
AspectLua - A Dynamic AOP Approach

Nélio Cacho
(Federal University of Rio Grande do Norte, Brazil

cacho@consiste.dimap.ufrn.br)

Thaís Batista
(Federal University of Rio Grande do Norte, Brazil

thais@ufrnet.br)

Fabrício Fernandes
(Federal University of Rio Grande do Norte, Brazil

fabricio@consiste.dimap.ufrn.br)

Abstract: In this paper we describe AspectLua – a dynamic aspect-oriented language based on
Lua. It relies on a meta-object protocol, LuaMOP, which unifies the introspective and reflective
mechanisms provided by Lua and handles the weaving process. In order to improve support for
dynamicity, AspectLua allows the association of aspects with undeclared elements of the
application code (virtual join points). In addition, it provides an automatic support for
managing aspects execution order.

Keywords: AOP, MOP, Lua, Dynamic Aspects, Reflection.
Categories: D.2.3, D.3.3

1 Introduction

Aspect-oriented programming (AOP) has gained popularity as a powerful mechanism
to promote modularity by separating the code that crosscuts components from the
component code (base code). An aspect is a unit that encapsulates crosscutting
concerns. A weaving process supports the composition of components and aspects.
Weaving can take place at compile time (static weaving) or at runtime (dynamic
weaving). Recently, some approaches are using weaving at loading time. While static
weaving avoids type mismatches and runtime overhead, it does not fit well in the
support of a common requirement of nowadays applications: dynamic adaptability. In
order to meet this requirement, a number of AOP approaches adopt weaving at
runtime. Building dynamic weaving on top of a scripting language is commonplace.
There are AOP implementations of Python [Rossum 03], Ruby [Thomas 00], Perl
[Liang 04], and Smalltalk [Ingalls et al. 97].

In this paper we present AspectLua - an AOP extension to the Lua [Ierusalimsky et
al. 96] scripting language. Lua offers a fertile substract for the integration of aspects
because it is dynamically typed and offers reflective features that allows the
programmer to extend its behavior without modifying the underlying interpreter. In
addition, the Lua philosophy is to be simple and small. AspectLua follows this idea.
AspectLua shares some features with other AOP scripting languages. For instance,
weaving is done at runtime and both components and aspects can be dynamically

inserted into and removed from the application. On the other hand, it combines some
features found in isolation in other languages and also introduces the possibility of
specifying aspects for inexistent application elements (virtual join points). We
consider that this concept is essential to handle adaptability.

Since in a highly dynamic scenario aspects are inserted into and removed from
the application at runtime, the problem of aspects execution order is highlighted. In
order to overcome this problem, AspectLua API offers functions that allow the
programmer to manage aspects execution order. It also provides an automatic support
for this task via the concept of alert. The programmer can define an alert to a join
point and associate a function that is invoked when a new aspect is defined to this
join point.

We also present LuaMOP - a meta-object protocol (MOP) that provides an
abstraction over the reflective features of Lua and allows application methods and
variables to be affected by the aspect definition. The advantage of using a MOP as an
underlying mechanism to handle dynamic weaving is that it allows non-invasive
changes of the application original code. Aspects are defined in isolation using the
Aspect class provided by AspectLua and then they are weaved through LuaMOP.
AspectLua offers an abstraction to hide the complexity of the weaving process. For
instance, the programmer can define a virtual join point without knowing that
LuaMOP implements an underlying mechanism, named Monitor, to support this
concept.

This paper is organized as follows. Section 2 presents aspect-oriented
programming concepts and a technique commonly used to support it: computational
reflection. Section 3 presents AspectLua architecture and functionality. Section 4
presents a case study that validates AspectLua concepts. Section 5 discusses
performance evaluation. Section 6 discusses about related work. Finally, section 7
contains the final remarks.

