
ACME:

An Architecture Description Interchange Language

David Garlan� Robert Monroe� David Wile��

January 14, 1997

Computer Science Department� USC/Inf. Sciences Institute��

Carnegie Mellon University 4676 Admiralty Way
Pittsburgh, PA 15217 USA Marina del Rey, CA 90292 USA
contact: garlan@cs.cmu.edu

Abstract

Numerous architectural description languages (ADLs) have been developed, each providing complementary capa-
bilities for architectural development and analysis. Unfortunately, each ADL and supporting toolset operates in
isolation, making it di�cult to integrate those tools and share architectural descriptions. ACME is being developed
as a joint e�ort of the software architecture research community as a common interchange format for architecture
design tools. ACME provides a structural framework for characterizing architectures, together with annotation fa-
cilities for additional ADL-speci�c information. This scheme permits subsets of ADL tools to share architectural
information that is jointly understood, while tolerating the presence of information that falls outside their common
vocabulary. In this paper we describe ACME's key features, rationale, and technical innovations.

Keywords: Architectural interchange, architecture description languages, software architecture

1

1 Introduction

The software architecture of a system de�nes its high-
level structure, exposing its gross organization as a col-
lection of interacting components. A well-de�ned archi-
tecture allows an engineer to reason about system prop-
erties at a high level of abstraction. Typical properties
of concern include protocols of interaction, bandwidths
and latencies, locations of central data stores, and an-
ticipated dimensions of evolution [7, 8, 13].

Architectural design has always played a strong role
in determining the success of complex software-based
systems: the choice of an appropriate architecture can
lead to a product that satis�es its requirements and is
easily modi�ed as new requirements present themselves,
while an inappropriate architecture can be disastrous.

Despite its importance to software systems engineers,
the practice of architectural design has been largely ad
hoc, informal, and idiosyncratic. As a result, architec-
tural designs are often poorly understood by developers;
architectural choices are based more on default than
solid engineering principles; architectural designs can-
not be analyzed for consistency or completeness; archi-
tectural constraints assumed in the initial design are not
enforced as a system evolves; and there are virtually no
tools to help the architectural designers with their tasks.

In response to these problems a number of researchers
in industry and academia have proposed formal nota-
tions for representing and analyzing architectural de-
signs. Generically referred to as \Architecture Descrip-
tion Languages" (ADLs), these notations usually pro-
vide both a conceptual framework and a concrete syn-
tax for characterizing software architectures. They also
typically provide tools for parsing, unparsing, display-
ing, compiling, analyzing, or simulating architectural
descriptions written in their associated language.

Examples of ADLs include Aesop, Adage, Meta-H,
C2, Rapide, SADL, UniCon, and Wright [5, 3, 2, 11, 10,
12, 14, 1]. Although all of these languages are concerned
with architectural design, each provides certain distinc-
tive capabilities: Aesop supports the use of architectural
styles; Adage supports the description of architectural
frameworks for avionics navigation and guidance; Meta-
H provides speci�c guidance for designers of real-time
avionics control software; C2 supports the description
of user interface systems using a message-based style;
Rapide allows architectural designs to be simulated, and
has tools for analyzing the results of those simulations;
SADL provides a formal basis for architectural re�ne-
ment; UniCon has a high-level compiler for architectural
designs that support a mixture of heterogeneous compo-
nent and connector types; Wright supports the speci�-
cation and analysis of interactions between architectural
components.

The proliferation of ADLs and their supporting

toolsets1 is both a blessing and a curse. On the pos-
itive side, di�erent ADLs have explored di�erent facets
of the overall architectural design problem. By expos-
ing di�erent features of architectural design and ways
to exploit those features, collectively they are helping
to deepen our understanding of the roles that architec-
tural description can play in software development. At
this early stage in the development of a discipline of
software architecture, research exploration of multiple
approaches to architectural description is both appro-
priate and necessary.

On the negative side, however, each ADL typically
operates in a stand-alone fashion, making it di�cult to
combine facilities of one ADL with those of another.
Furthermore, there are many common aspects of archi-
tectural design support that are reimplemented afresh
for each ADL. Examples include graphical tools for
visualizing and manipulating architectural structures,
facilities for storing architectural designs, and certain
domain-independent forms of analysis (such as check-
ing for cycles, or the existence of dangling connections).
Such gratuitous redundancy is clearly a waste of re-
sources for individual researchers as well as the com-
munity as a whole.

Finally, for many practitioners, deeper semantic dif-
ferences between di�erent ADLs are a second-order is-
sue. First and foremost they need a way to describe
their architectural structures at all|any way that al-
lows them to record system structures at an appropriate
level of abstraction will do. Currently, however, adopt-
ing an existing ADL requires a substantial investment
to install the ADL tools and learn to use them e�ec-
tively, along with a signi�cant \lock-in" to the selected
ADL.

One way to ameliorate these problems would be to
provide an interchange language for software architec-
ture. Ideally, such a language would permit the inte-
gration of di�erent tools by providing a common form
for interchanging architectural descriptions. It could
also serve as a basis for generic, ADL-neutral structural
analyses, allowing tool writers to develop architectural
analysis tools that are compatible with multiple ADL's.
Further, it could clarify the relationship between di�er-
ent ADLs and the analyses that they provide.

