
Software Needs Engineering
� a position paper �

 Jane B. Grimson Hans-Jürgen Kugler
 Department of Computer Science Q-Labs
 Trinity College 5 Kendalstown Rise
 Dublin 2 Delgany, Co. Wicklow
 Ireland Ireland
 +353-1-608 1780 +353-1-287 1049
 Jane.Grimson@cs.tcd.ie HansJurgen.Kugler@q-labs.com

ABSTRACT
When the general press refers to �software� in its headlines,
then this is often not to relate a success story, but to expand
on yet another �software-risk-turned-problem-story.�

For many people the term �software� evokes the image of
an application package running either on a PC or some
similar stand-alone usage. Over 70% of all software,
however, are not developed in the traditional software
houses as part of the creation of such packages. Much of
this software comes in the form of products and services
that end users would not readily associate with software.
These can be complex systems with crucial connections
made through software, such as telecommunications or
banking systems, or the logistics systems of airports. Or
these can be end-user products with software embedded,
ranging from battery management systems in electric
shavers, over mobile phones to engine management and
safety systems in cars. e-Commerce systems fall into this
category, too.

Yes, there is software that works reliably and as expected,
and there are professional approaches to create such
products � one can engineer software, in the right
environment, with the right people.

Keywords
software, engineering, profession

1 CASE 1: �MISSION COMPLETED, BAGGAGE
DESTROYED.�

Many travellers have experienced the chaos airports and
their logistics can inflict on their personal plans when it

comes to baggage �handling.� However disastrous such an
experience may have been, it is most certainly exceeded by
what the system of Denver International Airport was
capable of, or, was not capable of. The project to build an
automatic baggage handling system was added in 1992 as
an additional aspect of building the new Denver
International Airport (DIA), which is twice the size of
Manhattan and 10 times London�s Heathrow airport. The
DIA baggage system is a subterranean baggage handling
system consisting of 21 miles of steel track connecting all
the terminals facilities designed to house 20 airlines.
Baggage is automatically routed on these tracks in 4,000
independent carts, controlled by more than 100 networked
computers and countless sensors and radio communicators.
At the heart of the operations is a purpose built software
system monitoring and controlling the movement of the
baggage in the carts.

Unfortunately industry experience shows that such projects
to develop and install large software systems are on
average 50% late, with corresponding over-expenditure and
serious �teething problems� even after delivery, and the
DIA baggage system was no exception. Problems with the
software system delayed the opening of the airport from
October 1993 in various stages until February 1995 � in
the meantime a conventional system for baggage handling
had been constructed as backup. As late as 1996, with the
automated system in operation, there were still considerable
problems to be resolved.

What went wrong?
Whilst there were some mechanical problems and some
problems with sensors, the real problems were with the
control software of the baggage system. These problems
were not simple programming defects that could remedied
in a rather straightforward manner; no � these problems
were �built in� right from the start through inadequate
handling of the requirements the software system was
supposed to fulfil. In particular, permitting changes to the
requirements and the specification in a less than controlled

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

541

manner compounded this. It is not possible to attribute the
failure of a software project to just one single cause, but
lack of discipline in software management processes
permitted the risks to grow.

2 SOFTWARE SYSTEM FAILURES � MAJOR
CAUSES

Robert Glass [1] categorises major causes of software
system failures as:

1. project objectives not fully specified

2. bad planning and estimating

3. technology new to the organisation

4. inadequate (or missing) project management
method

5. insufficient senior staff on the team

6. poor performance by suppliers of
hardware/software

7. (other) performance or efficiency problems

None of the above categories is really technological at
heart; they are all related to software management, i.e. the
lack of the application of proper engineering management
to the software part of a larger project, or the lack of risk
management in technology adoption.

3 CASE 2: �SLAIN BY THE SAVIOUR�
The (unsuspecting) user does not interact with software
only through the result of such large project undertakings.
Software controls many functions of a modern car. Many of
the recent advances in road safety and fuel economy of cars
depend on fairly complex safety components and motor
management systems, which, not surprisingly, are
essentially software systems. Modern cars have nearly as
much software under the bonnet as PCs used to have in
their operating systems. The users� expectations are
generally higher, though � no motorist wants to be forced
to reboot the engine of a car several times a day.

Safety devices, such as anti-lock brakes and airbags are
expected to be fail-safe. Last year the German magazine
�Der Spiegel� reported an accident, in which a baby sitting
in a rear facing baby seat mounted to the front passenger
seat of a car was killed by the impact of the deploying
airbag in an oncoming traffic collision. This happened in
spite of the fact that the airbag had been disabled
previously at a certified garage.

