
Transactional Programming for
Distributed Agent Systems

V.K. Murthy
School (of Information Technology and Mathematical Sciences,

Uniiversity of Ballarat, Ballarat, Victoria 3353, Australia

Abstract

A new multiagent programming paradigm based on
the transactional logic model' is developed. This
paradigm enables us to construct a Distributed agent
transactional program (DATRAP). Such a
construction is carried out in two stages: first
expressing a program into a production rule system ,
and then converting the rule applications into a set of
transactions on a database of active objects
represented using high-level datastructures. The
formal specification ana' refinement calculus are key
features in the development of a DATRAP. We also
indicate how to specify granularity of parallelism and
also achieve several opes of parallelism. One can
associate with a DATRAP two different types of
execution semantics called set-based and instance-
based semantics. We also show how to prove
correctness of DATRAP, achieve maximal
concurrence and reduce the complexity of a
distributed program.

1. Introduction

The interplay between artificidi intelligence(AI)
and software engineering has led to an extremely
useful area of research that has commercial and
industrial applications. In particular, the problem
involved in the design of a distributed agent program
is analogous to the distributled problem solving
paradigm in AI, where given an initial state of a
problem we attempt to reach the goal by passing
through a sequence of subgoals by applying a set of
production rules [l], [2], [31. Hence, the AI problem
solving paradigm can be alpplied to devise a
distributed agent program, if each program is
converted to a set of production rules and the rules
are implemented as transactions acting on a database
of active objects (represented using high-level
datastructures), that describe the initial state, the
intermediate states and the final s w e of the program.
The realisation of production rule applications as
transactions will be referred it0 as a "Distributed
Agent Transactional Program" (DATRAP). In a
DATRAP, rule conditions are expressed as queries,
while rule actions contain algebiaic description of the
operations performed on the dalabase. Thus the state
of computation consists of a collection of named
values in an active database, where the names
correspond to variables and the values are assigned
from the problem domain. A state maps the variable

to its corresponding value. The initial state specifies
the initial condition of the problem, while the final
state specifies the result. The rule actions activate the
database through a successsion of states (transitions).
The query or condition and updates or actions can be
expressed using first order logic formula or
equivalently by relational expressions.

It is well known that [4] a transaction has the four
properties - called ACID properties: Atomicity
(indivisibility and either all or no actions or carried
out), Consistency (before and after the execution of a
transaction), Isolation (no interference among the
actions), Durability (recovery under failure and
achieving consistency). The transactional
programming paradigm can hence provide for
cooperation among competing actions or processes,
by resolving conflicts due to data dependence and
resource dependence.

a logical model called the transactional logic model
with three basic components [5] :
1. A database D which expresses facts in first order
logic; that is, the content of the database is specified
as a list of predicates, with specific bindings
(substitution of constant values) for all its arguments.
2. A set S of transitions (elementary actions); S is
more like ground rules free of any variables or atomic
formula, called the name of the transition.
3. A set T of formula in first order logic called
"Transactional formula or transactions" that
formulate queries and update the database D using set
S. (We assume that a query does not update the
database). Thus T contains rules defining queries and
updates tells us what to do using primitive actions
from S and changes D; The functions used in S can
be absorbed by T, if necessary. The database D is
independent of T. That is D does not define
predicates in terms of transactions; or the predicate
symbols occurring in rule-heads in T cannot occur as
rule bodies in D.
1.1 Operators in transactional logic
The logic of transactional paradigm is an action
logic paradigm that differs from the classical situation
logic paradigm. Here, we need a new connective
called "serial succession operator" to specify total
order, namely a particular action has to temporally
precede a particular action. This operator is denoted
by $: for example x$y says; do x before and then do
y. The $ operator therefore takes into account the side
effects due to performing action x before and doing
action y after. That is action x serves as precondition

Associated with the transactional paradigm is

0-8186-7267-6/96 $05.00 0 1996 IEEE
64

for action y, and realizing action y is a post condition
for action x. In practical terms, $ sets up an a priori
consistency for b and this ensures serializability of
transactions. This operator $ can combine two
successive subgoals or paths that lead to a solution.
Note that $ is more general than the conventional
conjunction 'And' that is applicable to the two paths
or subgoals simultaneously. Also note that $ can be
identified with the action "Begin-on-Commit'' (BCD)
[6] which states that the Action b can only begin after
a commits. This action is denoted by b BCD a; if a is
not Committed then b is rejected. Similar operators
have been suggested in linear logic [71.

called 'serial choice" operator %- that permits choice
of one or the other action path in a serial path, but not
both. The combinator term a % b means: choose
action a now or choose action b after.
The serial connectives are useful in problem solving
using transactional pardigm, where preconditions
mgger actions. These operators lead to Serial Hom
clauses that can specify a context in a production
system [8]. Also these operators can describe
concepts such as partial order and serializability.

