and 
actions are implemented. 

A crucial difference between ordinary conditionals 
( or guards ) and rules is that the left side of the rule 
is a set of existentially quantified predicates. That is 

Several types of production systems are used, 

the match is successful only if there are elements in 
the memory such that the predicates of positive 
condition elements are simultaneously satisfied and 
there are no elements that satisfy the predicates of the 
negated condition elements. Thus the interpreter does 
not simply test the expressions to determine whether 
they are true ; rather it engages in a search to bind 
variables in such a way to make the expression true. 
It is this characteristic of panern matching along with 
the dynamic size of the working memory, that gives 
the production systems their distinctive capabilities. 
In this sense it is more powerful than ordinary action 
systems (Section 1.3) and are as powerful as logic 
programs. Also such a rule is equivalent to the 
quantified assignment statement in Unity [12]. 

and execution phases thus: 
In the match phase,we can: 
1. match in parallel several partitions of the rule set. 
2.match several partitions of the database. 
In the execution phase,we can: 
1.execute several rule actions on the database 
elements if these are independentonter-rule actions) 
2. execute several instantiations of the same rule 
simultaneously. (Intra-rule actions). 

the computational basis for concurrent transactional 
programming we need to consider how to speed up 
the system by permitting multiple rule application 
concurrently. This would require the analysis of the 
rules as to how the rules (and hence the respective 
transactions) interfere with each other when they are 
applied. There are three ways in which the rules can 
interfere: [131, [141, El51, [161, [171. 
1. Enabling dependence (ED): Rule i and rule j are 
called enable dependent if the application( or firing) 
of Rule i updates (W) the elements of the database , 
and creates the required precondition that is read (R) 
by Rule j and causes it to fire. As a special case, the 
update can be either insertion (W+) or deletion (W-) 
of elements and the precondition of rule j to fire is 
respectively the presence (R+) or absence (R-) of 
those identical elements. (In parallel programming 
these WR, W+R+, W-R- type of dependences are 
called dataflow dependence). 
2.Inhibit dependence (ID): Rule 1 and rule 2 are 
called inhibit dependent if the application( or firing) 
of Rule 1 updates (W) the elements of the database , 
and disables the required precondition that is read 
(R) by Rule 2 and prevents it from fling. As a 
particular case, the updates can be either insertion 
(W+) or deletion (W-) of elements and the 
precondition of rule 2 to fire can be respectively the 
absence (R-) or presence (R+) of those elements. The 
WR ,W+R- or W- R+ type of dependences are 
called inhibit dependences. 
3. Opposition dependence (OD): Rule 1 and rule 2 
are opposition dependent if the firing of rule 1 
updates (W) or deletes(W-) or adds(W+) elements 
while rule 2 respectively overwrites (W) or simply 
adds(W+) or deletesw-) the same elements thereby 
interfering (In parallel programming this WW type 
of dependence is called data-output dependence). 

Parallelism can be achieved in match 

In order to use the production system as 
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The rules are called compatible , if they are not 
Inhibit dependent (ID) and not Opposition dependent 
(OD). The rules communicate either through Enable 
dependence (ED) or Inhibit dependence m). 
Remark:In conventional database transaction 
processing, we only consider updates and the 
conflicts considered are WR, RW or WW conflicts. 
In production system we have no RW conflicts 
(known as "data anti-dependence'' in parallel 
programming) because read or match phaseR 
happens only after execute phase W, except at the 
starting step, where we assume a dummy write action 
on a consistent initial database . Also we introduce 
special cases of update such as insert and delete 
actions , to maximize concurrency. Such a 
production system suits very well the needs of a 
distributed programming paradigm based on multisets 
Ell]. 

with vector, pipeline and data parallelism thus: 
1 .Vector paralle1ism:If all the rules are compatible 
and not communicative 
then we can apply all the rules simultaneously This is 
similar to vector parallelism. 
2.Pipeline parallelism: Here multiple rules are fired in 
parallel and passing data in a pipeline fashion. 
3. Data parallelism: Multiple instantiations of the 
same rule are fired in parallel based on distinct data. 