ACME is an architecture description language with
precisely those goals. It is being developed as a joint
e�ort of the software architecture research community
to provide a common intermediate representation for a
wide variety of architecture tools. ACME is based on
the premise that there is su�cient commonality in the
requirements and capabilities of ADLs that meaningful
ADL-independent information can be shared. ACME
attempts to embody those commonalities while also al-

1In the remainder of this paper we will simply use the term
\ADL" to refer to both the language and its supporting toolset.

2

lowing the incorporation of ADL-speci�c information,
so that auxiliary information can be retained. This
scheme permits subsets of ADL tools to share what-
ever architectural information is jointly understood by
those tools, while tolerating the presence of information
that falls outside their common vocabulary.
In this paper we describe the main features of ACME,

its rationale, and technical innovations. While ACME
is still too new to tell whether it will succeed as a
community-wide tool for architectural interchange, we
believe it is important to expose its language design and
philosophy to the broader software engineering commu-
nity at this stage for feedback and critical discussion.
To do this we will focus primarily on the key design
choices made by the language.

2 Language Rationale

2.1 Goals

The design of a language should re
ect its intended pur-
pose. If, for example, the primary purpose of a lan-
guage is to support formal analysis, then minimality of
features and semantic simplicity are likely top-level con-
cerns. If, on the other hand, the primary purpose of a
language is to support a domain-speci�c design activity
(such as for control systems in chemical plants), then
closely matching the engineers' natural design vocabu-
lary is crucial. It is important, therefore, to be clear
about the intended purposes of ACME.
The primary purpose of ACME is to provide an in-

terchange format for architectural development tools
and environments. As such, the language should make
it possible to integrate a broad variety of separately-
developed ADL tools by providing an intermediate form
for exchanging architectural information.
In addition to its primary goal of interchange, ACME

was designed with the following secondary goals in
mind. These goals are listed in decreasing order of im-
portance.

� To provide a representational scheme that will per-

mit the development of new tools for analyzing and

visualizing architectural structures. The language
should provide an architectural vocabulary that
makes it straightforward for tool writers to map
their intuitions about architectural structures into
the forms expressible in the language.

� To provide a foundation for developing new, pos-

sibly domain-speci�c, ADLs. The language should
not preempt the ability to build on its core capa-
bilities with additional constructs and semantics.

� To serve as a vehicle for creating conventions and

standards for architectural information. The lan-
guage should make it easy for groups of ADL devel-

opers to standardize aspects of architectural speci-
�cation that are not explicitly included in ACME

� To provide expressive descriptions that are easy for

humans to read and write. The language should
allow compact, direct expression of architectural
structures and idioms.

While these goals are complementary, taken individ-
ually they lead to quite di�erent choices in design. In
particular, the primary goal of supporting interchange
of software architecture descriptions between di�erent
ADLs argues for a simple, easy-to-parse language, while
the secondary goal of ease of reading and writing for hu-
mans argues for expressive language features. In the re-
mainder of this paper we will see how ACME attempts
to achieve the main goal of architectural description in-
terchange while accommodating the secondary goals.

2.2 Reconciling Standardization and
Diversity

The existence of multiple languages arises in numer-
ous other domains including document formatting, pro-
gramming, graphical encodings, and hypertext. As with
ADLs, such diversity creates problems for users of these
languages. A number of approaches have been used to
cope with problems of language heterogeneity.

1. Pick one: Let the community or marketplace de-
cide on a single dominant language, and coerce fu-
ture tool development to occur around that lan-
guage.

2. Design a \union" language: Design a language
that incorporates all of the features of all of the
languages, and thereby allow users to express any-
thing that they could have expressed in any of the
individual languages.

3. Design an \intersection" language: Pick a
least common denominator language that includes
the aspects of architectural description that are
shared by all ADLs.

4. Give up: Admit that language diversity is simply
too large to try to �nd any coordinated solution at
present. This usually results in a large number of
pairwise (or sometimes n-way) conversions to han-
dle speci�c instances of language interoperability.

With respect to ADLs, none of the techniques is par-
ticularly appealing. As we noted earlier, the �rst al-
ternative is inappropriate. Given the relative immatu-
rity of our understanding about architectural modelling
and analysis, it would be foolhardy to legislate a single
�xed language at this time. Moreover, each of the ex-
isting languages can do some things well, but may be
weak in other respects. The second alternative|a union
language|is likewise unrealistic. Not only are the ca-
pabilities of di�erent ADLs signi�cantly di�erent at a

3

semantic level (hence making language synthesis di�-
cult), but it is not yet clear what kinds of capabilities
one would ideally want in a such a language. The third
alternative|an intersection language|is not likely to
be successful either. The range of constructs provided
by di�erent ADLs is su�ciently broad that it would be
di�cult to �nd a single semantic core to which the ca-
pabilities could be translated.

This would suggest that the only alternative is the
fourth: give up, and live with a proliferation of special-
ized inter-ADL solutions. However, all is not lost. To
understand why, consider the following two observations
about architecture description languages.

First, an examination of existing ADLs reveals that
there is, in fact, considerable agreement about the role
of structure in architectural description. One of the
results of the First International Workshop on Archi-
tectures for Software Systems [4] was that virtually all
ADLs take as their starting point the need to express an
architectural design as a hierarchical collection of inter-
acting components. On top of this structural skeleton
di�erent ADLs then add various kinds of additional in-
formation, such as run-time semantics, code fragments,
protocols of interaction, design rationale, resource con-
sumption, topological invariants, and processor alloca-
tions. In some cases this additional information could
in principle be understood and manipulated by tools for
some other ADL. (For example several tools could share
a common interpretation of the visual information for
displaying the architecture.)