posteriori consistency as in:"End(Commit) b only
after a (Commits) ends" denoted by a#b.This is a
conditional synchronization and describes a
cooperative schedule (casacade abort free and
recoverable) . In ACTA [6] this is equivalent to the
Strong Commit action (SCD) :b SCD a; which
means, if a commits b commits as well.
Remark: The operator $ is similar to (,) in
PROLOG but not identical ; the functor (,) specifies
conjunction of goals; e.g. X,Y: the goal X,Y
succeeeds if X succeeds and Y succeeds. If X
succeeds and Y fails then, then an attempt is made to
resatisfy X. If X fails the whole conjunction fails.
This is the essence of backtracking. However, Prolog
does not undo updates while backtracking. So we
need to modify Prolog in order to introduce the
Transaction logic approach.

The operator(:) in Prolog specifies a disjunction: if
X and Y are goals then X;Y succeeds if X or Y
succeeds; again % resembles (;) but they are not
identical since Prolog does not undo updates in
backtracking. Essentially we need to undo all $ and
% actions if the total chain fails.

We can associate with $, a dual operator

We also use another operator # for a

12. Serializability, cooperation and recovery

concerned with the conflict equivalence of an
interleaved schedule to a serial schedule (namely, the
conflicting actions in the non- aborted transactions
are performed in the same temporal order). Hence it
ensures a priori (means :from what is before)
consistency in a competitive environment (or
provides for the well-being of an individual
transaction).
However, this does not ensure

how other transactions that read from a given
transaction in a schedule have been affected and what
steps are to be taken to ensure them to be healthy,

The notion of serializability is essentially

free from abort and are recoverable (well-being of a
set of interleaved transactions, called a schedule)
after a transraction terminates. This provides for a
cooperative environment. In order to make a
schedule recoverable, we need to ensure that a
transaction j that read(R) from a write(W) of a
transaction i, must ensure that j is committed (C) only
after i commits. This is a posteriori (from what comes
after) consistency check.

a transaction j always reads a committed transaction i.
Strict schedulles (S) are schedules in which all reads
and writes for any object take place only after those
transactions that wrote the object have committed or
aborted; this (ensures the restorability of values. The
set of recovemble schedules contains the set of
cascadeabont-free schedules (CA) and CA contans
the set of strict schedules [4].

We call a set of tmnsactions cooperative if they are
helping each other and prevent chain aborts and allow
each other tal recover under failure. Strict schedules
try to optirmize cooperation and competition.
However, they may not be serializable. The class of
serial schedules is properly contained within both the
classes of serializable and the strict schedules. To
maximize concurrency we must find a class of
competing schedules larger than the class of serial
schedules and yet cooperative [41.
Remark: There are some interesting correspondences
between the Transactional and action paradigms
[9],[101. These will be discussed elsewhere.

2. Transactional problem solving

Problem solving consists in finding a partially
ordered sequence of application of desired operators
that can transform a given initial state to a desired
final state - called goal. Reaching a goal through a
sequence of totally ordered subgoals- is called a
linear solution. For many problems a totally ordered
concatenation of subgoals may not exist. Such
problems require a nondeterministic search. A
solution based on a nondeterministic search is called
a nonlinear solution. Such a solution uses an act -
venfy strategy. Human problem solving also uses
this strategy through preconditions and actions. The
transactional paradigm provides for an act and verify
strategy by offering a nonprocedural style of
programming: (called 'subjunctive programming')
in which a hypothetical action (what if changes)
is followed by verification and restoration. So this
paradigm is well-suited for a nondeterministic /
probabilistic solutions [Ill. If the granuiatities of the
transactions are chosen suitably we can provide for
maximum cooperation among competing subgoals.

The subjunctive program uses a tentative execution;
if the condition is safe the actions are made
permanent el,% aborted and the recovery to the initial
state begins.

Various strategies used in automating problem
solving, namely, forward or backward chaining,
means-end analysis, least commitment approach can
be realised using a transactional paradigm.

To avoid cascade aborts we must ensure that

65

3. Transactional paradigm

The transactional paradigm L! a concurrent
programming paradigm. In order to understand its
semantics- namely termination and confluence
propeaties, we need to associate with it a basic
computational model. Parallel computational models
such as PRAM are basically derived from the Turing
machine model. However, the Post production system
model (and the related language) [2],[3] seems
ideally suited to implement the transactional
paradigm since the condition- action pair is realised
through database- query, namely Read (or Refer)
and Write (delete, insert or update) actions.

3.1. Production systems
The production system paradigm occupies
a prominent place in AI. This system consists of a set

of rewrite rules consisting of a left-hand-side
expression (LHS) and a right-hand side- expression
(RHS). Given any string drawn from a database that
matches the LHS, the corresponding RHS is
substituted. Thus we may substitute expressions,
constants or null elements permitting update,
evaluation, insertion or deletion1 operations.