For practical programming problems it is better to 
choose a commutative production system since other 
systems have not yet been fully understood from the 
mathematical logical viewpoint. If we restrict the 
production system so that ID is not possible then we 
can construct a commutative system. One way to 
achieve this is by choosing the positive world of facts 
in T so that the LHS never refers to negated 
conditions. This is called the closed world 
assumption.The Gamma paradigm 1181 and its 
extension 1111 are based on the closed world 
assumption and corresponds to a commutative 
production system in which we do not check for 
absence of elements. 
Remark : The production rule systems can be 
extended to event driven systems [17]. The event 
driven production rule systems have the syntax: 
ON event 
IF (precondition) 
DO action 
In this case input events are R actions and the 
output events are W actions. Such an event driven 
production system is useful for mapping 
our Transactional Production system (TF'S) to 
distributed systems using communication primitives. 
We will consider this issue in a forthcoming paper. 
3.2. Implementing production systems 

rule execution on transactions: 
(Geppert et a1 [6] describes the rule-based 
implementation of the transaction model using 
brokers to realise subsystems called Common-object 
oriented request broker architecture (CORBA)). 
Method 1: A series of valid rule f i g s  is treated as a 
transaction : 

We can relate the parallelism in production rules 

There are two methods to map production 

This approach leads to a successive modification of 
elements in a database and is suitable only for 
sequential computation since it does not permit 
concurrency, cooperation or competition among the 
rules. 
Method 2: :Every rule that fires is identified as a 
transaction: 
This method .is more appealing, since we can find a 
direct correspondence between concurrency in 
transaction processing systems with concurrently 
enabled rule systems. Therefore much of the known 
results in concurrency control in transaction 
processing cm be directly applied.That is we can 
identify inter-rule and intra-rule consistency with 
inter - transaction and intra-transaction consistency. 
This aspect is useful for multiagent production 
systems in dismbuted computing. In using Method 2 
we can use the locks described in Section 3.3 for 
concurrency control. 

implemented using the multiple rule production 
systems the stxiahability of transactions guarantees 
correctness. However, note the difference between 
the ordinary database management system( DBMS) 
transactions and the paradigm we are using. The 
ordinary DBhdS transactions come from the outside 
world, whereas here in our Transactional Production 
system (TF'S) model, the instantiations are 
autonomous- that is being derived entirely from the 
rules and the current database state. Here, we check 
for internal consistency of both the rules and the 
database, while in the conventional DBMS 
transactions ,we are only concerned with the DBMS 
consistency with respect to its internal design 
specification. Hence, the act-verification strategy is 
embedded in this paradigm. In other words,while in 
the conventional DBMS situation we simply abort a 
transaction if it leads to inconsistency, in the TPS 
model we may modify or refine the rules to make 
them consiste,nt so that eventually the transactions do 
not get aborted and produce the desired results by 
proper termination and confluence. The application of 
TPS to creative algorithm development strategy and 
its similarity to proofs-as-programs paradigm [9] can 
be understood from this aspect. 
3.3 Compatibility locks 

When rule!; are identified as transactions operating 
on a database it is necessary to introduce locks to 
avoid conflicts and avoid incompatibility between 
different transactions trying to manipulate the same 
set of elements or an intersecting set of elements so 
as to produce a serializable schedule. This can be 
achieved using locks,timestamps or certifiers [4] . If 
locks are used and shared memory of data items are 
used then the locks are to be compatible. 

For database locking the locks are compatible only 
for R-R actions but not for R-W, W-R or W-W 
actions of two transactions for the same dataitem. In 
the case of rulle systems we split the W actions into 
two basic actions: add (W+) or delete (W-) objects, 
and split the R actions into two basic actions: namely 
referencing E'ositive(presence) precondition @+) or 
negative (absence) precondition (R-), to permit 