Experts from the Technical University of Munich suspect a
systems engineering fault as the likely causal factor.
Deactivation of the airbag in this make of car was1 a
software-controlled function. As physical circumstances in

1 This has subsequently be changed to physical
disconnection of power.

a car (temperature variations, moisture, and vibrations)
form a fairly hostile environment for the air bag control
hardware, the software system running inside the control
performs ongoing self-checks. If an error has been detected,
the current software settings, including the data responsible
for the deactivation, will be replaced by backup software
read out of a read-only memory. This backup software only
knows a simple set of rules; namely that all air bags in the
car will be deployed upon impact. Evidently, the backup
software is unaware of a previous software-controlled
deactivation. Other manufacturers physically disconnect the
air bag from the board electronics for deactivation.

Again, this is not a technological problem with software as
such, but a problem of the relationship between the
behaviour of the software and the behaviour of the wider
system. This may be another problem of �project objectives
not fully specified�, either initially or by failing to control a
later modification of the system. Project management, team
seniority or even team communications can also have
played a role.

4 SOFTWARE NEEDS ENGINEERING
DISCIPLINE

The dictionary definition of engineering is the application
of scientific and mathematical principals towards practical
ends. Thus engineering is concerned with creating cost-
effective solutions to practical problems by applying
scientific knowledge to building �things� - or systems - in
the service of mankind. Engineering is not just about
solving problems. It is about solving problems subject to
economic, environmental, social, and other constraints. It is
about the economical use of all available resources
including money. It deals with practical problems whose
solutions matter to people outside the engineering domain.
Engineering solves problems in a particular way by
applying scientific and mathematical principles to analyse,
construct and test artifacts or systems. Software
Engineering falls into this generic description of what
Engineering entails.

Software does not wear out in the physical sense but it does
age. David Parnas one of the leading proponents of
computing as an engineering discipline stated �A sign that
the Software Engineering profession has matured will be
that we lose our preoccupation with the first release and
focus on the long term health of our products. Researchers
and practitioners must change their perception of the
problems of software development. Only then will Software
Engineering deserve to be called Engineering�. . [2].

One of the major problems with the development of
software is that so much of it is built in an ad hoc manner
from scratch rather than by assembling it from off-the-shelf
components. Traditional engineering artifacts are almost
always built from standardised components. Because of the
lack of a model of the system and inadequate
documentation it was felt that it was easier to re-invent the

542

wheel rather than try to understand the existing wheel and
adapt it to fit the new bicycle. The failure to combine tried
and tested components to build new systems means that
each new system is built from scratch in a monolithic
fashion so maintenance is a nightmare.

The greatest advantage of software is its flexibility, and this
is also its greatest drawback. The potential flexibility of
software systems is unfortunately often equated with �easy
to change.� Just think of what side effect the change of a
macro or even just a simple re-used formula in a
spreadsheet may produce. Now imagine what effect such
�changes-on-the-fly� under time pressure in a complex
real-time system may produce. Software technology needs
engineering discipline to be able to repeatedly and
economically produce reliable software intensive products
and services. The fact that software is intangible is
probably the greatest obstacle in introducing engineering
rigour in many software projects.

Does this mean that software that meets expectations and
constraints is not affordable? No, rigorous engineering
processes are feasible, and examples of what is considered
industrial good practice in software engineering are being
deployed in more and more organisations. One such
approach is based on the Capability Maturity Model2
(CMM) [3] of the Software Engineering Institute at
Carnegie-Mellon University. This is an application of
Crosby�s quality grid to software, with lots of feedback on
good practices added from practical experience. The CMM
describes an evolutionary approach for software developing
organisations to increase their capabilities to profitably
produce higher quality software. At one of the intermediate
steps focus is laid on adopting and continuing with good
engineering practices in requirements management, project
planning, project tracking, software quality assurance,
subcontract management and configuration management.
The relationship to the above mentioned problem areas is
obvious.

Improved industry standard software processes, together
with a professional software engineering team, have been
shown to deliver higher quality to the customer and higher
profits to the developers. There is a need for the transfer of
an organisational engineering culture.