Second, although there is little beyond the use of ar-
chitectural structure about which all ADLs agree, sig-
ni�cant subsets of existing ADLs do agree on certain
kinds of extra-structural information. For example,
both Rapide and Wright represent interactions in terms
of events. Both Aesop and SADL are concerned with
the expression of stylistic invariants. Aesop, UniCon,
and Meta-H all provide capabilities for expressing prop-
erties that permit real-time schedulability analysis.

These two observations suggest that a plausible path
towards integration of ADL facilities is to design a lan-
guage that centers on the shared structural core of ar-
chitectural description, but that also permits the inclu-
sion of other aspects of architectural description that
may be relevant to one or more ADL. In this way all
ADLs can communicate structural aspects of an archi-
tecture in a uniform manner, while permitting variabil-
ity about other aspects of an architectural design. To
the extent that subsets of ADL tools can agree on those
additional aspects, they can also take advantage of that
shared information. Over time, one can well imagine
that as the software architecture community develops a
better understanding of the value of certain classes of ar-
chitectural information, representation conventions will
emerge that can be used by the interchange language.

This is the essence of ACME. The language provides
a �xed vocabulary (or ontology) for representing ar-
chitectural structure. Additionally it provides an open

semantic framework in which architectural structures
can be annotated with ADL-speci�c properties. In this
way ACME achieves the bene�ts of both an intersection
and a union language: the shared structural core rep-
resents an intersection of the expressive capabilities of
most ADLs, while the use of annotations accommodates
the union of ADL-speci�c concerns.

3 ACME

We now describe ACME, highlighting its key features
with a small illustrative example.2 These key features
are:

1. an architectural ontology consisting of seven basic
architectural design elements;

2. a
exible annotation mechanism supporting associ-
ation of non-structural information using externally
de�ned sublanguages;

3. a template mechanism for abstracting common,
reusable architectural idioms and styles; and

4. an open semantic framework for reasoning about
architectural descriptions.

3.1 ACME Architectural Design Ele-
ment Types

ACME is built on a core ontology of seven types of enti-
ties for architectural representation: components, con-

nectors, systems, ports, roles, representations, and rep-

maps. These are illustrated in Figures 3 and 4.
Of the seven types, the most basic elements of ar-

chitectural description are components, connectors, and
systems.

� Components represent the primary computational
elements and data stores of a system. Intu-
itively, they correspond to the boxes in box-and-
line descriptions of software architectures. Typi-
cal examples of components include such things as
clients, servers, �lters, objects, blackboards, and
databases.

� Connectors represent interactions among compo-
nents. Computationally speaking, connectors me-
diate the communication and coordination activ-
ities among components. Informally they provide
the \glue" for architectural designs, and intuitively,
they correspond to the lines in box-and-line de-
scriptions. Examples include simple forms of in-
teraction, such as pipes, procedure call, and event

2We will stress the main ideas behind the language design.
Additional details and examples can be found in [6].

4

Client
 Server

RPC

Figure 1: Simple Client-Server Diagram

System simple_cs = {

Component client = { Port send-request }

Component server = { Port receive-request }

Connector rpc = { Roles {caller, callee} }

Attachments : {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Figure 2: Simple Client-Server System in ACME

broadcast. But connectors may also represent more
complex interactions, such as a client-server proto-
col or a SQL link between a database and an ap-
plication.

� Systems represent con�gurations of components
and connectors.

Components' interfaces are de�ned by a set of ports.
Each port identi�es a point of interaction between the
component and its environment. A component may pro-
vide multiple interfaces by using di�erent types of ports.
A port can represent an interface as simple as a single
procedure signature, or more complex interfaces, such
as a collection of procedure calls that must be invoked in
certain speci�ed orders, or an event multi-cast interface
point.
Connectors also have interfaces that are de�ned by a

set of roles. Each role of a connector de�nes a partic-
ipant of the interaction represented by the connector.
Binary connectors have two roles such as the caller and
callee roles of an RPC connector, the reading and writ-

ing roles of a pipe, or the sender and receiver roles
of a message passing connector. Other kinds of con-
nectors may have more than two roles. For exam-
ple an event broadcast connector might have a single
event-announcer role and an arbitrary number of event-
receiver roles.
As a simple illustrative example, Figure 1 shows a

trivial architectural drawing containing a client and
server component, connected by an RPC connector.

Figure 2 contains its ACME description. The client

component is declared to have a single send-request

port, and the server has a single receive-request port.
The connector has two roles designated caller and
callee. The topology of this system is declared by listing
a set of attachments.
ACME supports the hierarchical description of archi-

tectures. Speci�cally, any component or connector can
be represented by one or more detailed, lower-level de-
scriptions. (See Figure 4.) Each such description is
termed a representation in ACME. The use of multiple
representations allows ACME to encode multiple views
of architectural entities (although there is nothing built
into ACME that supports resolution of inter-view cor-
respondences). It also supports the description of en-
capsulation boundaries, as well as multiple re�nement
levels.
When a component or connector has an architectural

representation there must be some way to indicate the
correspondence between the internal system represen-
tation and the external interface of the component or
connector that is being represented. A rep-map (short
for \representation map") de�nes this correspondence.
In the simplest case a rep-map provides only an asso-
ciation between internal ports and external ports (or,
for connectors, internal roles and external roles).3 In
other cases the map may be considerably more com-
plex. For those cases the rep-map is essentially a tool-
interpretable placeholder|similar to the use of proper-
ties described in the following section.