2 Aspect-Oriented Programming

2.1 Basic Concepts

Aspect-Oriented Programming emphasizes the need to decouple concerns related to
components from those related to aspects that crosscut components in an application.
Although there is no consensus about the terminology and the elements of aspect-
oriented programming, we refer in this work the terminology used in AspectJ
[Kiczales et al. 01] because it is one of the most used aspect-oriented language.
Aspects are the elements designed to encapsulate crosscutting concerns and take them
out of the application basic code (components). Join Points are the elements of the
component language semantics that aspect programs coordinate with [Kiczales et al.
97]. Join points can represent data flows of the component program, runtime method
invocations in the component program, etc. Pointcuts are sets of join points. The
definition of pointcuts makes it possible to get methods arguments values, attributes,
exceptions, etc. Pointcut designators pre-defined in the language itself are used for
this purpose. The main designators are call, get, and set, which are related,

respectively, to method call, and variable reading and modification. Pointcuts can also
be defined by programmers on the basis of pre-defined designators.

The advice defines the action that must be taken when a join point is reached. It
acts on a pointcut and can be configured to act before (before advice), after (after
advice), around (around advice) the joint point, etc.

The weaving process places together the code defined in the join points and the
advices. Weaving can be done either at compile time or at runtime. In AspectJ and
AspectC++ [Gal et al. 01] weaving is done at compile time. A recent version of
AspectJ uses weaving at load time. Since new language constructs to handle AOP
were added to the language syntax, a special compiler plays the weaver role in order
to mix source code and aspects code. The outcome is a new version of the system
including both codes. The other approach, which involves aspects weaving at runtime,
will be detailed in the next sections.

2.2 AOP and Computational Reflection

The capability of a programming language to support dynamic aspects depends on its
mechanisms to recognize join points and to deal with advices insertion at runtime.
The recognition of join points and the introduction of new behaviors (advices) can be
implemented using computational reflection. Some works [Kojarski et al. 03],
[Sullivan 01] discusses the relationship between reflection and AOP.

Reflection [Kiczales et al. 91] is the ability of a system to inspect and to
manipulate its internal implementation. The separation of application functionality
and the execution mechanisms provides support for reflection. This separation allows
the existence of two levels to support reflection: base-level and meta-level. The base-
level contains the application concerns. The meta-level contains the building blocks
responsible for supporting reflection. These levels are connected by a causal
connection. Thus, changes at the meta-level are reflected into corresponding
modifications at the base-level and vice-versa. The elements of the base-level and of
the meta-level are respectively represented by base-level objects and meta-level
objects.

The access to the meta-level objects is provided by a meta-object protocol
(MOP), which defines an interface that enables accessing the structure of a program
(classes, methods, fields, etc) and inspecting the execution environment. Events
whose semantics can be modified by the meta-objects include: object creation,
sending and receiving messages, searching methods, setting and getting values in
variables. Meta-objects are instances of meta-classes that define fields and methods to
modify and to inspect the base-level objects.

The introspection facilities provided by MOPs support the recognition of join
points. MOPs also easily support the dynamic insertion of advices that represent the
aspect code to be combined with the application code.

3 AspectLua Infrastructure

3.1 Lua

Lua is an interpreted extension language developed at PUC-Rio. It is dynamically
typed, which means that variables are not bound to types. However, each value has an
associated type. Lua syntax and control structures are similar to those of Pascal. It
also offers some non-conventional features, such as the following: (1) Functions are
first-class values and they may return several values, eliminating the need for passing
parameters by reference; (2) Lua tables are the main data structuring facility in Lua.
Tables implement associative arrays, are dynamically created objects, and can be
indexed by any value in the language (except nil). Lua stores all elements in tables as
key-value pairs. Tables may grow dynamically, as needed, and are garbage collected.

Lua offers reflective facilities such as: metatables and the _G environment
variable. Metatables supports the modification of a table behavior. This is done via
the definition of functions to be invoked in specific points during the execution of a
Lua program. Each function defined, named metamethod, is associated with a specific
event. When an event occurs, the function is invoked to handle such an event. The
code of Figure 1 illustrates the use of metatables.

