
COMMUNICATIONS OF THE ACM October 1998/Vol. 41, No. 10 107

Software development is
similar to building bridges.
Technical expertise is

applied to build something that
may be confidently used where
expertise is lacking. A person
crosses a bridge without measur-
ing the beams and repeating the
stress analysis arithmetic. A per-
son uses a compiler without veri-
fying the symbol table algorithm.

It is this application of exper-
tise that causes the fields of both
bridge building and software
development to be areas where
engineering principles are applic-
able. It is the cost of failure that
makes these principles required.

However, software is different
from concrete and steel. The obvi-
ous differences are shape and
strength. Concerning shape, soft-
ware is like a cartoon. As an ani-
mated drawing can assume
unrealistic shapes, software sup-
porting animation can produce
these shapes. Concerning strength,
software does not suffer from
fatigue or vibration. If there is suf-
ficient time and memory, an algo-
rithm in software can function
correctly far beyond where it can
function well. For example, imag-
ine the bridge-loading analogue of
a linear search through the O.E.D.
with a Turing machine.

Therefore, producing software

is an engineering endeavor at the
level of responsibility and ethics.
But it is not an endeavor that can
make use of the traditional engi-
neering tools—slide rules and
tables of yield strength.

OO and CASE Are Not
Engineering
There are bridges made of steel
and bridges made of concrete.
There are also bridges made of
wood. If the correct stress cal-
culations can be performed, a
highway bridge can be built of
paper mache.

To apply the analogy to soft-
ware, good software can be written
in C or Pascal, assembler or For-
tran. The choice of language, like
the choice between steel or wood,
does not mean good engineering.

Similarly, there are bridge con-
struction projects that use a crane
mounted on a pair of barges, or
that use scaffolding extending
out from the center pier. For one
suspension bridge, the first line
across the river was carried by a
rowboat; for another, it was car-
ried by a kite.

As applied to software, some
projects are designed on the
blackboard, others using com-
puter-based design tools. Some
projects purchase outside tools,
others write in-house source

librarians, testbeds, and valida-
tion facilities.

In each case, the methodology
may represent sound engineering
practice. But the methodology—
by itself—does not assure good
engineering for the finished
product.

Management Is
Engineering
If engineering in software is not
calculators and strength-of-
materials tables, is not advanced
languages and tools, then what
remains? For starters, manage-
ment remains. There are two
responsibilities that fall on man-
agement.

The first is feasibility. Man-
agement is responsible for
accepting the challenges while
refusing the impossibilities.
Those doomed projects that will
be late, over-budget, and unreli-
able must be replaced by alterna-
tives that will generate customer
satisfaction.

The second management
responsibility is the nurturing of
the organism that is the software
development capability: the peo-
ple and the process. Good
employees should be hired and
kept. Helpful tools should be
provided and supported. The
design documents and code

Engineering in Software
Richard Gisselquist

108 October 1998/Vol. 41, No. 10 COMMUNICATIONS OF THE ACM

should be subject to appropriate
reviews.

The resulting software may
have an author’s name on the
design document, and may have
several coders’ names on the sub-
routines, but the manager’s name
will be on the whole.

Design and
Implementation Are
Engineering
In the bridge example, the
design specifies everything that
will be in place when the bridge
is used. The implementation of
the bridge, called construction, is
the activity required to complete
the bridge. The design and
implementation are activities
that differ at a conceptual level.

With software, design and
implementation are the same
activity—translation. A software

project moves from desire to sili-
con by a process of repeated
translations: from specifications
to design to detail design to
source code.

The danger of losing control
of the logic exists at each transla-
tion step. The prize of possibly
adding value to the software
through and excellent translation
exists at each step.

Good engineering in software
consists of accurate and appropri-
ate translations.

Engineering Is Use
The owner of a steel bridge
should paint the bridge to pre-
vent rust, inspect the bridge on a
regular basis, and post accurate
load limits.

Software will never need to be
painted, but it can fail through
misuse. Software owners should

employ competent operators,
monitor the performance on a
regular basis, back up the critical
data, and provide adequate mem-
ory space and processing power.

Hackers celebrate when they
can use the campus com-
puter to ring the bells in

the college chapel at two in the
morning.

Scientists celebrate when they
have successfully sent a monkey
into space.

Engineers do not celebrate
until they can walk across the
completed bridge, holding their
children’s hands.

Richard Gisselquist (rig@cray.com) is
a senior programmer analyst at Silicon
Graphics in Eagan, Minn.

© 1998 ACM 0002-0782/98/1000 $5.00

c

Technical Opinion

Introducing ACM’s N E W

AC M M e m b e r s s u b s c r i b e
t o d a y ! O n l y $ 8 6 !

• 8 Years of ACM Journals and Proceedings Archives
• State-of-the-art Search Engine • 22 High-Tech

Magazines
• Download to Print or Save on HD

Questions? Contact Peter Cl ifford, Email :
cl ifford_p@acm.org

Association for Computing Machinery
http://www.acm.org

DIGITAL
LLLLIIIIBBBBRRRRAAAARRRRYYYY

h t t p : / / w w w. a c m . o r g / d l