When the transactional paradigm is 
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higher concurrency. This res,ults in a new lock 
compatibility niatrix that is an enlarged version of 
the classical database lock compatibility matrix. This 
compatibility matrix is got from the compatibility 
conditions of rules so that they are neither OD nor ID. 
This matrix tells us the conditions under which the 
conflict resolution can be eliminated for some 
contexts to allow compatible d e s  ('yes' enmes) to 
execute concurrently. Note that the six 'no' enmes in 
this matrix reflects logical conflicts that can affect 
the serializability. For the ten entries 'yes' , the order 
of execution of the events is unimportant from the 
point of view of serialization of transactions. This is 
because successive addition of facts or deletion of 
facts and their eventual reading will not affect the 
consistency for these cases: (Note, however,that in a 
practical situation, hardware limitations may resmct 
these simultaneous actions). 
For two different rules i and j the compatibility 
matrix for the above four actions is given below: 

j 
W+ W- R+ R- 

i I  
W+I yes no yes no 
W- I no yes no yes 
R+I yes no yes yes 
R- I no yes yes yes 

LOCK COMPATIBILITY MATRIX 

Remark: If R+,R- are destnictive as in Gamma 
[ l l ] ,  [ 181,the above compatibility matrix is 
inapplicable and we need exclusive locks to resmct 
the concurrency among the actions. 

4. Derivation of an executable DATRAP 

The specification is the key feature to 
abstract program construction [191. Its precondition 
(or a priori condition) describes the initial states; its 
postcondition (or a posteriori condition) describes the 
final states. A specification is thus a condition and a 
post condition. We need to introduce the suitable 
actions in order to bring the final state to satisfy the 
postcondition through a set of transitions. 

we use the following rules: 
1. Transform the specification into an invariant (An 
invariant for a set of successively enabled rules is a 
logical formula that is true initially and is true when 
every enabled rule fires sequentially or in parallel) 
and a termination condition (where no two rules have 
any more ED and the invariant :is still true). 
2.Derive a pre- condition of a rule as a negation of 
the termination condition so that the precondition 
exhibits the desired local property that can be 
checked as a local operation. 
3.Devise the actions to modify the database in such a 
way that the termination conditions can be locally 
validated ,while maintaining the invariant. 
4. Ensure the confluence and termination of the 
rules : that is the associated ".actions commit and 
are serializable. Find the right topological sort that 

To systematically derive an executable DATRAP 

can provide best performance using a critical path 
analysis. (The application of the above rules produce 
the desired effect of ensuring that the union of all 
preconditions is logically equivalent to the negation 
of the termination condition and the union of all 
actions is equivalent to the termination condition and 
each action maintains the invariant in every rule.) 

To choose granuianty and levels of parallelism we 
need to split the precondition, action and post 
condition into a sequence of events. This is called 
refinement. In a refinement, a specification is 
improved by strengthening its postcondition so that 
the new post condition implies the old and weakening 
the precondition so that the old precondition implies 
the new. The refinement enables us to choose simpler 
actions. The stepwise refinement in DATRAP is 
carried out thus: 
1.Use a succession of transitions that can be executed 
by choosing several actions and move through a 
succession of states, where each state satisfies a priori 
and a posteriori conditions. 
2. Group the rules into subsets of rules called 
"context". 
3. Subdivide each context into subcontexts until the 
interaction between the rules in the same context is 
easy to understand. 
4Limit the interaction between contexts. Obviously 
for concurrent execution of two or more contexts, 
they must be compatible. 

5. Semantics of DATRAP 

The rule in DATRAP can be thought of as a pair 
(Q,M) where the query Q selects the objects from an 
active database that have to execute a specified 
method-call M . In other words, the DATRAP 
constructs procedures with preconditions and hence is 
best suited for realising all types of parallelism- 
agenda, specialist and result parallelism. 

Rule rule-name= (Query , method-call ). 
We can associate two types of execution semantics 
with DATRAP; these are called "set-based 
semantics" and "instance-based- semantics". In set- 
based semantics all the conflict-free objects are 
processed at a time, whereas in instance based 
semantics, one qualifying object is processed at a 
time. The choice between these two semantics 
depends on the underlying architecture and 
applications. Due to lack of space we will not 
consider these aspects any further. 

