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Abstract: The numerical simulation of fluid flow 

problems in non-homogeneous and non-isotropic 

media poses a great challenge from mathematical and 

numerical point of views. The numerical simulation of 

oil recovery in petroleum reservoirs and the transport 

of contaminants in aquifer, may involve the solution of 

an elliptic type equation with highly discontinuous 

coefficients for the pressure field, and a non-linear 

hyperbolic type equation for saturation field. In this 

work, we compare two different vertex-centered 

control volume formulations for the numerical solution 

of the elliptic equation. Both methods use median dual 

control volumes with an edge-based data structure. 

These formulations are capable of handling non-

homogeneous and non-isotropic media using 

unstructured meshes. The first algorithm consists in a 

modification of the two step Crumpton's edge-based 

approach. The second algorithm is closely related to 

the linear finite element method. Both formulations 

include the cross-diffusion terms in a very elegant 

manner, guaranteeing local conservation. For 

sufficient smooth problems, both methods achieve 

second order accuracy for the scalar field on 

triangular meshes. To compare the accuracy of the 

two edge-based procedures, we present a numerical 

experiment involving a non-homogeneous and non-

isotropic media. For the benchmark problem solved, 

both formulations compare well with others found in 

literature. 
 

Keywords: Elliptic Problems, Finite Volume 

Methods, Edge-Based Data Structure, Non-
homogeneous and Non-Isotropic Media. 
 
 
 

 

Introduction 
The numerical simulation of fluid flow problems 

in heterogeneous and anisotropic media poses a great 
challenge from mathematical and numerical point of 
views. Abrupt variations in the permeability field (i.e. 
the diffusion coefficient) are common when modeling 
and simulating fluid flow in petroleum reservoirs and 
aquifers. Over the last decades, much effort has been 
spent in numerical methods that make use of 
unstructured meshes, such as the finite element method 
(FEM) and the finite volume method (FVM), due the 
fact that these methods allow for a better modeling of 
complex geometrical features and because they can 
easily incorporate mesh adaptive procedures. When 
handling conservation laws, FVM are particularly 
attractive as they conserve mass, globally and locally. 
It is well known that traditional 2-D “five point” finite 
difference methods (FDM) are unable to handle full 
tensors or non-orthogonal meshes. Besides, it can be 
proved that these schemes introduce first order errors 
in the approximation of flux terms between 
discontinuous materials (Edwards, 2000), making these 
methods unsuitable for the modeling and simulation of 
diffusion type problems in heterogeneous and 
anisotropic media. 

Different families of locally conservative schemes, 
such as the mixed finite element method (MFEM) and 
flux continuous finite volumes (FCFV), also called 
multipoint flux approximations (MPFA), have been 
studied in literature [1,5]. In the context of flux flow in 
porous media, the so called FCFV are defined by 
assuming continuous pressures (pointwise or full 
continuity) and normal fluxes across control volumes 
interfaces. Despite of the computational costs 
associated to these methods, particularly the MFEM, 
both methods are capable of handling full tensor 
elliptic equations in heterogeneous media using 
structured or unstructured meshes. It is worth 
mentioning that the finite element method, which is 
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globally, but not locally conservative (i.e. at the cell 
level), requires some kind of flux recovery in order to 

formally guarantee local conservation [6]. 
In this paper, we briefly compare two different 

vertex-centered finite volume formulations. Both 
methods use median dual control volumes (Donald’s 
dual) with an edge-based data structure in such a way 
that the geometrical coefficients are associated to the 
edges and nodes of the primal mesh. These 
formulations are capable of handling both, 
heterogeneous and anisotropic (full tensor) media 
using structured and unstructured meshes. The first 
algorithm consists in a modification of the two step 
Crumpton's edge-based approach [2]. The second 
algorithm is analogous to an edge-based 
implementation of a linear control volume finite 
element method. Both formulations formally include 
the cross-diffusion terms in a very elegant manner 
guaranteeing local conservation even for non-
orthogonal meshes and discontinuous coefficients, 
keeping second order accuracy for the pressure field 
and, at least, first order accuracy for fluxes on general 
triangular meshes and on orthogonal quadrilateral 
meshes.  