1 commontable = {x=10, y=20}
2 local metatb = {__index = function (t,k) print(k) end}
3 setmetatable(commontable, metatb)

Figure 1 : Metatable definition

In the code of Figure 1, line 1 defines the commontable table with x and y fields.
Line 2 defines the metatb metatable. It will act upon the “index” event by printing the
index of the element. On line 3, metatb is applied, via the setmetatable method, upon
the commontable table. Thus, when commontable is indexed, as in the
print(commontable.x) invocation, the metamethod is invoked to print the element used
as the index, in this case “x”.

Another reflective feature is the _G environment variable. It describes all global
variables of an application, including tables and functions. This variable is a table that
can be manipulated as any other table of the environment. It is possible to insert, to
modify, and to remove variables and functions of the execution environment. The
code illustrated in Figure 2 shows an example of a variable declaration by directly
inserting it in _G.

1 function declare (name, initval)
2 rawset(_G, name, initval or false)
3 end

Figure 2: _G example

In this code, the declare method receives the following parameters: the name and
initial value of a variable. Then, it invokes the Lua rawset method. This method

inserts in the _G table, a name field with value equal to initval. It also makes it
possible the use of a metatable to control the reading and writing in global variables.

Despite these reflective facilities, Lua does not provide a MOP that unifies and
organizes the introspection and reflection mechanisms required to make it easier the
introduction of AOP. Therefore, in the following sections, we will describe a MOP to
the Lua language and its support for AOP.

3.2 AOP in Lua

Lua support for AOP is provided by an aspect class used to define aspects that are
dynamically weaved by a meta-object protocol named LuaMOP. According to
[Sullivan 01] a robust MOP makes it easier to implement an aspect language.

Figure 3: AspectLua architecture

Figure 3 illustrates the blocks that compose the AspectLua architecture. The first
layer is composed of the Lua language with its reflective facilities. The second layer
is composed of the LuaMOP facilities that take advantage of the Lua reflective
mechanisms. LuaMOP provides a set of meta-classes that support the dynamic
introduction of aspects defined at the third layer. AspectLua provides the aspect class
to the definition of AOP elements. Thus, AspectLua offers an abstraction layer that
hides the complexities of meta-objects. A programmer can take advantage of
AspectLua without knowing either LuaMOP or the Lua reflective features.

3.2.1 Creating Aspects

To create an aspect it is necessary to use the new function that creates an instance of
the AspectLua class. After that, to define a Lua table containing the aspect elements
(name, pointcuts, and advices). Figure 4 illustrates an aspect definition:

• The first parameter of the aspect method is the aspect name;
• The second parameter is a Lua table that defines the pointcut elements: its

name, its designator and the functions or variables that must be intercepted.
The designator defines the pointcut type. AspectLua supports the following
types: call for function calls; callone for those aspects that must be executed
only once; introduction for introducing functions in tables (objects in Lua);
and get and set applied upon variables. The list field defines functions or
variables that will be intercepted. This list can use wildcards. For instance,

Bank.* means that the aspect should be applied for all methods of the Bank
class. It is not necessary that the elements to be intercepted have been
already declared.

• Finally, the third parameter is a Lua table that defines the advice elements:
the type (after, before, around, and so on) and the action to be taken when
reaching the pointcut. In Figure 4, the logfunction function acts as an aspect
to the deposit function. For each deposit function invocation, logfunction
function is invoked before it in order to print the deposit value.