The implementation of rule based-system requires 
that the application of the rules eventually terminate 
and are confluent .Termination for a rule set is 
guaranteed if rule processing always reaches a stable 
state in which no rules will be enabled through 'false' 
conditions. Therefore rule processing does not 
terminate iff rules provide new conditions to fire 
indefinitely. Confluence means that for each initial 
database state the execution order is immaterial [20]. 
Confluency of rule sets is thus similar to confluency 
of rewrite systems [2], [21] except that the rule set 
behaviour is affected by the underlying database state 

The DATRAP can be defined by the syntax: 
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and a rule is confluent if it is confluent on all 
resulting database states. To analyse termination we 
can construct a rule-dependency graph ( RDG). Here 
each d e  Ri is denoted by a node and a directed arc 
between two nodes i and j indicate that Ri enables 
Rj; that is actions of Ri create the right conditions for 
Rj to fire. If the RDG has no cycles then the system 
terminates. 

those database states for which the dependency 
exists. This analysis involves the unification, 
substitution and renaming of bound variables. Baralis 
et al [22] provide the propagation rules for update, 
delete and insert actions when rule actions are 
relational algebraic operations. As in 1131 we can use 
Lambda calculus to construct dependency graphs. 

is determined from a topological sort or a linear 
extension of the RDG.This ensures confluence. In 
this topological sort two rules can be executed 
simultaneously iff they are not self - dependent and 
and are mutually independent. Independence implies 
that the order of execution of rules is immaterial. 
However, dependent rules need to be partially 
ordered to ensure serializability. 

The complexity of a distributed program can 
be reduced by constructing minimally dependent 
rules or maximally independent rules . 

To draw an edge between i and j we need to find 

The right partial order of rule execution 

6.Performance analysis of DATRAP 

The performance of a DATRAP depends upon 
the choice of a suitable topological sort that 
minimizes a certain objective. The usual scheduling 
objectives depend on the completion times of the 
jobs in the schedule, which also depends on 
the availability of resources [23],[24]. 

For improved perfomance of a DATRAP 
we must consider the optimal scheduling problem of 
a set of transactions,(Tl,T2 ,..., Tn) , on a set of 
processors (Pl,P2, ..., Pm) or agents where 
transactions are executed, and also a set of additional 
resources - such as registers/ cache, denoted by 
(R1,R2,..,RsJI that are required during their 
execution. A topological sort provides only an 
abstract partial order among the different transactions 
that result in a serializable multiagent program. Since 
it is not unique, we need to choose that topological 
sort which is optimal and allocate transactions to 
processors and agents in such a way to minimize 
traffic and computation time [ 231. 

7. Example 

Consider the problem of finding a lowest cost path 
between any two vertices in a directed graph whose 
edges have a certain assigned positive costs. 

entity set of vertices, the relationship set of ordered 
pairs of vertices (x,y) representing edges, and the 
amibute of cost c for each member of the relation set, 
denoted by (x,yc). Given a graph G the program 

The lowest cost path problem requires the 

should give for each pair of vertices (x,y) the smallest 
sum of costs path from x to y. 

to other vertitrs are required is called the root vertex 
r. Let c denote the cost between any two adjacent 
vertices x and y, and let s denote the sum of costs 
along the path from the root to y; we assume that c 
(and hence s) is positive.This information is 
described by the ordered 4-tuple( x,y,c,s); in general 
all the relationships among the different vertices are 
described by an appropriate 4-tuple format of the 
form:(vertex label, vertex label,cost, sum of costs 
from root). 

The fourth member of the 4-tuple, namely the sum 
of costs froim a specified root remains initially 
undefined and we set this to a large number *.We 
then use the production rules to modify these tuples 
or to remove ithem. 

To find the lowest cost path to all vertices from the 
specified root r, we use the TPS for the tuple 
processing <and let the 4-tuples interact; this 
interaction reisults in either the generation of modified 
4-tuples or Ihe removal of some 4-tuples of the 
representation. 
Specification to find the shortest path: 
Let C(ij) be the cost of path (ij). A better path is one 
for which 
that can pass through some vertex k such that: 