The edge-based data structure has been chosen due 
to the fact that vertex-centered FV schemes are 
superior to cell centered schemes in terms of memory 
usage [8,9,10], and because edge-based data structures 
are known to be computationally more efficient than 
their element-based counterparts [7,8]. In the present 
paper we have concentrated on the study of the 
accuracy and the convergence behavior of the edge-
based finite volume scheme for the solution of elliptic 
equations with full tensor discontinuous coefficients, 
comparing their solutions to other obtained by using 
other well established formulations through the 
solution of some benchmark problems. 

 

Mathematical Formulation 
In the two dimensional model, the equation which 

defines an elliptic problem in a heterogeneous and 
anisotropic medium can be written as 
 

( )( ) ( )K x u f x ,∇ ⋅ − ∇ =
� �

�
with ( ) 2,x x y= ∈ Ω ⊂

�
�  (1) 

 
where 
 

( )
xx xy

yx yy

K K
K x K

K K

 
= =  

 

�

� �
               (2) 

 
is a symmetric matrix that is allowed to be 

discontinuous through the internal boundaries of the 

domain Ω . In order to formally define an elliptic 
problem [3], we further assume that 
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xx yy xy
K K K≥                 (3) 

 
Integrating Eq. (1) and applying the divergence 

theorem to its left side, yields 
 

( )K u n f
Γ Ω

− ∇ ⋅ ∂Γ = ∂Ω∫ ∫
�

�
               (4) 

 
Equation (4), which is the integral form of Eq. (1), 

defines, for instance, the pressure field in the fluid flow 
of oil and water in heterogeneous and anisotropic 
petroleum reservoirs or in the transport of 
contaminants in aquifers [2,9]. 

 

Numerical Formulation 
In this section, we will briefly describe the two 

edge-based median-dual control volume formulations. 
First, we will derive the variation of the two-step edge-
based Crumpton’s approach which was adapted for the 
solution of diffusion problems in heterogeneous media 
[7], in sequence we will derive an edge-based 
implementation of a more traditional control volume 
finite element method. 

 

Edge-Based Finite Volume 1 

(EBFV1) 

The present approach was originally devised by 
Crumpton [4] for the discretization of diffusion terms 
in the Navier-Stokes equations with the modifications 
proposed by Carvalho [2]. In this approach, we first 
compute nodal gradients as functions of the discrete 
scalar field and then, we use these gradients to 
compute the elliptic terms in a second step The 
gradients computed in the first step in a finite volume 
fashion are used to calculate the cross diffusion terms 
which naturally arise when we are handling full tensor 

problems ( )i.e. 0.0xy yxK K= ≠  or when we are using 

non-orthogonal meshes, as both problems can be seen 
as equivalent [1]. The major difference between the 
original Crumpton’s approach [4] and the formulation 
presented by Carvalho [2] is that, in the latter, 
gradients are recovered in a domain by domain 
approach in order to honor possible material 
discontinuity.  

For a general node I of the mesh, using the edge-
based finite volume, Eq. (4) can be approximated, as 

 

L L L L

I I

IJ IJ IJ IJ I I

L L

F C F D f V
Ω Γ

∈ Ω ∈ Γ

⋅ + ⋅ =∑ ∑
�� � �

              (5) 

 

where 
L LIJ IJF K u= − ∇
�

�
 is the flux function defined 

at the control surface, 
I

V  is the volume of the CV 

surrounding node I, the upper index Ω  represents 

approximations that are associated to every edge 
L

IJ  
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of the primary mesh which is connected to node I, 
Γ refers only to boundary edges connected to that 

node, the summation 
IL ∈ Ω

∑ is performed over the 

internal edges connected to node I and 
IL ∈ Γ

∑ is only 

performed over boundary edges. The geometrical 

coefficients 
LIJC
�

 and 
LIJD
�

 are defined as 

 

1 1L

L

IJ K K K K

IJ L L

C A n A n

D A n

+ += +

=

� � �

� �                (6) 

 

In Equation (6), 1,
K K

A A +  and 
L

A  are the areas of 

the control surfaces associated to the control surface 

normals 
K

n
�

, 1K
n +

�
 and 

L
n
�

. Further details can be found 

in [2]. 
In order to compute the nodal gradient, we use the 

divergence theorem to integrate the gradient of the 
scalar variable at node I, obtaining 

 

I I

I I I
u u n

Ω Γ

∇ ∂Ω = ∂Γ∫ ∫
�

               (7) 