Bank = {balance = 0}
function Bank:deposit(amount)
 self.balance = self.balance + amount
end
function logfunction(a)
 print('It was deposited: ' .. a)
end
asp = Aspect:new()
id = asp:aspect({name = 'logaspect'},
 {pointcutname = 'logdeposit', designator = 'call',
 list = {'Bank.deposit'}},{type = 'before',
 action = logfunction})

Figure 4: Aspect definition

In Figure 4, the Bank object with deposit method is declared before the
invocation of the aspect method. If Bank object has not been declared, AspectLua
would consider it as a virtual join point – a join point that does not have a meta-object
but that has a monitor. A virtual join point can be useful in many situations. For
instance, for dynamic resource allocation in embedded systems, virtual join points can
be used to support a lazy loading approach [Miles 04]. See in Figure 13 a simple lazy
loading scenario.

3.2.2 Managing Aspects

AspectLua provides a set of functions to manage aspects: getAspect(id), getAll(),
removeAspect(id), and updateAspect(id, newasp). Such functions use the aspect
identification - id - returned by the aspect method. getAspect and getAll are used to
obtain one or all aspects already defined. After obtaining an aspect, it is possible to
modify it or to update its elements by using the updateAspect function. Using this
function it is possible to modify pointcuts and advices of an aspect already defined.
removeAspect supports aspect removal. Figure 5 illustrates the use of these functions.

To control the execution order of aspects in a given pointcut, AspectLua offers
getOrder and setOrder functions. getOrder returns the list of aspects associated with a
variable or function. It receives as a parameter the name of the variable or the
function. It returns a list with the current aspect invocation order. setOrder allows the
programmer to modify this order. This function receives the following parameters:
variable or function name and the new execution order. Figure 5 defines two aspects

to be executed before the deposit method. By default, the execution order follows the
order of aspect definition. Therefore, logfunction will be executed before checkRights.
To modify this order, setOrder can be used with the following parameters: deposit
and a table defining a different order. In order to get information about a variable or
function, getOrder function is invoked receiving its name as a parameter.

function checkRights()
 if not ok_right then
 error(“No Permission to execute”)
 end
end
id = asp:aspect({name = 'secaspect'},

{pointcutname = 'verifyRights',
designator = 'call', list = {'Bank.deposit'}},
{type = 'before', action = checkRights })

local order = Aspect:getOrder('Bank.deposit')
oldasp = asp:getAspect(id)
oldasp.advice.type = 'after'
asp:updateAspect(id, oldasp)
Aspect:setOrder('Bank.deposit', { order[2], order[1]})

Figure 5: Defining order to aspects invocations

As different aspects can be defined to a given join point, the problem of
determining the execution order is commonplace. In Figure 5, the programmer uses
the setOrder function to fix this problem. However, in complex applications with a
great number of aspects, the identification of the different aspects that act on the same
pointcut can be a hard task. In order to give an automatic support for this task,
AspectLua provides the following methods: addAlert(type, joinpoint, func),
removeAlert(ida) and getAlert(ida). addAlert receives a type of alert (Add, Remove,
Update, Equal), the join point and a function to be invoked to handle the alert. For
instance, addAlert(“Add”, “Bank.deposit”, warning) defines an alert that invokes the
warning method whenever an aspect is added to the Bank.deposit join point. In order
to support alerts management, the addAlert method returns an alert identifier (ida) to
be used by the getAlert and removeAlert methods. These methods are used to get and
to remove an alert, respectively.

Similary to the Add alert type, which determines the monitoring of the aspect
method invocations, Remove and Update determine the monitoring of removeAspect
and updateAspect. In contrast, the Equal alert type determines the monitoring of
aspect or updateAspect. In this case, the monitoring consists in verifying if during the
execution of these methods, a new aspect is defined to a same join point that is
already associated with another aspect. In this way, the verification process returns
true from the second aspect of a same join point onwards.

3.2.3 Implementations details

Figure 3 illustrates the architectural view of the AspectLua. Figure 6 shows how the
AspectLua architecture is implemented. AspectLua internal structure manages the

meta-objects and the alerts. AspectLua is used by invoking methods provided by its
API (aspect, removeAspect, updateAspect, etc). Each method invocation is initially
forwarded to the Alert Manager that verifies the join point and the invoked method in
order to discover Alerts. After that, the invocation is handled by the AspectLua core
that combines each join point with the proper meta-object. This relationship is done
by the Aspect list and indexed using the id of the aspect. This process controls the
instantiated meta-objects for the join points. Each join point can be represented by
one or more meta-objects.