3.2 ACME Properties

The seven classes of design element outlined above are
su�cient for de�ning the structure of an architecture as
a hierarchical graph of components and connectors.
But there is clearly more to architectural description

than structure. As discussed earlier, currently there is
little consensus about exactly what should be added to
the structural information: each ADL typically has its
own set of auxiliary information that determines such
things as the run-time semantics of the system, detailed
typing information (such as types of data communicated
between components), protocols of interaction, schedul-
ing constraints, and information about resource con-
sumption.
To accommodate the wide variety of auxiliary in-

formation ACME supports annotation of architectural
structure with lists of properties. Each property has a
name, an optional type, and a value. Any of the seven
kinds of ACME architectural design entities can be an-
notated. Figure 4 shows several properties attached to
a hypothetical architecture.

3Note that rep-maps are not connectors: connectors de�ne
paths of interaction, while rep-maps identify an abstraction re-
lationship between sets of interface points.

5

Component
 Connector

System

Port
Role

Figure 3: Elements of an ACME Description

Client
 Server

Performance

Data

Throughput =

 5 kbps

max_connect =

 10

...

Source Code

...

while(data)

 read(response);

...

Visualization

Spec.

shape = rect.

width = 100

height = 50

color = blue

Properties

Representations

Small-memory

Representation

High-Performance

Representation

Small-mem-RM : RepMap
 High-Perf-RM : RepMap

Figure 4: Representations and Properties of a Component

6

System simple_cs = {

Component client = {

Port send-request;

Properties { Aesop-style : style-id = client-server;

UniCon-style : style-id = cs;

source-code : external = "CODE-LIB/client.c" }}

Component server = {

Port receive-request;

Properties { idempotence : boolean = true;

max-concurrent-clients : integer = 1;

source-code : external = "CODE-LIB/server.c" }}

Connector rpc = {

Roles {caller, callee}

Properties { synchronous : boolean = true;

max-roles : integer = 2;

protocol : Wright = "..." }}

Attachments {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Figure 5: Client-Server System with Properties in ACME

From ACME's point of view the properties are unin-
terpreted values. Properties become useful only when a
tool makes use of them for analysis, translation, and ma-
nipulation. In ACME the \type" of a property indicates
a \sublanguage" with which the property is speci�ed.
ACME itself prede�nes simple types such as integer,
string, and boolean. Other types must be interpreted
by tools: these tools use the \name" and \type" indica-
tor to �gure out whether the value is one that they can
process. The default behavior of a tool that does not un-
derstand a speci�c property or property type should be
to leave it uninterpreted but preserve it for use by other
tools. This is facilitated by requiring standard property
delimiter syntax so that a tool can know the extent of
a property without having to interpret its contents.
Figure 5 shows the simple client-server system elab-

orated with several properties. For example, several
of the properties indicate how the elements relate to
constructs in target ADLs|such as Aesop and UniCon
styles. Likewise, the \protocol" property of the RPC
connector is declared to be in the \Wright" language
and would only be meaningful to a tool that knows how
to process that language. (For simplicity we have elided
the speci�cation: see [1] for details.)
Of course, in order for properties to be useful when

interchanged between di�erent ADLs, there must be a
common understanding of their meaning. As we have

noted, ACME does not explicitly de�ne those meanings,
but it does allow for the shared use of properties when
those meanings do exist. We anticipate that over time
ACME will serve as a vehicle for conventionalization of
properties that are useful to more than one ADL.
Several property sublanguages are currently being de-

veloped. One is a standard for specifying visualization
properties to be used by graphical editors to display ar-
chitectural descriptions. Another sublanguage is being
developed to describe temporal constraints on an archi-
tectural description. Details of these sublanguages are
beyond the scope of this report, but can be found in [6].

3.3 ACME Templates and Style De�ni-
tion

The ACME features described thus far are su�cient to
de�ne an architectural instance, and, in fact, form the
basis for the core capabilities of ACME parsing and un-
parsing tools. As a representation that is good for hu-
mans to read and write, however, these features leave
much to be desired. Speci�cally, they provide no facili-
ties for abstracting architectural structure. As a result,
common structures in complex system descriptions need
to be repeatedly speci�ed. Consider, for example, ex-
tending the simple client-server system described in Fig-
ure 5 to include multiple clients and multiple servers.

7

Although there is signi�cant common structure under-
lying each of the clients and servers in the design, the
language facilities presented thus far would require the
architect to explicitly specify this structure for each de-
sign element.

To address this problem the ACME language includes
templates, a typed, parametrized macro facility for spec-
i�cation of recurring patterns. These patterns are used
(or instantiated) by applying them to the appropriate
types of parameters. Templates de�ne syntactic struc-
tures that can be expanded in place to produce new
declarations. They are quite
exible, permitting the
de�nition of attachments as well as individual compo-
nents and connectors.

The utility of templates is further extended when they
are grouped into collections of architectural styles. In
ACME, a style de�nes a set of related templates that
make up the common vocabulary of a family of systems.
Styles provide a mechanism for capturing and reusing
common structures and idioms in architectural design.