That is our production rule is: If C(i,k) +C(kj) < 
C(ij) then 
delete C(ij) and set C(i j) = C(i,k) +C(kj). 
The invariant is: if C(ij) is the initial cost then all the 
costs are always less than or equal to C(ij) 
We refine this by using the rule : If C(i,k) < C(p,k) , 
delete C@&) and retain C(i,k). Thus the following 
three production rules result: 
Rule 1: If there are tuples of the form (r,r,O,O) and 
(r,y,c,*), replace (r,y,c,*) by (r,y,c,c) and retain 
(r,r,O,O). 
Rule 1 defines the sum of costs for vertices adjacent 
to the root, by deleting * and defining the values. 
Rule 2: If there are tuples of the form (x,y ,c 1 ,s 1) and 
(y,z,c2,s2), where s2 > sl+c2 then replace (y,z,c2,s2) 
by (y,z,c2,sl+c2); else do nothing. 
Rule 2 states that if s2 > sl+c2 we can find a lower 
cost path to z through y. 
Rule 3:If there are tuples of the form (x,y,cl,sl) and 
(z,y,c2,s2) and if s l< s2 , then remove (z,y,c2,s2) 
from the tuple set; else do nothing. 
Rule 3 states that for a given vertex y which has two 
paths-one from x and another from z, we can 
eliminate that 4-tuple that has a higher sum of costs 
from the root. 

The above three rules provide for nondeterministlc 
computation by many agents and we are left with 
those tuples that describe precisely the lowest cost 
path from the: root. Note that the application of these 
rules correspond to binding constants to variables. In 
fact a variable shared across two or more patterns 
indicates the equivalent of a JOIN operation in 
databases- that is finding two different tuples that 
share a value across certain attributes. 

The vertex from which the lowest cost paths 

C(i,k) +C(kj) < C(ij) 
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This process of substitution that make a 
well-formed formula match by assigning values to 
variables x and y is called unification in logic-based 
computing. Also the unification and reduction 
constitute important ingredients in distributed 
computing through several agents. They must lead to 
termination after a finitely many steps and different 
reduction order should lead to the same object 
(uniqueness). 
Consider the directed graph, in which the edge costs 
are as shown below ; we denote the graph by the 
triplet (x,y,c): 
(1 ~,50);(1.3.10);(1,5.45);(2.3,15);(2,5,10>; 
(3,415); (4220); (4,5,35); (5,433; ( 6 9 3 .  
We encode the graph by choosing the vertex 1 as the 
rooc the format for representing the graph is given 
by : (vertex label, vertex label, cost, sum of costs 

from root). 
(1,1,0,0);(1,2,50,*);(1,3,m,*);(1,5,45,*); (23, IS,*); 
(2,5,10,*);(3,4,a5,*);(4,220,'); (4,5,35,*); (5,4,30,*); 
(6,4.3,*). 
We then apply the three rules nondeterministically. 
This results in the following tuples that describe the 
lowest cost path subgraph .(l,l,O,O); (1,3,10,10) 
;(1,5,45,45); (3,4,1525) ;(4,2,20,45). Note that the 4- 
tuple (6,4,3,*) gets eliminated as vertex 6 cannot be 
reached from the root vertex 1. 

8. Distributed agent programming 

easily modified to carry out dismbuted programming 
using messages (a dismbuted agent computation). 

A distributed agent computation is a 
distributed computation with the following features: 
1. Each agent can be active or inactive 
2. An active agent can do local computation , send 
and receive messages and can spontaneously become 
inactive. 
3. An inactive agent becomes active if and only if it 
receives a message. 
4. Initially all agents are inactive except for a 
specified one which initiates the computation. 
The production rules described in Section 7 can be 

modified to perform distributed agent computation. 
In order to implement a production system in 

a distributed agent system, we must distribute the 
rules suitably so that rules are asynchronously fred. 
Since there is no global control , interference between 
different rules is to be prevented by using local 
synchronization among the different agents. 
In particular we must be able to carry out the 
unification operation (or join) , namely the binding of 
constants to variables at different agents and carry out 
the required operations locally and transmit the 
information globally using neighbourhood agent 
communication. That is the unification is partitioned 
into fragments. 

shared memory is not used, the tuple messages are to 
be compared locally in each agent and the revised 
information is transmitted globally. Therefore the 

The production rule approach can be 

We must, however, remember that since 

algorithm terminates or stabilizes when all the agents 
remain silent. 