 

The average gradient 
I

u∇  in the control volume 

can be computed as  
 

I

I I I Iu u V
Ω

 
∇ = ∇ ∂Ω 

 
 
∫                (8) 

 
Similarly to Eq. (5), and by dropping out the over 

bar, we can write the discrete form of Eq. (7) as 
 

L L L L

I I

I I IJ IJ IJ IJ

L L

u V u C u D
Ω Γ

∈ Ω ∈ Γ

 
∇ = + 

 
∑ ∑

� �
             (9) 

 
In the case of heterogeneous media, fluxes 

definitions over the control surfaces located at the 
interface between different materials can be 
ambiguous. If the nodal gradients computed as 
described in Eq. (9) are directly used for flux 
computations, an inconsistent flux would be obtained 
along control surfaces adjacent to material 
discontinuities. In order to circumvent this problem, 
gradients are recovered in a sub-domain by sub-
domain approach. First, material properties (e.g. 
permeability) are associated to sub-domains. For each 
physical sub-domain, we store a list of edges and nodes 
and their associated geometrical coefficients. For the 
mesh considered in Fig. (1), it is necessary to include 

new geometrical coefficients  and 
MIJ M MD A n=
� �

, 

which are quantities related to internal boundary edges, 
in order to properly reconstruct gradients and fluxes in 

a particular sub-domain. These coefficients are used to 
properly recover gradients for each physical sub-
domain of the problem, allowing for a continuous by 
parts gradient computation. Therefore, for 
heterogeneous media, we can rewrite Eq.(9) as 
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           (10) 

 

In Equation (10), R

I
uΩ∇ is the nodal gradient and 

R

I
V Ω is the control volume of a node I associated to the 

sub-domain
R

Ω , and R

LIJC
Ω
�

 and R

LIJD
Ω
�

 refer to the 

geometrical coefficients of the edge 
L

IJ  associated to 

the sub-domain
R

Ω . Finally, it is worth noting that in 

the present sub-domain by sub-domain approach, R

LIJD
Ω
�

 

refers to both, external and internal boundary edges, 

and 
RE

Γ  and 
RI

Γ  refer, respectively, to loops over 

external boundary edges and internal edges between 
multiple sub-domains. In order to compute the fluxes 
of Eq. (5), we define a local frame of reference, in 
which one axis is placed along the edge direction (P), 
and another axis (N) is orthogonal to the direction (P), 
and split the gradients into two components 

 
( ) (P)R R R

L L L

N

IJ IJ IJu u u
Ω Ω Ω∇ = ∇ + ∇              (11) 

 
The component of the gradient parallel to the edge 

direction (P)R

LIJu
Ω∇  is replaced by a local second order 

central difference approximation (P*)R

LIJu
Ω∇ , while the 

normal component is computed using the arithmetic 
mean between  the two nodal gradients computed by 
Eq.(9), and Eq. (11) may be rewritten as 

 
* ( ) (P*)R R R

L L L

N

IJ IJ IJu u u
Ω Ω Ω∇ = ∇ + ∇             (12) 

 
Defining the continuous “hybrid” mid-edge flux 

function as 
 
* *R R R

L LIJ IJF K u
Ω Ω Ω= − ∇

�
             (13) 

in which the term hybrid was used to indicate that 
one part of the mid-edge gradient is computed using 
the traditional edge-based finite volume approach by 
averaging the nodal recovered gradients, and the other 
part is computed using the compact two point finite 
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difference scheme. Using the new surface flux 
approximation given by Eq. (13) , we can redefine Eq. 
(5) as 

 

( ) ( )

*

1 1

R R R R R

L L L L

I IR R

Ndom Ndom

IJ IJ IJ IJ I I

R L L R

F C F D f V

Ω Γ

Ω Ω Ω Ω ΩΓ

= =

 
 ⋅ + ⋅ =
 
 

∑ ∑ ∑ ∑
�� � �

    (14) 

 
and Ndom refers to the number of domains that 

surrounds node I, and the term R

I
f Ω  stands for the 

distributed source term associated to the volume R

I
V Ω  

within the sub-domain 
R

Ω . 