Figure 6 illustrates the use of a client-server style,
which de�nes client , server and rpc templates. This
example extends the simple client-server example of Fig-
ure 5 by turning the client and server speci�cations
into templates, and declaring a system instance with
multiple clients and multiple servers. As illustrated,
the client and server templates are straightforward con-
structs that create a new client or server component
with the set of ports passed as an actual parameter.
The rpc template is slightly more sophisticated than the
client and server templates in that it not only declares
an rpc connector but also attaches a client to a server.
The \de�ning(conn:Connector)" clause indicates that a
unique identi�er conn needs to be generated each time
this template is expanded. As a result of the de�ning
clause it is possible to refer to the newly created con-
nector within the template's body, as is required for
the template to attach the new connector to the passed
in components. Use of this style leads to concise de-
scriptions of architectures and permits the explicit de-
lineation of reusable architectural structures.

Although ACME is not intended to be a full-
edged
ADL, the addition of templates and styles greatly en-
hance the readability and abstraction capabilities of the
language. Both templates and styles can, however, be
eliminated by direct expansion. This permits ACME
tools to translate any ACME description into the more
primitive core language for straightforward interchange.
As a result, ACME is able to satisfy the secondary goals
of readability and support for abstraction without com-
promising ACME's primary goal of supporting the in-
terchange of software architecture descriptions between
heterogeneous ADL's.

3.4 ACME's Open Semantic Framework

ACME is primarily concerned with the architectural
structure of systems, and hence does not embody spe-
ci�c computational semantics for architectures. Rather,
ACME relies on an open semantic framework that pro-
vides a basic structural semantics while allowing speci�c
ADLs to associate computational or run-time behavior
with architectures using the property construct.
The open semantic framework provides a straight-

forward mapping of the structural aspects of the lan-
guage into a logical formalism based on relations and
constraints. In this framework, an ACME speci�cation
represents a derived predicate, called its prescription.
This predicate can be reasoned about using logic or it
can be compared for �delity with real world artifacts
that the speci�cation is intended to describe.
To illustrate, consider the simple client-server exam-

ple architecture speci�cation of Figures 1 and 2, where
a client is linked to a server through a single connector.
This system has the following prescription:

exists client, server, rpc |

component(client) ^

component(server) ^

connector(rpc) ^

attached(client.send-request,rpc.caller) ^

attached(server.receive-request,rpc.callee)

These predicates can be reasoned about using stan-
dard �rst-order logical machinery. They can also be
used as the formal speci�cation of an implementation.
(In this case, it requires that one be able to �nd the
artifacts client and server that purport to be compo-
nents, a connector artifact rpc, and attachments that
are speci�ed by the predicate.)
This simple translation scheme is, however, not quite

su�cient. Two implicit aspects of the speci�cation also
need to be included in the prescription: the �rst is the
closed world assumption which states that all compo-
nents, connectors, ports and roles have been identi�ed
by the existential variables in the speci�cation, all at-
tachments have been speci�ed, and that no more exist;
Second, the existential variables must refer to distinct
entities. With these additions, the example's prescrip-
tion reads:

exists client, server, rpc |

component(client) ^

component(server) ^

connector(rpc) ^

attached(client.send-request,rpc.caller) ^

attached(server.receive-request,rpc.callee) ^

client != server ^

server != rpc ^

client != rpc ^

(for all y:component (y) =>

8

Style client-server = {

Component Template client(rpc-call-ports : Ports) = {

Ports rpc-call-ports;

Properties { Aesop-style : style-id = client-server;

Unicon-style : style-id = cs;

source-code : external = "CODE-LIB/client.c" }}

Component Template server(rpc-receive-ports : Ports) = {

Ports rpc-receive-ports;

Properties { Aesop-style : style-id = client-server;

Unicon-style : style-id = cs;

component-class : type = server;

source-code : external = "CODE-LIB/server.c" }}

Template rpc(caller_port, callee_port : Port) defining (conn : Connector) =

{ conn = Connector {

Roles {caller, callee}

Properties { synchronous : boolean = true;

max-roles : integer = 2; }

protocol : Wright = "..." }}

Attachments { conn.caller to caller_port;

conn.callee to callee_port; }}

}

System complex_cs : client-server = {

c1 = client(send-request);

c2 = client(send-request);

c3 = client(send-request);

s1 = server(receive-request);

s2 = server(receive-request);

rpc(c1.send-request, s1.receive-request);

rpc(c2.send-request, s1.receive-request);

rpc(c3.send-request, s2.receive-request);

}

Figure 6: Client-Server System Using Templates and Style

9

y = client | y = server) ^

(for all y:connector(y) => y = rpc) ^

(for all p,q: attached(p,q) =>

(p=client.send-request ^ q=rpc.caller)

| (p=server.receive-request ^ q=rpc.callee))

In addition to basic structural information, properties
also need to be handled. Property names correspond to
predicates that take the entity to which the property
applies as an argument and return the value of that
property name for the given entity. The values of prop-
erties are treated as primitive atoms, without their own
semantics. So, for example,

Component client = {

Port send-request;

Properties {

Aesop-style : style-id = client-server;

UniCon-style : style-id = cs} }

adds to the prescription the clauses:

Aesop-style(client) = client-server ^

Unicon-style(client) = cs

Although the value of a property is considered an
atomic entity in terms of ACME's structural semantics,
tools that manipulate and analyze ACME descriptions
can interpret the property values as needed. An ex-
ample of this approach is the protocol property of the
RPC connector speci�ed in the \Wright" sublanguage
in example 5.