path problem (Section 7). We assume that there are 
n agents having identical names as the nodes in the 
graph and each agent is connected to other agents in 
an isomorphic manner to the given graph. Such an 
assumption on the topology of the network simplifies 
the algorithm. Here, each agent knows the identity of 
its neighbours, the direction and cost of connection of 
the outgoing edge. Thus for the given directed graph 
the outdegree of each node is the number of sending 
channels and the indegree is the number of receiving 
channels.The revised production rules for the 
distributed agent computation are as follows: 
a. Agent 1 (root) sends to all its neighbours x the 
tuple (I,x,c,c) describing the name of the root, and 
the distance of x from the root (c); all the neighbours 
of the root handshake, receive, and store it. This 
corresponds to seeding the reaction. 
b. Each agent x sends its neighbour y at a distance cl  
from it,the tuple (x,y,cl,c+cl) describing its name, 
its distance to y and the distance of y from the root 
through x using its distance to the root c. 
c. Each agent y compares an earlier tuple (x,y,cl,sl) 
got from a neighbour x, or the root, with the new 
tuple (z,y,cl',sl') from another neighbour z. If SI<  
sl', then y retains (x,y,cl,sl) and remains silenc else 
it stores (z,y,cl',sl') and sends out the tuple 
(y,w,c2,sl'+c2) to its neighbour w at a distance c2, 
advising w to revise its distance from the root. 
d. An agent does not send messages if it receives 
messages from other process that tells a higher value 
for its distance from the root and ignores the 
message. Thus it contains only the lowest distance 
from the root. All the agents halt when no more 
messages are in circulation and the system stabilizes. 
It is possible to devise an algorithm to detect 
termination. This will be described elsewhere. 

distributed transaction processing [4],[25]. Since the 
order of arrival of different tuples in the agent nodes 
is nondeterministic, we need to prove that the 
computation terminates and reduces to a unique 
object Note that the distributed computing amounts 
to choosing different orders of unification and 
reduction sequences at each node. That is at each 
node the final outcome would be the same 
irrespective of any intermediate decisions. This is 
called "serializability "in transaction processing [4]. 
In mathematical logical term this is essentially a 
"confluence property" that stabilizes the computation 
eventually. This is also related to the "Church-Rosser 
property" in a lattice [21]. 

9. Concluding remarks 

As an example, we consider the shortest 

The above approach is analogous to 

In summary, the transactional approach is the key 
to develop a distributed agent programming 
paradigm, since it provides for : 
l .A programming methodology free from control 
management. The transactional implementation of 
rules provides for high concurrency on a database of 
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active objects represented by high level data 
structures, 
2. The application of locality principle in program 
construction; formal spe-afic;ltinn and refinenent 
calculus calculus can provide for the choice of 
appropriate granularity of transactions and the level 
of parallelism; also, using rule-dependency graphs, 
we can prove termination and confluence (that is 
preservation of semantics) and choose the right 
partial order of execution through a topological sort. 
3. The choice of an appropriate topological sort 
provides for high degree of concurrency in program- 
processor mapping and implementation in distributed 
machines and improved performance. 
4.The use of Linda and PVM to simulate distributed 
agent systems [26]. 

The transactional paradigm will have applications 
in multi-agent production system programming 
[271,[28]. A multiagent production system consists of 
agents that serve as processes, functions, relations or 
constraints depending upon the context. In a 
concurrent programming situation, a computation 
state consists of a group of agents and store they 
share. Agents may add pieces of information to the 
store through an operation called "telling" and also 
wait for receive information through an operation 
called "asking". The telling operation corresponds to 
W+ or W- while the asking operation corresponds to 
R+ or R- actions. Thus the transactional approach can 
provide a conceptual framework for the development 
of parallel and distributed relational, constrained and 
contextual programs using multiagent architectures. 

References 

[ l ]  V.K. Murthy and E.V. Krishnamurthy, 
Automating Problem Solving using transactional 
paradigm, Proc. Intl. Conf. on AI & Expert Systems, 
721-729, Gordon Breach Publ., USA, 1995. 
[2lE.V.Krishnamurthy, Introductory Theory of 
Computer Science, Springer Verlag, New York,1984. 
[31 E.Rich and K.Knight, Artificial Intelligence, 
McGraw Hill, New YorkJ991. 
[4] E.V.Krishnamurthy and V.K.Murthy, Transaction 
Processing Systems, Prentice Hall, Sydney, 1991. 
[51 A.J.Bonner and M. Kifer, Application of 
transaction logic to knowledge representation, 
Lecture Notes in Computer Science, Temporal Logic, 