The expression above is built in a sub-domain by 
sub-domain basis (i.e. looping over sub-domains) in 
order to formally guarantee that nodal gradients and 
fluxes are correctly approximated for each material 
along interface edges. Further details can be found in 
[2] 

 

Edge-Based Finite Volume 2 

(EBFV2) 
This approach can be obtained considering a 

simple linear variation of the scalar variable “u” 
throughout the edges of the primal mesh. In this case, 
gradients are constant over the elements of the primal 
mesh and fluxes can be readily computed through the 
dual mesh because the diffusion coefficient is constant 
between two adjacent control volume. When using 
median dual control volumes this methodology is 
analogous to the more traditional Control Volume 
Finite Element Method (CVFEM). In the present 
formulation, for a general node I of the mesh, the left 
hand side of Eq. (4) can be written as: 

 

( ) ( )i i i i i

i iI

e e e e e

I IJ IJ IJ

e e

K u n K u C F C
Γ

− ∇ ⋅ ∂Γ = − ∇ ⋅ = ⋅∑ ∑∫
� ���

� �
  

               (15)  
 
In Eq (15) the superscript “e” refers to the flux 

contribution i i ie e e

IJ
F K u= − ∇
�

�
 that comes from edge IJ 

and that is associated to element “e” adjacent to the 
edge IJ.  

For a general element “e” of the primal mesh, the 
gradient can be computed as: 

 

( )
( )

1
2

2
e

I Je e

IJe
IJ

u u
u D

V

+
∇ = ∑

�
            (16) 

 

where e
V  is the volume (area in 2-D) of the 

element, e

IJ
D
�

 are the outward edge/area vectors, and 

the summation is performed along the edges of the 
primal mesh that define this element. In the present 
paper, we have used only triangular elements. 

Therefore, for a single triangular element defined by 
nodes 1, 2 and 3, we can write: 

 

( )
( )

( )
( )

( )
( )

1 2

12

2 3

23

3 1

13

1
2

2

2
2

2
2

e e

e

e

e

u u
u D

V

u u
D

u u
D

+
∇ = +



+
+

+ 



�

�

�

            (17) 

 
This gradient is then placed in Eq. (15) in order to 

compute the fluxes through control surfaces. After 
some geometrical and algebraic manipulation (to be 
presented in a future paper) it is possible to write flux 
contributions in a pure edge-based fashion. Source 
terms are computed analogously to the EBFV1 as 
described in the previous section. This formulation 
produces a symmetric system of equations which is 
assembled in an edge-by-edge basis.  

 

Error Definition  
To evaluate the accuracy of both finite volume 

methods,  we define the asymptotic truncation error as 
  

( )1q q

hE Ch O h
+= +              (18) 

 
where h is the mesh spacing, q is the order of the 

error, which represents the convergence rate and C is a 

constant that is independent of h and ⋅  is some 

specified norm. In this case, the convergence rate q is 
estimated as, 

 

2

2

log
h

h

E
q

E
≅               (19) 

 
The convergence rates were estimated using the 

following discrete norm: the RMS (Root Mean Square) 

norm, 
RMS

E , which is computed as 

 

( )
1 2

2

1

ˆ ˆ
RMS

NP

I IRMS L
I

E u u u u NP
=

 
= − = − 

 
∑           (20) 

 

where u is the exact solution, û  is the approximate 

solution and NP is the number of nodes of the 
computational mesh. 

 

Example: Non-Homogeneous and 

Non-Isotropic Media 
The following example consists in a unity square 

formed by two different materials. Numerical Dirichlet 
boundary conditions are obtained from the exact 
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solution. Crumpton [2] solved this problem using a 
FCFV with structured orthogonal quadrilateral meshes. 
The problem can be compactly defined by 
 

( ) ( ),K u f x y∇ ∇ =
�

             (21) 

 
where the discontinuous source term and the full tensor 
discontinuous diffusion coefficient are given, 
respectively, by 
 

( )
( ) ( ) ( )

( ) ( )

2 cos    for 0
,

2 exp cos         for 0

sin y y x sin y x
f x y

x y x

α

α

 − − − ≤  
= 

>
                (22) 
 
with 
 

1 0
        for 0

0 1

2 1
        for 0

1 2

x

K

xα

  
<  

  
= 

  >   

�
         (23) 

 
where α  controls the strength of the discontinuity (i.e. 

the jump in the material property) between the two 
different regions. The exact solution for this problem, 
given in [2,3], is also presented in Eq. (24). 
 