Figure 6: AspectLua internal architecture

To instantiate and manipulate meta-objects, AspectLua relies on LuaMOP.

LuaMOP is a meta-object protocol that enables the creation of a meta-representation
to each element that composes the Lua runtime environment: variables, functions,
tables, userdata and so on. Each element is represented by a meta-class that provides a
set of methods to query and to modify the behavior of each element of the base class.
They are organized in a hierarchical way where MetaObject is the base meta-class
(Figure 7). Derived from this meta-class are MetaVariables, MetaFunctions,
MetaCoroutine, MetaTable, and MetaUserData meta-class. Furthermore, LuaMOP
also provides a Monitor class to monitor the occurrence of events in the Lua runtime
environment.

The flexibility provided by AspectLua in defining join points to different
elements (variables, functions, tables) is supported by the set of meta-objects provided
by LuaMOP. This way, AspectLua exploits the power of LuaMOP and uses it to the
definition of aspects, pointcuts and advices. In LuaMOP perspective, aspects are
defined at the meta-level via meta-objects, and application components are defined at
the base-level. The weaving process that combines the two levels is achieved by
LuaMOP. Due to the integration between AspectLua and LuaMOP, it is unnecessary
to modify the Lua syntax to handle aspects definition.

Figure 8 illustrates the integration between AspectLua and LuaMOP. In this
example, AspectLua is used in the definition of the LogFunction advice that should be

executed at the join point Bank.deposit. In order to handle this issue, AspectLua asks
LuaMOP to create the MetaBank meta-object as a meta representation of the Bank
object and to insert the behavior (LogFunction) at the MetaField deposit.
LogFunction should be executed before the deposit method. The existence of a meta-
object means that all messages to the Bank object is intercepted by LuaMOP and
forwarded to the MetaBank meta-object. When the meta-object receives a message, it
inspects its MetaFields to verify the need of executing an extra behavior. If not, the
message is forwarded to the base-object. In Figure 8, MetaBank executes
LogFunction function and after that, the deposit function is executed.

LuaMOP

-
-

metaObjects
monitors

: [] MetaObject
: [] Monitor

+
+
+
+
+

getInstance ()
getMetaObject ()
createMonitor ()
getMonitor ()
getAllMonitors ()

: MetaObject

MetaObject

+
+
+

getType ()
getName ()
destroy ()

MetaVariable

+
+
+
+
+
+
+

getValue ()
setValue ()
addXY ()
getXY ()
setXY ()
delXY ()
setAvalXY ()

MetaTable

-
-

fields
monitor

: [] MetaField
: Monitor

+
+
+
+
+

getField ()
getAllFields ()
setField ()
setMonitor ()
getMonitor ()

MetaFunction

+
+
+
+
+
+
+
+
+
+
+

getNameFunction ()
getSrcDefined ()
getLineDefined ()
getTypeFunction ()
getNameWhat ()
getFunction ()
setFunction ()
addZMethod ()
getZMethods ()
setZMethods ()
delZMethods ()

MetaField

- value : MetaObject

MetaCoroutine

+
+
+
+

resume ()
yield ()
status ()
setFunction ()

MetaUserData

Monitor

+
+
+
+

addEvent ()
getEvent ()
getAllEvents ()
delEvent ()

Figure 7: LuaMOP class diagram. X should be replaced by Pre and Pos,

Y should be replaced by Get and Set and Z should be replaced by Pre, Pos
or Wrap

The meta-representation provided by LuaMOP is created via the invocation of
the getInstance(instance) method. This method returns the meta-object corresponding
to the object with name or reference described by the instance parameter. This meta-
object is an instance of a meta-class described above. For each meta-class there are
methods that describe it and that support changes in the behavior of a meta-object.
Thus, getType() and getName() methods can be invoked by all meta-classes, since
these methods are part of the MetaObject meta-class. These methods return,
respectively, the meta-object type and name. The destroy() method is used to
disconnect the meta-object from the base object and to destroy the meta-object. The
getInstance method can also be invoked, using as an input parameter a non-

determined name. For instance: getInstance(“string.*”) returns a list (table) with
meta-objects that represent the functions of the string package.