1. Monotonic : Here the application of one rule does
not prevent the application of mother rule that could
have also been applied at the time when the first rule
was selected.
2. Nonmonotonic: Here the application of one rule
prevents the application of another rule.
3.Partially commutative: If ithe application of a
particular sequence of rules transforms the sytem
from State 1 to State 2 , then m y interleaved set of
rules in the sequence would equally well do the same
transformation from State 1 to State 2.
4.Commutative: A system that is both monotonic and
partially commutative is called commutative. Any
problem that can be solved by any other production
system can be solved by com:mutative system- but
may not be efficiently. Non-monotonic commutative
systems are useful for problems in which changes
occur but can be reversed and the order in which
operations occur is not critical. Non-partially
commutative production systems are useful when
irreversible changes occur; here the order is
important.

The implementation of a prodluction
system operates in three-phase cycles: matching,
selecting and execution. The cycle halts when the
database fulfills a termination crondition. The task of
match phase is similar to query matching - that is
unification of the rules with the: database.This phase
returns a conflict set that satisfies the conditions of
different rules. In the select phase we select those
compatible rules after conflict reso1ution.h the
execution phase all selected rules are fired and
actions are implemented.

A crucial difference between ordinary conditionals
(or guards) and rules is that the left side of the rule
is a set of existentially quantified predicates. That is

Several types of production systems are used,

the match is successful only if there are elements in
the memory such that the predicates of positive
condition elements are simultaneously satisfied and
there are no elements that satisfy the predicates of the
negated condition elements. Thus the interpreter does
not simply test the expressions to determine whether
they are true ; rather it engages in a search to bind
variables in such a way to make the expression true.
It is this characteristic of panern matching along with
the dynamic size of the working memory, that gives
the production systems their distinctive capabilities.
In this sense it is more powerful than ordinary action
systems (Section 1.3) and are as powerful as logic
programs. Also such a rule is equivalent to the
quantified assignment statement in Unity [12].

and execution phases thus:
In the match phase,we can:
1. match in parallel several partitions of the rule set.
2.match several partitions of the database.
In the execution phase,we can:
1.execute several rule actions on the database
elements if these are independentonter-rule actions)
2. execute several instantiations of the same rule
simultaneously. (Intra-rule actions).

the computational basis for concurrent transactional
programming we need to consider how to speed up
the system by permitting multiple rule application
concurrently. This would require the analysis of the
rules as to how the rules (and hence the respective
transactions) interfere with each other when they are
applied. There are three ways in which the rules can
interfere: [131, [141, El51, [161, [171.
1. Enabling dependence (ED): Rule i and rule j are
called enable dependent if the application(or firing)
of Rule i updates (W) the elements of the database ,
and creates the required precondition that is read (R)
by Rule j and causes it to fire. As a special case, the
update can be either insertion (W+) or deletion (W-)
of elements and the precondition of rule j to fire is
respectively the presence (R+) or absence (R-) of
those identical elements. (In parallel programming
these WR, W+R+, W-R- type of dependences are
called dataflow dependence).
2.Inhibit dependence (ID): Rule 1 and rule 2 are
called inhibit dependent if the application(or firing)
of Rule 1 updates (W) the elements of the database ,
and disables the required precondition that is read
(R) by Rule 2 and prevents it from fling. As a
particular case, the updates can be either insertion
(W+) or deletion (W-) of elements and the
precondition of rule 2 to fire can be respectively the
absence (R-) or presence (R+) of those elements. The
WR ,W+R- or W- R+ type of dependences are
called inhibit dependences.
3. Opposition dependence (OD): Rule 1 and rule 2
are opposition dependent if the firing of rule 1
updates (W) or deletes(W-) or adds(W+) elements
while rule 2 respectively overwrites (W) or simply
adds(W+) or deletesw-) the same elements thereby
interfering (In parallel programming this WW type
of dependence is called data-output dependence).

Parallelism can be achieved in match

In order to use the production system as

66

The rules are called compatible , if they are not
Inhibit dependent (ID) and not Opposition dependent
(OD). The rules communicate either through Enable
dependence (ED) or Inhibit dependence m).
Remark:In conventional database transaction
processing, we only consider updates and the
conflicts considered are WR, RW or WW conflicts.
In production system we have no RW conflicts
(known as "data anti-dependence'' in parallel
programming) because read or match phaseR
happens only after execute phase W, except at the
starting step, where we assume a dummy write action
on a consistent initial database . Also we introduce
special cases of update such as insert and delete
actions , to maximize concurrency. Such a
production system suits very well the needs of a
distributed programming paradigm based on multisets
Ell].

with vector, pipeline and data parallelism thus:
1 .Vector paralle1ism:If all the rules are compatible
and not communicative
then we can apply all the rules simultaneously This is
similar to vector parallelism.
2.Pipeline parallelism: Here multiple rules are fired in
parallel and passing data in a pipeline fashion.
3. Data parallelism: Multiple instantiations of the
same rule are fired in parallel based on distinct data.