Connector rpc = {

Roles {caller, callee}

Property protocol : Wright = "..."; }

Tools that don't understand the meaning of the
Wright sublanguage can ignore the value of this prop-
erty, processing it as an uninterpreted string. Tools that
do understand the Wright sublanguage can interpret the
value of the protocol speci�cation to discover more de-
tailed ADL-speci�c semantics of the connector.

4 Discussion

Returning to the language design goals enumerated ear-
lier, we can now see how ACME attempts to reconcile
the competing goals for the language.
ACME addresses its primary goal|the need for an

ADL interchange format|by providing an extremely
simple basis for architectural representation. Essen-
tially, any tool that can handle the seven basic architec-
tural element types (components, connectors, etc.) can
interact with other architectural tools. The simplicity
of the structural core of ACME (i.e. ACME without

templates and styles) is re
ected in the fact that its
BNF occupies only a single page. For most ADLs it is
trivial to write a parser and an unparser for that core
language. Moreover, any architectural description using
the more expressive capabilities of templates can be au-
tomatically translated into the simpler core language.
Of course, the more a given tool can take advantage
of property annotations, the more it can do with the
descriptions (in the form of analysis, code generation,
transformation, etc.).

Despite its simplicity, however, ACME provides a
non-trivial basis for architectural representation and
analysis|addressing the second goal. Three features
contribute to this. First is the use of explicit connec-
tors. This permits new architectural glue to be de�ned,
and elevates ACME above typical module interconnec-
tion languages in which only a small set of connector
types (usually procedure call and shared variables) are
supported. Second is the use of multiple representa-
tions. As noted earlier, this permits the encoding of
multiple views, re�nement relations, and simple encap-
sulation schemes. Third is the use of templates and
styles for encapsulating reusable patterns and idioms.

With respect to analysis, it is worth commenting here
on ACME's type system. ACME provides a �xed set
of types, including the seven basic architectural types
(component, connector, etc.) and simple property types
(integer, boolean, string). Within this set ACME sup-
ports a strong typing discipline. (For example, the ac-
tual and formal parameters of a template must agree.)
However, ACME does not treat templates as type con-
structors themselves. So, for example, a template that
creates a pipe connector does not actually introduce a
new type of connector|rather it provides shorthand for
creating a standard connector, endowed with pipe fea-
tures (e.g., input and output roles).

The decision to use this relatively weak type system
was based primarily on methodological considerations.
In general, for architectural description it is more impor-
tant that the parts have the right structure (and prop-
erties) than that they are declared using a particular
set of forms. So for example, if I create an architectural
description in which all of the connectors \look like"
pipes, I should be able to use it in all of the contexts
that I could have used the same description declared
with a pipe constructor template. This increases the

exibility of the language, but at the cost of requiring
analysis tools to do the checking that a type system
would otherwise have provided for free.

The third goal for ACME|providing a foundation
for new ADL development|is supported in three ways.
First, the core constructs of ACME provide a base-
line for architectural description that are a good start-
ing point for almost any ADL. Second, the template
mechanism permits the packaging of common syntactic

10

forms; speci�c ADLs can be de�ned simply by �xing a
set of template libraries (or styles) and then restrict-
ing developers to those forms. Third, ACME's open
semantic framework does not preempt the development
of more detailed ADL-speci�c semantics. By binding
very few decisions about the computational semantics
of an ACME description, language designers who build
new ADLs on top of ACME can supply those ADLs
with whatever semantic model is appropriate for the
extended language.
ACME's fourth goal is to serve as a vehicle for con-

ventionalization about standards for architectural infor-
mation. This is supported by the property mechanism,
which permits the use of new sublanguages for property
types and values. Although the success of this approach
will depend on the willingness of the architectural com-
munity to build consensus around common properties
that many ADLs are capable of handling, early indica-
tions are that this is already happening.
It is worth emphasizing that this goal sets ACME

apart from most other language design e�orts. Typi-
cally a language is designed as a fully-formed, complete
artifact. It is then presented to a community of users,
who will either adopt it or not. ACME is di�erent. It
recognizes that architectural representation is an evolv-
ing, multi-faced target. Rather than attempting to com-
pletely pin the target down, ACME instead provides the
context in which interested parties can participate in de-
veloping standards and conventions for representing and
analyzing architectural information centered around a
shared core of basic concepts.
The �nal goal for ACME is to provide an expressive

notation for architects. While expressiveness is invari-
ably a subjective quality, ACME has attempted to ad-
dress the issue by adopting a rich set of base architec-
tural types, by providing a
exible template encapsula-
tion mechanism, and by allowing the de�nition of new
property sublanguages.

5 Example

To illustrate how ACME can be used to support archi-
tectural interchange, we brie
y describe our experience
integrating Wright and Rapide using ACME.4

Wright is an ADL that allows one to specify and an-
alyze the abstract behavior of architectures [1]. Com-
ponents and connectors behaviors are speci�ed using a
event/process notation based on CSP [9]. In particu-
lar, connector semantics are de�ned by a protocol that
speci�es the behavior of participating components. The
Wright toolset allows one to use a commercial model

4A complete description of this work is beyond the scope and
space limitations of this paper. Here we summarize the salient
features to illuminate the bene�ts and limitations of ACME in
practice.

checking technology to statically check properties such
as: (a) whether a component interface (also speci�ed by
a process) is consistent with the connector to which it is
attached; (b) whether a connector is internally consis-
tent; and (c) whether a con�guration of components and
connectors is complete (in the sense that there are suf-
�cient connections to satisfy the interface requirements
of the components).