161 A. Geppert and K.R.Dittrich, Rule based 
implementation of transactional model specification, 
pp. 127-143, in Rules in Database Systems, Editors: 
N.Paton and M.H.Williams, Springer Verlag, New 
York, 1994. 
[7] J-Y. Girard. Linear Logic: A Survey, pp.63-112, 
in Logic and Algebra of Specification, Edtors: 
F.L.Bauer and W.Brauer, Springer Verlag, New 
York, 1993. 
181 U.Montanari and F.Rossi, Concurrency and 
concurrent constraint programming, Lecture Notes In 
computer Science, Vo1.910, pp.171-192, Springer 
Verlag, New York.1995. 

V01.827. pp.67-81, 1994. 

[9] FLBauer and W.Brauer, Logic and Algebra of 
Specification, Springer Verlag, New York, 1993. 
[ 101 B. Jonsson, Compositional Specification and 
verification of distributed systems, ACM Trans. 
Programming languages and Systems, Vol. 16, 

Ell] V.K. Murthy and E.V. Krishnamurthy, 
Probabilistic Parallel Programming based on multiset 
transformation, Future Generation Computer 
Systems, Vol.11, pp.283-293,1995. 
[ 121 K.M.C handy and J.Misra, Parallel Program 
Design, Addison Wesley, New York,1990. 
[13] J.G. Schmolze, Guaranteeing Serializable results 
in Synchronous parallel production systems, J. 
Parallel and tiistributed computing, Vo1.13,348-365 , 
199 1. 
[14] S. Kuo and D. Moldovan, implementation of 
multiple rule firing production systems on hypercube, 
J. Parallel and distributed computing, Vo1.13, 383- 
394,1991. 
[l5] S.Kuo and D.Moldovan, The state of the art in 
parallel production systems, J. Parallel and 
distributed computing, Vol. 15,l-26,1992 
[ 161 T.Ishida, Parallel, Distributed and multlagent 
Production Systems, 
Lecture Notes in Computer Science,Vol. 890, 
Springer Verlag, New York, 1991. 
1171 N.W.Pai:on and M.H.Williams, Rules in database 
Systems, Springer Verlag, New York, 1994. 
[183 J.-P.Bania@e and DLMe'tayer. Programming by 
Multiset transformation, Comm. ACM, Vo1.36, 98- 
111, 1993. 
[191 C. Morgan, Programming from Specificauon, 
Prentice Hall, Englewood Cliffs, New York, 1994. 
1201 L.van der Voort and S.A. Siebes, Enforcing 
confluence of rule execution: pp.195-207, in Rules in 
Database systems, Editors: N.W.Paton and 
M.H..Willianns, Springer Verlag, New York, 1993. 
[21]E.V.Krishnamurthy, Parallel Processing ,Addison 
Wesley, Reading, Mass. 1989. 
[223 E. Baralis and S.Ceri, Better termination analysis 
for active databases, pp.164-179, in Rules in database 
Systems, Editors: N.W.Paton and M.H.Williams, 
Springer Verlag, New York,1994. 
[23] V.K.Murthy and E.V.Krishnamurthy, 
Transactional Paradigm: Applications to Distributed 
Programming. IEEE .Conf. Alg.Arch, Brisbane, 

[24] I.Riva1, Algorithms and Order, Kluwer 
Academic Publishers, London, 1989. 
[25] V.K. Murthy and E.V. Krishnamurthy, Gamma 
programming paradigm and heterogeneous 
computing, Proc. Hawaii Intl. Conf. on System 
Sciences, HICSS29,273-281, IEEE Press, 1996. 
[26] A.Geist et al. PVM: Parallel Virtual Machine, 
MIT Press, 1994. 
[27] T. Wittig, ARCHON: An architecture for 
multiagent systems, Ellis Horwood, New York,1992. 
[28] M.Woollridge and N.RJennings, Agent theories, 
Architectures and Languages, A survey, Lecture 
Notes in Computer Science,Vol. 890, pp.1-39,1995. 

~p.259-303, 1994. 

pp.554-558, 1995. 

71 