For practical programming problems it is better to
choose a commutative production system since other
systems have not yet been fully understood from the
mathematical logical viewpoint. If we restrict the
production system so that ID is not possible then we
can construct a commutative system. One way to
achieve this is by choosing the positive world of facts
in T so that the LHS never refers to negated
conditions. This is called the closed world
assumption.The Gamma paradigm 1181 and its
extension 1111 are based on the closed world
assumption and corresponds to a commutative
production system in which we do not check for
absence of elements.
Remark : The production rule systems can be
extended to event driven systems [17]. The event
driven production rule systems have the syntax:
ON event
IF (precondition)
DO action
In this case input events are R actions and the
output events are W actions. Such an event driven
production system is useful for mapping
our Transactional Production system (TF'S) to
distributed systems using communication primitives.
We will consider this issue in a forthcoming paper.
3.2. Implementing production systems

rule execution on transactions:
(Geppert et a1 [6] describes the rule-based
implementation of the transaction model using
brokers to realise subsystems called Common-object
oriented request broker architecture (CORBA)).
Method 1: A series of valid rule f i g s is treated as a
transaction :

We can relate the parallelism in production rules

There are two methods to map production

This approach leads to a successive modification of
elements in a database and is suitable only for
sequential computation since it does not permit
concurrency, cooperation or competition among the
rules.
Method 2: :Every rule that fires is identified as a
transaction:
This method .is more appealing, since we can find a
direct correspondence between concurrency in
transaction processing systems with concurrently
enabled rule systems. Therefore much of the known
results in concurrency control in transaction
processing cm be directly applied.That is we can
identify inter-rule and intra-rule consistency with
inter - transaction and intra-transaction consistency.
This aspect is useful for multiagent production
systems in dismbuted computing. In using Method 2
we can use the locks described in Section 3.3 for
concurrency control.

implemented using the multiple rule production
systems the stxiahability of transactions guarantees
correctness. However, note the difference between
the ordinary database management system(DBMS)
transactions and the paradigm we are using. The
ordinary DBhdS transactions come from the outside
world, whereas here in our Transactional Production
system (TF'S) model, the instantiations are
autonomous- that is being derived entirely from the
rules and the current database state. Here, we check
for internal consistency of both the rules and the
database, while in the conventional DBMS
transactions ,we are only concerned with the DBMS
consistency with respect to its internal design
specification. Hence, the act-verification strategy is
embedded in this paradigm. In other words,while in
the conventional DBMS situation we simply abort a
transaction if it leads to inconsistency, in the TPS
model we may modify or refine the rules to make
them consiste,nt so that eventually the transactions do
not get aborted and produce the desired results by
proper termination and confluence. The application of
TPS to creative algorithm development strategy and
its similarity to proofs-as-programs paradigm [9] can
be understood from this aspect.
3.3 Compatibility locks

When rule!; are identified as transactions operating
on a database it is necessary to introduce locks to
avoid conflicts and avoid incompatibility between
different transactions trying to manipulate the same
set of elements or an intersecting set of elements so
as to produce a serializable schedule. This can be
achieved using locks,timestamps or certifiers [4] . If
locks are used and shared memory of data items are
used then the locks are to be compatible.

For database locking the locks are compatible only
for R-R actions but not for R-W, W-R or W-W
actions of two transactions for the same dataitem. In
the case of rulle systems we split the W actions into
two basic actions: add (W+) or delete (W-) objects,
and split the R actions into two basic actions: namely
referencing E'ositive(presence) precondition @+) or
negative (absence) precondition (R-), to permit

When the transactional paradigm is

67

higher concurrency. This res,ults in a new lock
compatibility niatrix that is an enlarged version of
the classical database lock compatibility matrix. This
compatibility matrix is got from the compatibility
conditions of rules so that they are neither OD nor ID.
This matrix tells us the conditions under which the
conflict resolution can be eliminated for some
contexts to allow compatible d e s ('yes' enmes) to
execute concurrently. Note that the six 'no' enmes in
this matrix reflects logical conflicts that can affect
the serializability. For the ten entries 'yes' , the order
of execution of the events is unimportant from the
point of view of serialization of transactions. This is
because successive addition of facts or deletion of
facts and their eventual reading will not affect the
consistency for these cases: (Note, however,that in a
practical situation, hardware limitations may resmct
these simultaneous actions).
For two different rules i and j the compatibility
matrix for the above four actions is given below:

j
W+ W- R+ R-

i I
W+I yes no yes no
W- I no yes no yes
R+I yes no yes yes
R- I no yes yes yes

LOCK COMPATIBILITY MATRIX

Remark: If R+,R- are destnictive as in Gamma
[l l] , [181,the above compatibility matrix is
inapplicable and we need exclusive locks to resmct
the concurrency among the actions.