Rapide is an ADL that allows one to specify systems
in terms of partially ordered sets of events [10]. Compo-
nent computations are triggered by received events, and
in turn trigger other computations by sending events to
other components. The Rapide toolset permits simu-
lation of such descriptions, animation of those simula-
tions, and analysis of the resulting trace graphs to check
for anomalous behavior.

Rapide and Wright are similar in several respects.
Both are targeted at modelling abstract behavior of ar-
chitectural designs, both use the notion of events to de-
�ne behaviors, and both share a basic structural model
of interconnected, communicating components.

But they also di�er in signi�cant ways. First, from a
user's point of view the two languages o�er di�erent, but
complementary capabilities for analysis: Wright sup-
ports static analysis using model checking technology,
while Rapide supports dynamic analysis using simula-
tion technology. Second, notationally the formalisms
used to characterize event behavior are di�erent: Wright
adopts the functional style of CSP, while Rapide uses
an imperative model. Third, the two languages di�er in
their treatment of connectors. Rapide provides a small,
�xed set of primitive connectors, while Wright permits
the description of new types of connectors. Fourth,
Rapide supports dynamic recon�guration of architec-
tures, while Wright focuses on static con�gurations.

As developers of the Wright toolset we wanted to take
advantage of Rapide tools to add simulation and an-
imation capabilities for our architectural descriptions.
To do this we used ACME as an interchange format
between the two toolsets. As illustrated in Figure 7,
Wright descriptions (developed using our Wright tools)
are shipped to Rapide tools via ACME interchange in
three steps. First, Wright descriptions are translated
into ACME. Next, a Wright-Rapide translator traverses
the ACME representation to produce a new one that in-
cludes Rapide speci�cations. The resulting ACME de-
scription is then translated into Rapide text, which can
be processed by Rapide tools.

The �rst and third steps are straightforward. Wright
architectural structure maps easily into the ACME on-
tology described earlier. Speci�cations of component
and connector behavior are also easily mapped into an-
notations of the structural graph. Similarly, ACME
descriptions annotated with Rapide speci�cations are
easily unparsed to native Rapide text. In both of these

11

Native

Wright

ACME

Annotated

With

Wright

Properties

ACME

Annotated

With

Wright

and

Rapide

Properties

Native

Rapide

Wright to Rapide

Semantic Conversion Tool

(Operates on ACME)

ACME to Rapide

Translator

Wright to ACME

Translator

Figure 7: Wright-to-Rapide Translation via ACME

steps ACME libraries provide basic parsing and unpars-
ing routines that greatly simplify the process.

The hard work occurs in the middle step. The
key challenge was to bridge the semantic gap between
Wright and Rapide. There were two main aspects of
this. The �rst was to map from the functional style
of Wright to the imperative style of Rapide. This
turned out to be straightforward, using standard pro-
gram transformation techniques.

The second, and more substantive aspect was to deal
with the problem that connectors are not �rst class
in Rapide, but are in Wright. We considered two ap-
proaches. The �rst was to limit the translation to those
Wright speci�cations that use the connector types un-
derstood by Rapide. The second was to map non-trivial
connectors in Wright to components in Rapide. We de-
cided to adopt the second approach, since it would per-
mit a larger set of Wright speci�cations to be mapped
in to Rapide.5 Thus the Wright-Rapide translator �rst
converts each non-trivial connector into a component,
and uses simple event-binding connectors to connect the
parts. It then transforms each Wright semantic anno-
tation into a Rapide semantic annotation.

ACME provided two key bene�ts compared to a di-
rect, non-ACME based, translation between Wright and
Rapide. First, it substantially simpli�ed the handling
of the structural aspects of the architectural description
and translation. This made it straightforward to map
Wright structures into ACME, and also to transform

5The downside is that the original Wright description and the
resulting Rapide description no longer have isomorphic structure,
complicating themapping of results of Rapide tools to the original
descriptions. Note also that the richer capabilities of Rapide to
describe dynamic architectures was not an issue since we were
only interested in one-way translation.

the original descriptions into (non-isomorphic) Rapide
structures. Second, it had the important side e�ect of
augmenting the Wright toolset with a set of ACME-
based tools. Once Wright is translated into ACME we
can use ACME tools for graphical browsing, conversion
to web documents, and persistent storage.

6 Current Status, On-going

Work

Work to date on ACME has focused on developing a
coherent language that satis�es the requirements of a
diverse set of stakeholders and goals. We have com-
pleted the design of the initial release of the ACME
language. Over the past two years the preliminary lan-
guage design has been discussed at several meetings of
researchers and practitioners, who have provided crit-
ical feedback and guidance. This is the �rst written
account of the language to appear at a conference.
Actual use of ACME has taken two forms. The

�rst has been the exploration of language capabilities
through case studies of system architectures. The most
complex of these was an architecture for a missile com-
mand system, involving about a dozen pages of ACME.
The Second has been a set of case studies in which we
use ACME to support the interchange of architectural
designs between various ADLs. Currently, we are able
to transfer designs via ACME between UniCon and Ae-
sop, as well as from Wright to Rapide. Tools to sup-
port more sophisticated interchange between Rapide,
Wright, and SADL are in development. Although our
experience with inter-ADL exchange is not yet broad
enough to declare ACME a success as an interchange
language, based on our initial experience with the �ve