Figure 8: Integration between AspectLua and LuaMOP

The MetaVariable meta-class provides the following methods: getValue and
setValue. These two methods are used to get and to modify the value of a variable.
The get and set events are two other functions that can be intercepted by LuaMOP.
The get event occurs when a variable, table or function is referenced, indexed or
invoked. The set event occurs when values are associated with variables, table
elements and functions.

The addPreGet, addPosGet, addPreSet, and addPosSet methods insert a function
to be executed before (or after) variable reading or writing. Figure 9 shows an
example of these functions. On the first line, balance variable is set to 10. On the next
line, a meta-object is created to represent such variable. The four following lines
declare the checkread function and associate this function with the metavar meta-
object, via the addPreGet method. The main goal of these functions is to control the
access to such variable. Thus, if the function inserted by the addPreGet method
returns a value different from nil, the reading process is interrupted. The existence of
other functions demands that all functions return nil to allow reading the variable.
This LuaMOP standard behavior can be modified by the setAvalPreGet(funcaval)
function. The funcaval function receives as a parameter a table with all outcomes
provided by the functions inserted using the addPreGet method. Based on this list, the
funcaval function should return a non-nil value to interrupt the reading.

Line 10 shows the use of addPosGet function to associate the convert_to_dollar
function with the metavar meta-object. The convert_to_dollar function is invoked
after reading the variable and it receives the reading value. It can return a new value.
On line 8, the balance variable value is divided by 2.65 and the outcome is returned to
the application. The addPreSet method is used to modify the variable value. On line
15, this function is invoked to associate the convert_to_real function with the metavar
meta-object. The convert_to_real function is executed before writing the new value
provided by the application. The convert_to_real function can return nil or a table. If
it returns nil, the writing process is canceled and the original value of the writing
process is maintained. The change of the original value is only performed via the
return of a table with size greater than one (the case of line 12). The remainder of
Figure 9 shows the use of addPosSet method that is invoked to associate the writelog
function with the metavar meta-object. When the balance variable receives a new
value, the writelog function is invoked. This new value is represented by the value

parameter. Similarly to the setAvalPreGet function, setAvalPosGet, setAvalPreSet,
and setAvalPosSet functions can also be invoked to modify the behavior of each
function. The getXY, setXY, and delXY functions are respectively used to get all
functions associated with Pre/Pos and Get/Set, to determine a new set of functions,
and to remove an element (function) of the functions set.

1 balance = 10
2 metavar = LuaMOP:getInstance(“balance”)
3 function checkread()
4 if (user ~= “admin”)then return 1 end
5 end
6 metavar:addPreGet(checkread)
7 function convert_to_dolar(value)
8 return value / 2.65
9 end
10 metavar:addPosGet(convert_to_dollar)
11 function convert_to_real(value)
12 if (user == “admin”) then return {value * 2.65}
13 else return nil end
14 end
15 metavar:addPreSet(convert_to_real)
16 function writelog(value)
17 print(“It was write the value:” .. value)
18 end
19 metavar:addPosSet(writelog)

Figure 9: LuaMOP example with add methods

A MetaFunction class represents all functions of a Lua application. This meta-

class provides the following methods: getNameFunction, getFunction, and
setFunction. getNameFunction() method gets the function name referenced by a meta-
object. getFunction() method gets the function referenced by a meta-object, and
setFunction(newfunction) supports the modification, at runtime, of the function
behavior. Some other functions that give details about a meta-object are provided:
getSrcDefined() returns the file that contains the function definition; getLineDefined()
returns the line that contains the function declaration; getTypeFunction() identifies if a
function is written in Lua or in C; getNameWhat() identifies if a function is global or
local.