4. Derivation of an executable DATRAP

The specification is the key feature to
abstract program construction [191. Its precondition
(or a priori condition) describes the initial states; its
postcondition (or a posteriori condition) describes the
final states. A specification is thus a condition and a
post condition. We need to introduce the suitable
actions in order to bring the final state to satisfy the
postcondition through a set of transitions.

we use the following rules:
1. Transform the specification into an invariant (An
invariant for a set of successively enabled rules is a
logical formula that is true initially and is true when
every enabled rule fires sequentially or in parallel)
and a termination condition (where no two rules have
any more ED and the invariant :is still true).
2.Derive a pre- condition of a rule as a negation of
the termination condition so that the precondition
exhibits the desired local property that can be
checked as a local operation.
3.Devise the actions to modify the database in such a
way that the termination conditions can be locally
validated ,while maintaining the invariant.
4. Ensure the confluence and termination of the
rules : that is the associated ".actions commit and
are serializable. Find the right topological sort that

To systematically derive an executable DATRAP

can provide best performance using a critical path
analysis. (The application of the above rules produce
the desired effect of ensuring that the union of all
preconditions is logically equivalent to the negation
of the termination condition and the union of all
actions is equivalent to the termination condition and
each action maintains the invariant in every rule.)

To choose granuianty and levels of parallelism we
need to split the precondition, action and post
condition into a sequence of events. This is called
refinement. In a refinement, a specification is
improved by strengthening its postcondition so that
the new post condition implies the old and weakening
the precondition so that the old precondition implies
the new. The refinement enables us to choose simpler
actions. The stepwise refinement in DATRAP is
carried out thus:
1.Use a succession of transitions that can be executed
by choosing several actions and move through a
succession of states, where each state satisfies a priori
and a posteriori conditions.
2. Group the rules into subsets of rules called
"context".
3. Subdivide each context into subcontexts until the
interaction between the rules in the same context is
easy to understand.
4Limit the interaction between contexts. Obviously
for concurrent execution of two or more contexts,
they must be compatible.

5. Semantics of DATRAP

The rule in DATRAP can be thought of as a pair
(Q,M) where the query Q selects the objects from an
active database that have to execute a specified
method-call M . In other words, the DATRAP
constructs procedures with preconditions and hence is
best suited for realising all types of parallelism-
agenda, specialist and result parallelism.

Rule rule-name= (Query , method-call).
We can associate two types of execution semantics
with DATRAP; these are called "set-based
semantics" and "instance-based- semantics". In set-
based semantics all the conflict-free objects are
processed at a time, whereas in instance based
semantics, one qualifying object is processed at a
time. The choice between these two semantics
depends on the underlying architecture and
applications. Due to lack of space we will not
consider these aspects any further.

The implementation of rule based-system requires
that the application of the rules eventually terminate
and are confluent .Termination for a rule set is
guaranteed if rule processing always reaches a stable
state in which no rules will be enabled through 'false'
conditions. Therefore rule processing does not
terminate iff rules provide new conditions to fire
indefinitely. Confluence means that for each initial
database state the execution order is immaterial [20].
Confluency of rule sets is thus similar to confluency
of rewrite systems [2], [21] except that the rule set
behaviour is affected by the underlying database state

The DATRAP can be defined by the syntax:

68

and a rule is confluent if it is confluent on all
resulting database states. To analyse termination we
can construct a rule-dependency graph (RDG). Here
each d e Ri is denoted by a node and a directed arc
between two nodes i and j indicate that Ri enables
Rj; that is actions of Ri create the right conditions for
Rj to fire. If the RDG has no cycles then the system
terminates.

those database states for which the dependency
exists. This analysis involves the unification,
substitution and renaming of bound variables. Baralis
et al [22] provide the propagation rules for update,
delete and insert actions when rule actions are
relational algebraic operations. As in 1131 we can use
Lambda calculus to construct dependency graphs.

is determined from a topological sort or a linear
extension of the RDG.This ensures confluence. In
this topological sort two rules can be executed
simultaneously iff they are not self - dependent and
and are mutually independent. Independence implies
that the order of execution of rules is immaterial.
However, dependent rules need to be partially
ordered to ensure serializability.

The complexity of a distributed program can
be reduced by constructing minimally dependent
rules or maximally independent rules .

To draw an edge between i and j we need to find

The right partial order of rule execution

6.Performance analysis of DATRAP

The performance of a DATRAP depends upon
the choice of a suitable topological sort that
minimizes a certain objective. The usual scheduling
objectives depend on the completion times of the
jobs in the schedule, which also depends on
the availability of resources [23],[24].