5 DO WE NEED PROGRAMMERS OR
SOFTWARE ENGINEERS?

Actually, we need both, but for different tasks. Just as in
traditional engineering disciplines, there is a need for both
the professional engineer and the technician. They are
trained differently and fulfil different roles. The primary
educational qualification for the professional engineer is
normally an accredited 4 or 5 year degree programme,

2 CMM is registered with the US patents and trademarks
office.

followed by a period of practical experience and on-the-job
training. The typical engineering degree programme is
based on the engineering science approach under which
students study the underlying mathematics and science
(principally Physics and Chemistry) appropriate to their
discipline in the early years, followed by engineering
applications. Engineering technicians and technologists, on
the other hand, receive a shorter and more practically
focused education to sub-degree level. There is generally
much less emphasis on the underlying science and
mathematics. In terms of their respective roles, the
professional engineer is usually responsible for the design
of engineering artefacts and systems, as well as project
management, while the technician is generally responsible
for the �construction� and maintenance of artifacts and
systems. There is � or should be � a direct parallel with the
construction of software systems with the software
engineer being responsible for the design and project
management and the �technician� (programmer, analyst,
tester, etc.) being responsible for implementation,
maintenance etc.

6 CONCLUDING REMARKS
Large civil engineering structures have been built since
before recorded history but it is only in the last 150 years or
so that their design and construction has been based on
theoretical understanding rather than intuition and
accumulated experience. By that yardstick, the software
industry has made rapid progress indeed, but there is no
doubt that much more needs to be done to improve the
quality and reliability of software.

The invention of the digital computer in the 1940�s resulted
from the collaborative work of engineers, scientists and
mathematicians. For some years afterwards, it was felt that
this fledgling discipline of Computer Science might be
reabsorbed into mathematics, engineering or physics [4]. In
some ways these tensions still exist with heated debates on
the nature of computing as a discipline. Although few
people today would agree with Lord Goodman when he
wrote in 1986 �We are living in a computer-obsessed
world. A man trained in computer science alone is by any
definition an uneducated man; the enormous danger that
looms over us is that we shall be satisfied to have a society
trained to this limited degree and ignore or deride the
necessity for the older notions of liberal education� [5]. It
is interesting to recall that the very same criticisms were
leveled against universities which sought to introduce
engineering degrees in the universities in the mid-19th
century.

Steve McConnell recently posed the question �should
software development be engineering?�[6]. The answer has
to be a resounding �Yes!�. As computing has matured, it
has reached a stage where there is an extensive body of
underlying theory and principles, as well as a vast array of
practical tools and techniques. This is no way devalues the

543

contribution of mathematics and science to the discipline
nor does it detract from the increasingly important role of
other disciplines in modern software development
including, for example, psychology, cognitive science,
economics, graphic design and sociology. Indeed if
anything the multi-disciplinary nature of software
development strengthens the argument that it is an
engineering discipline.

Modelling and simulation tools should play as key a role in
software engineering as in other engineering domains.
There is a vast array of tools available today which allow
software developers to build prototypes/models of their
systems and test them before engineering the final product.
Yet we continue to build systems like the Wright brothers
built aeroplanes � push them over the cliff, watch them
crash and then start all over again! Modelling and
simulation tools enable developers to �test drive� a
specification of their system.

As wit traditional engineering disciplines, we must aim to
enter the new millenium with clear definitions of the
professional competencies and responsibilities required for
those working in the software industry. Similarly we need
to move towards a certification process for software
engineers [7]. This will in turn ensure that we engineer the
next generation of software systems to the highest
standards of performance, safety and reliability that reflect
the central and critical role which these systems increasing
play in modern society.

REFERENCES
1. Glass, R.L. Software Runaways � Lessons Learned

from Massive Software Project Failures. Prentice Hall,
PTR, NJ, 1998.

2. Parnas D, Software aging, Talk given at the
Technische Hochschule, Vienna, June 16, 1995.

3. Paulk, M.C. The Capability Maturity Model:
Guidelines for Improving the Software Process.
Addison-Wesley, Reading, MA, 1994.

4. Denning PJ, Computing the profession, Computer
Science Dept, George Mason University, Fairfax,
VA22030, August 1998.

5. Lord Goodman, No whispered enhancements for the
don, Observer, 29 June, 1986.

6. McConnell S, The Art, Science, and Engineering of
Software Development, IEEE Software, Jan-Feb 1998,
118-120.

7. Maginnis T. Engineers don�t build. IEEE Software,
January/February 2000, 34 �39.

544

	ABSTRACT
	Keywords

	CASE 1: “MISSION COMPLETED, BAGGAGE DESTROYED.”
	What went wrong?

	SOFTWARE SYSTEM FAILURES — MAJOR CAUSES
	CASE 2: ‘SLAIN BY THE SAVIOUR’
	SOFTWARE NEEDS ENGINEERING DISCIPLINE
	DO WE NEED PROGRAMMERS OR SOFTWARE ENGINEERS?
	CONCLUDING REMARKS
	REFERENCES