( )
( ) ( ) ( )

( ) ( )

2 cos    for  0
,

exp cos                              for 0

sin y y x sin y x
u x y

x y x

α + + ≤  
= 

>
              (24) 
 

We have solved this problem using a sequence of 

uniform structured triangular meshes with ( )9x9N = , 

( )17x17 , ( )33x33  and ( )65x65  nodes.  

Tables (1) to (6) present the root mean square 

errors, ( )
1 2

2

1

ˆ ˆ
RMS

NP

I IRMS L
I

E u u u u NP
=

 
= − = − 

 
∑ , 

where u  is the exact solution, û  is the approximate 

solution and NP is the number of nodes of the 
computational mesh, and the convergence rates 

( )2 2log
h h

q E E≅ , for 1.0α =  and 1000.0α = , 

obtained with the FCFV method of Crumpton [3] using 
orthogonal quadrilateral meshes, and the EBFV1 and 
the EBFV2 schemes using structured triangular 
meshes. As it can be clearly observed in Tables (1) to 
(6), for this particular benchmark problem, despite the 
fact that the increase of the strength of the 
discontinuity also increases the magnitude of the error 
for the three methods, the EBFV1, the EBFV2 and the 
FCFV methods show second order spatial accuracy for 
both values of α . It can also be noted that for all 

tested cases, that the results obtained with the EBFV1 

and EBFV2 schemes are quite similar to the results 
obtained with the FCFV method.  
 

Table 1. Errors and convergence rates for the FCFV 
(with 1.0α = .) 

N  
RMS

E   
RMS

q  

9 3.33e-003 ---------- 

17 9.37e-004 1.8294 

33 2.45e-004 1.9353 

65 6.25e-005 1.9709 

 
Table 2. Errors and convergence rates for the EBFV1 

(with 1.0α = .) 

N  
RMS

E   
RMS

q  

9 6.02e-003 ---------- 

17 1.50e-003 1.9989 

33 3.77e-004 2.0012 

65 9.40e-005 2.0014 

 
Table 3. Errors and convergence rates for the EBFV2 

(with 1.0α = .) 

N  
RMS

E   
RMS

q  

9 1.49E-003 ---------- 

17 3.92E-004 1.9300 

33 1.00E-004 1.9590 

65 2.56E-005 1.9780 

 
Table 4. Errors and convergence rates for the FCFV 

(with 1000.0α = .) 

N  
RMS

E   
RMS

q  

9 1.81e-001 ---------- 

17 4.74e-002 1.9330 

33 1.21e-002 1.9699 

65 3.04e-003 1.9929 

 
Table 5. Errors and convergence rates for the EBFV1 

(with 1000.0α = .) 

N  
RMS

E   
RMS

q  

9 4.39e-000 ---------- 

17 1.13e-000 1.9536 

33 2.87e-001 1.9812 

65 7.22e-002 1.9915 

 
Table 6. Errors and convergence rates for the EBFV2 

(with 1000.0α = .) 

N  
RMS

E   
RMS

q  

9 1.14E-001 ---------- 

17 1.14E-001 1.8812 

33 3.10E-002 1.9489 

65 8.04E-003 1.9760 
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Conclusions 
 

In this paper we have briefly presented two edge-
based node centered finite volume formulations 
(EBFV1 and EBFV2) which can be used to solve 
elliptic type equations with highly discontinuous 
coefficients using edge-based data structures. These 
elliptic equations naturally arise in the modeling of 
heat conduction problems and flux flow through 
porous media, such as the two-phase flow of oil and 
water in petroleum reservoirs and the transport of 
contaminants in aquifers. Full tensors (non-diagonal 
diffusion coefficients) and unstructured non-orthogonal 
meshes are naturally handled by both EBFV 
formulations and the cross diffusion terms are properly 
computed. To show the relative accuracy of the two 
presented finite volume procedures, we have solved a 
benchmark problem that involves a non-diagonal and 
discontinuous diffusion coefficient and a discontinuous 
distributed source term. Both methods have shown 
second order accuracy for the scalar variable (e.g. 
pressure). Computational efficiency and mononicity in 
the presence of highly non-isotropic solutions of the 
two EBFV methods will be investigated in the near 
future. For the example analyzed our results compare 
quite well with other results found in literature.  
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