For improved perfomance of a DATRAP
we must consider the optimal scheduling problem of
a set of transactions,(Tl,T2 ,..., Tn) , on a set of
processors (Pl,P2, ..., Pm) or agents where
transactions are executed, and also a set of additional
resources - such as registers/ cache, denoted by
(R1,R2,..,RsJI that are required during their
execution. A topological sort provides only an
abstract partial order among the different transactions
that result in a serializable multiagent program. Since
it is not unique, we need to choose that topological
sort which is optimal and allocate transactions to
processors and agents in such a way to minimize
traffic and computation time [231.

7. Example

Consider the problem of finding a lowest cost path
between any two vertices in a directed graph whose
edges have a certain assigned positive costs.

entity set of vertices, the relationship set of ordered
pairs of vertices (x,y) representing edges, and the
amibute of cost c for each member of the relation set,
denoted by (x,yc). Given a graph G the program

The lowest cost path problem requires the

should give for each pair of vertices (x,y) the smallest
sum of costs path from x to y.

to other vertitrs are required is called the root vertex
r. Let c denote the cost between any two adjacent
vertices x and y, and let s denote the sum of costs
along the path from the root to y; we assume that c
(and hence s) is positive.This information is
described by the ordered 4-tuple(x,y,c,s); in general
all the relationships among the different vertices are
described by an appropriate 4-tuple format of the
form:(vertex label, vertex label,cost, sum of costs
from root).

The fourth member of the 4-tuple, namely the sum
of costs froim a specified root remains initially
undefined and we set this to a large number *.We
then use the production rules to modify these tuples
or to remove ithem.

To find the lowest cost path to all vertices from the
specified root r, we use the TPS for the tuple
processing <and let the 4-tuples interact; this
interaction reisults in either the generation of modified
4-tuples or Ihe removal of some 4-tuples of the
representation.
Specification to find the shortest path:
Let C(ij) be the cost of path (ij). A better path is one
for which
that can pass through some vertex k such that:

That is our production rule is: If C(i,k) +C(kj) <
C(ij) then
delete C(ij) and set C(i j) = C(i,k) +C(kj).
The invariant is: if C(ij) is the initial cost then all the
costs are always less than or equal to C(ij)
We refine this by using the rule : If C(i,k) < C(p,k) ,
delete C@&) and retain C(i,k). Thus the following
three production rules result:
Rule 1: If there are tuples of the form (r,r,O,O) and
(r,y,c,*), replace (r,y,c,*) by (r,y,c,c) and retain
(r,r,O,O).
Rule 1 defines the sum of costs for vertices adjacent
to the root, by deleting * and defining the values.
Rule 2: If there are tuples of the form (x,y ,c 1 ,s 1) and
(y,z,c2,s2), where s2 > sl+c2 then replace (y,z,c2,s2)
by (y,z,c2,sl+c2); else do nothing.
Rule 2 states that if s2 > sl+c2 we can find a lower
cost path to z through y.
Rule 3:If there are tuples of the form (x,y,cl,sl) and
(z,y,c2,s2) and if s l< s2 , then remove (z,y,c2,s2)
from the tuple set; else do nothing.
Rule 3 states that for a given vertex y which has two
paths-one from x and another from z, we can
eliminate that 4-tuple that has a higher sum of costs
from the root.

The above three rules provide for nondeterministlc
computation by many agents and we are left with
those tuples that describe precisely the lowest cost
path from the: root. Note that the application of these
rules correspond to binding constants to variables. In
fact a variable shared across two or more patterns
indicates the equivalent of a JOIN operation in
databases- that is finding two different tuples that
share a value across certain attributes.

The vertex from which the lowest cost paths

C(i,k) +C(kj) < C(ij)

69

This process of substitution that make a
well-formed formula match by assigning values to
variables x and y is called unification in logic-based
computing. Also the unification and reduction
constitute important ingredients in distributed
computing through several agents. They must lead to
termination after a finitely many steps and different
reduction order should lead to the same object
(uniqueness).
Consider the directed graph, in which the edge costs
are as shown below ; we denote the graph by the
triplet (x,y,c):
(1 ~,50);(1.3.10);(1,5.45);(2.3,15);(2,5,10>;
(3,415); (4220); (4,5,35); (5,433; (6 9 3 .
We encode the graph by choosing the vertex 1 as the
rooc the format for representing the graph is given
by : (vertex label, vertex label, cost, sum of costs

from root).
(1,1,0,0);(1,2,50,*);(1,3,m,*);(1,5,45,*); (23, IS,*);
(2,5,10,*);(3,4,a5,*);(4,220,'); (4,5,35,*); (5,4,30,*);
(6,4.3,*).
We then apply the three rules nondeterministically.
This results in the following tuples that describe the
lowest cost path subgraph .(l,l,O,O); (1,3,10,10)
;(1,5,45,45); (3,4,1525) ;(4,2,20,45). Note that the 4-
tuple (6,4,3,*) gets eliminated as vertex 6 cannot be
reached from the root vertex 1.