12

ADLs listed above, the prognosis looks good.
There are currently a number of ACME-based tools

available. These tools include (a) an ACME-Web visu-
alization tool that converts a textual ACME description
into a \World-Wide-Weblet" that can be viewed using
standard web browsers6; (b) a system that animates
pipe-and-�lter architectures described with ACME; (c)
a web-based ACME repository for templates, styles, and
architectural descriptions: and (d) an \expander" tool
that converts architectural descriptions using templates
and styles into a simple \core" description (without
templates) that can be more readily interchanged be-
tween tools.
Current work on ACME is centered around three ac-

tivities. First, we are extending our tools to provide bet-
ter capabilities for analysis of ACME descriptions and
working with other ADL developers to create tools that
expand the set of ADLs that can translate to and from
ACME. Second, we are continuing our e�orts to develop
community-based consensus around common attributes.
In particular, we hope to develop a standard for charac-
terizing trace behavior that will allow broad-based reuse
of architectural \animation" tools.
Third, we are exploring richer semantic models along

two major dimensions: constraint logic families and
property families. Along the �rst dimension we are ex-
ploring temporal logic to express dynamic aspects of ar-
chitectural evolution. In order to specify properties of
entire architecture families|styles, re�nements, or dy-
namic architectures|the closed world and uniqueness
assumptions mentioned earlier will need to be relaxed.
The second dimension of exploration is to enable bet-

ter semantic discrimination of types of properties. In
general, an ACME speci�cation's prescription is never
an end in itself, but rather forms the hypothesis (the
justi�cation, really) that some other, more important
predicates hold. For example, a derivative property
from the combination of \Aesop-style(client) = client-
server" and cycle-freeness might be that certain kinds of
deadlock are impossible. We need to be able to distin-
guish such derived predicates from those that are stated
axiomatically about an architectural speci�cation.

7 Acknowledgements

The Wright-Rapide translation was largely carried out
by Zhenyu Wang, whom we gratefully acknowledge.
The research reported here was sponsored by the Wright
Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research
Projects Agency (ARPA) under grants F33615-93-1-
1330 and N66001-95-C-8623; and by National Science
Foundation under Grant CCR-9357792 and a Graduate

6Examples and information about the tool can be found
through the URL: http://www.cs.cmu.edu/~able/acme-web/

Research Fellowship. Views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the o�cial policies, either
expressed or implied, of Wright Laboratory, the US De-
partment of Defense, the United States Government, or
the National Science Foundation. The US Government
is authorized to reproduce and distribute reprints for
Government purposes, notwithstanding any copyright
notation thereon.

References

[1] R. Allen and D. Garlan. Formalizing architectural con-
nection. In Proceedings of the 16th International Con-

ference on Software Engineering, pages 71{80, Sorrento,
Italy, May 1994.

[2] P. Binns and S. Vestal. Formal real-time architecture
speci�cation and analysis. In Tenth IEEE Workshop on

Real-Time Operating Systems and Software, New York,
NY, May 1993.

[3] L. Coglianese and R. Szymanski. DSSA-ADAGE: An
Environment for Architecture-based Avionics Develop-
ment. In Proceedings of AGARD'93, May 1993.

[4] D. Garlan, editor. Proceedings of the First International
Workshop on Architectures for Software Systems, Seat-
tle, WA, April 1995. Published as CMU Technical Re-
port CMU-CS-95-151, April 1995.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. In Pro-

ceedings of SIGSOFT'94: The Second ACM SIGSOFT

Symposium on the Foundations of Software Engineer-

ing, pages 179{185. ACM Press, December 1994.

[6] D. Garlan, B. Monroe, and D. Wile. ACME: An inter-
change language for software architecture, 2nd edition.
Technical report, Carnegie Mellon University, 1997.

[7] D. Garlan and D. Perry. Introduction to the special
issue on software architecture. IEEE Transactions on

Software Engineering, 21(4), April 1995.

[8] D. Garlan and M. Shaw. An introduction to software
architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge Engi-

neering, pages 1{39, Singapore, 1993. World Scienti�c
Publishing Company. Also appears as SCS and SEI
technical reports: CMU-CS-94-166, CMU/SEI-94-TR-
21, ESC-TR-94-021.

[9] C. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[10] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera,
D. Bryan, and W. Mann. Speci�cation and analysis of
system architecture using Rapide. IEEE Transactions

on Software Engineering, Special Issue on Software Ar-

chitecture, 21(4):336{355, April 1995.

[11] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Tay-
lor. Using object-oriented typing to support architec-
tural design in the C2 style. In SIGSOFT'96: Proceed-

ings of the Fourth ACM Symposium on the Foundations

of Software Engineering. ACM Press, October 1996.

13

[12] M. Moriconi, X. Qian, and R. Riemenschneider. Correct
architecture re�nement. IEEE Transactions on Soft-

ware Engineering, Special Issue on Software Architec-

ture, 21(4):356{372, April 1995.

[13] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software En-

gineering Notes, 17(4):40{52, October 1992.

[14] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software ar-
chitecture and tools to support them. IEEE Transac-

tions on Software Engineering, Special Issue on Soft-

ware Architecture, 21(4):314{335, April 1995.

14