8. Distributed agent programming

easily modified to carry out dismbuted programming
using messages (a dismbuted agent computation).

A distributed agent computation is a
distributed computation with the following features:
1. Each agent can be active or inactive
2. An active agent can do local computation , send
and receive messages and can spontaneously become
inactive.
3. An inactive agent becomes active if and only if it
receives a message.
4. Initially all agents are inactive except for a
specified one which initiates the computation.
The production rules described in Section 7 can be

modified to perform distributed agent computation.
In order to implement a production system in

a distributed agent system, we must distribute the
rules suitably so that rules are asynchronously fred.
Since there is no global control , interference between
different rules is to be prevented by using local
synchronization among the different agents.
In particular we must be able to carry out the
unification operation (or join) , namely the binding of
constants to variables at different agents and carry out
the required operations locally and transmit the
information globally using neighbourhood agent
communication. That is the unification is partitioned
into fragments.

shared memory is not used, the tuple messages are to
be compared locally in each agent and the revised
information is transmitted globally. Therefore the

The production rule approach can be

We must, however, remember that since

algorithm terminates or stabilizes when all the agents
remain silent.

path problem (Section 7). We assume that there are
n agents having identical names as the nodes in the
graph and each agent is connected to other agents in
an isomorphic manner to the given graph. Such an
assumption on the topology of the network simplifies
the algorithm. Here, each agent knows the identity of
its neighbours, the direction and cost of connection of
the outgoing edge. Thus for the given directed graph
the outdegree of each node is the number of sending
channels and the indegree is the number of receiving
channels.The revised production rules for the
distributed agent computation are as follows:
a. Agent 1 (root) sends to all its neighbours x the
tuple (I,x,c,c) describing the name of the root, and
the distance of x from the root (c); all the neighbours
of the root handshake, receive, and store it. This
corresponds to seeding the reaction.
b. Each agent x sends its neighbour y at a distance cl
from it,the tuple (x,y,cl,c+cl) describing its name,
its distance to y and the distance of y from the root
through x using its distance to the root c.
c. Each agent y compares an earlier tuple (x,y,cl,sl)
got from a neighbour x, or the root, with the new
tuple (z,y,cl',sl') from another neighbour z. If SI<
sl', then y retains (x,y,cl,sl) and remains silenc else
it stores (z,y,cl',sl') and sends out the tuple
(y,w,c2,sl'+c2) to its neighbour w at a distance c2,
advising w to revise its distance from the root.
d. An agent does not send messages if it receives
messages from other process that tells a higher value
for its distance from the root and ignores the
message. Thus it contains only the lowest distance
from the root. All the agents halt when no more
messages are in circulation and the system stabilizes.
It is possible to devise an algorithm to detect
termination. This will be described elsewhere.

distributed transaction processing [4],[25]. Since the
order of arrival of different tuples in the agent nodes
is nondeterministic, we need to prove that the
computation terminates and reduces to a unique
object Note that the distributed computing amounts
to choosing different orders of unification and
reduction sequences at each node. That is at each
node the final outcome would be the same
irrespective of any intermediate decisions. This is
called "serializability "in transaction processing [4].
In mathematical logical term this is essentially a
"confluence property" that stabilizes the computation
eventually. This is also related to the "Church-Rosser
property" in a lattice [21].

9. Concluding remarks

As an example, we consider the shortest

The above approach is analogous to

In summary, the transactional approach is the key
to develop a distributed agent programming
paradigm, since it provides for :
l .A programming methodology free from control
management. The transactional implementation of
rules provides for high concurrency on a database of

70

active objects represented by high level data
structures,
2. The application of locality principle in program
construction; formal spe-afic;ltinn and refinenent
calculus calculus can provide for the choice of
appropriate granularity of transactions and the level
of parallelism; also, using rule-dependency graphs,
we can prove termination and confluence (that is
preservation of semantics) and choose the right
partial order of execution through a topological sort.
3. The choice of an appropriate topological sort
provides for high degree of concurrency in program-
processor mapping and implementation in distributed
machines and improved performance.
4.The use of Linda and PVM to simulate distributed
agent systems [26].

The transactional paradigm will have applications
in multi-agent production system programming
[271,[28]. A multiagent production system consists of
agents that serve as processes, functions, relations or
constraints depending upon the context. In a
concurrent programming situation, a computation
state consists of a group of agents and store they
share. Agents may add pieces of information to the
store through an operation called "telling" and also
wait for receive information through an operation
called "asking". The telling operation corresponds to
W+ or W- while the asking operation corresponds to
R+ or R- actions. Thus the transactional approach can
provide a conceptual framework for the development
of parallel and distributed relational, constrained and
contextual programs using multiagent architectures.

References

[l] V.K. Murthy and E.V. Krishnamurthy,
Automating Problem Solving using transactional
paradigm, Proc. Intl. Conf. on AI & Expert Systems,
721-729, Gordon Breach Publ., USA, 1995.
[2lE.V.Krishnamurthy, Introductory Theory of
Computer Science, Springer Verlag, New York,1984.
[31 E.Rich and K.Knight, Artificial Intelligence,
McGraw Hill, New YorkJ991.
[4] E.V.Krishnamurthy and V.K.Murthy, Transaction
Processing Systems, Prentice Hall, Sydney, 1991.
[51 A.J.Bonner and M. Kifer, Application of
transaction logic to knowledge representation,
Lecture Notes in Computer Science, Temporal Logic,

161 A. Geppert and K.R.Dittrich, Rule based
implementation of transactional model specification,
pp. 127-143, in Rules in Database Systems, Editors:
N.Paton and M.H.Williams, Springer Verlag, New
York, 1994.
[7] J-Y. Girard. Linear Logic: A Survey, pp.63-112,
in Logic and Algebra of Specification, Edtors:
F.L.Bauer and W.Brauer, Springer Verlag, New
York, 1993.
181 U.Montanari and F.Rossi, Concurrency and
concurrent constraint programming, Lecture Notes In
computer Science, Vo1.910, pp.171-192, Springer
Verlag, New York.1995.

V01.827. pp.67-81, 1994.

[9] FLBauer and W.Brauer, Logic and Algebra of
Specification, Springer Verlag, New York, 1993.
[101 B. Jonsson, Compositional Specification and
verification of distributed systems, ACM Trans.
Programming languages and Systems, Vol. 16,

Ell] V.K. Murthy and E.V. Krishnamurthy,
Probabilistic Parallel Programming based on multiset
transformation, Future Generation Computer
Systems, Vol.11, pp.283-293,1995.
[121 K.M.C handy and J.Misra, Parallel Program
Design, Addison Wesley, New York,1990.
[13] J.G. Schmolze, Guaranteeing Serializable results
in Synchronous parallel production systems, J.
Parallel and tiistributed computing, Vo1.13,348-365 ,
199 1.
[14] S. Kuo and D. Moldovan, implementation of
multiple rule firing production systems on hypercube,
J. Parallel and distributed computing, Vo1.13, 383-
394,1991.
[l5] S.Kuo and D.Moldovan, The state of the art in
parallel production systems, J. Parallel and
distributed computing, Vol. 15,l-26,1992
[161 T.Ishida, Parallel, Distributed and multlagent
Production Systems,
Lecture Notes in Computer Science,Vol. 890,
Springer Verlag, New York, 1991.
1171 N.W.Pai:on and M.H.Williams, Rules in database
Systems, Springer Verlag, New York, 1994.
[183 J.-P.Bania@e and DLMe'tayer. Programming by
Multiset transformation, Comm. ACM, Vo1.36, 98-
111, 1993.
[191 C. Morgan, Programming from Specificauon,
Prentice Hall, Englewood Cliffs, New York, 1994.
1201 L.van der Voort and S.A. Siebes, Enforcing
confluence of rule execution: pp.195-207, in Rules in
Database systems, Editors: N.W.Paton and
M.H..Willianns, Springer Verlag, New York, 1993.
[21]E.V.Krishnamurthy, Parallel Processing ,Addison
Wesley, Reading, Mass. 1989.
[223 E. Baralis and S.Ceri, Better termination analysis
for active databases, pp.164-179, in Rules in database
Systems, Editors: N.W.Paton and M.H.Williams,
Springer Verlag, New York,1994.
[23] V.K.Murthy and E.V.Krishnamurthy,
Transactional Paradigm: Applications to Distributed
Programming. IEEE .Conf. Alg.Arch, Brisbane,

[24] I.Riva1, Algorithms and Order, Kluwer
Academic Publishers, London, 1989.
[25] V.K. Murthy and E.V. Krishnamurthy, Gamma
programming paradigm and heterogeneous
computing, Proc. Hawaii Intl. Conf. on System
Sciences, HICSS29,273-281, IEEE Press, 1996.
[26] A.Geist et al. PVM: Parallel Virtual Machine,
MIT Press, 1994.
[27] T. Wittig, ARCHON: An architecture for
multiagent systems, Ellis Horwood, New York,1992.
[28] M.Woollridge and N.RJennings, Agent theories,
Architectures and Languages, A survey, Lecture
Notes in Computer Science,Vol. 890, pp.1-39,1995.

~p.259-303, 1994.

pp.554-558, 1995.

71