1 function sum(a,b) return a + b end
2 function newsum(a,b) return a + b * 2 end
2 metafunction = LuaMOP:getInstance(sum)
3 print(metafunction:getNameFunction())
4 metafunction:setFunction(newsum)
5 print(metafunction:getNameFunction())

Figure 10: LuaMOP example with setFunction

An example of the use of the functions provided by the Function meta-object is
illustrated in Figure 10. Initially the sum and newsum functions are defined. Next, the
meta-function meta-object is get and on the next line the getNameFunction method is
invoked. It returns the “sum” value. On line 4, the setFunction method is invoked to
modify the implementation of the sum function via the newsum function. In this way,
when the getNameFunction method is invoked (line 5) it returns newsum instead of
sum.

The MetaFunction meta-class also offers the addPreMethod, addPosMethod, and
addWrapMethod methods. These methods define the place where the behavior is
added: Pre(before), Pos(after), and wrap the execution of a function. An example of
the use of these functions is illustrated in Figure 11.

1 function reglog(self,value)
2 print(“Deposited Value:”,value)
3 end
4 metafun = LuaMOP:getInstance(“Account.deposit”)
5 metafun:addPosMethod(reglog)
6 Account:deposit(10)

Figure 11: LuaMOP example with addPosMethod

The meta-object is obtained on line 4. On line 5, the addPostMethod method is
invoked to add the reglog function defined from line 1 to 3. When the deposit method
is executed (line 6), the LuaMOP mechanisms automatically invoke the reglog
method.

To control the functions associated with a given behavior, MetaFunction
provides the following methods: getZMethods, setZMethods, and delZMethods. The
getPreMethods method, for instance, returns a list of all methods added to the Pre
behavior. The list provided by the getPreMethods is ordered and sent as a parameter
to the setPreMethods method. This latter method modifies the execution order of the
methods defined to the Pre behavior. The removal of a method can be done using the
delPreMethods method.

The MetaTable class represents the application tables and provides the following
functions: getField, getAllFields, and setField. The getField(name) method receives
the field name parameter and returns a MetaField that represents it. The MetaField
class inherits from the MetaVariable class and, as a consequence, provides the same
functionalities of a MetaVariable. For example: to add a function to be invoked
before reading the variable value. To get all MetaFields of a MetaTable, the
getAllFields() function can be used.

The setField(namefield, value) method is used to modify a table field and to
insert a table field if it does not exist. In Lua, classes are represented by Table
elements. Thus, the setField method can be used to add both new attributes and new
methods.

Despite the fact that the meta-object provides the setField method, it does not
exclude the use of another mechanism to insert new fields. The role of the meta-object
is to maintain the causal connection and to update its properties according to changes
in the base objects. Figure 12 shows an example of this behavior.

1 Account = {}
2 Account.balance = 0
3 metaAccount = LuaMOP:getInstance(“Account”)
4
5 Account.NameAccount = “Mary”
6 function logchangename(value)
7 print(“The new name is”, value)
8 end
9 metavar = metaAccount:getField(“NameAccount”)
10 metavar:addPosSet(logchangename)

Figure 12: LuaMOP and causal connection

On lines 1 and 2 the Account object is defined with the balance attribute. On the
next line, a meta-object is created to represent the Account object. At this moment the
metaAccount meta-object has only balance as a MetaField. On line 5, a new field is
added to the Account object. This action changes the base object and triggers an
automatic modification of the metaAccount meta-object that provides the getField
method to recover the MetaField with name NameAccount. Such MetaField provides
the same functionality of a MetaVariable. This allows the invocation of the addPosSet
method to handle the modifications of the NameAccount field.

LuaMOP functionality goes beyond the provision of a meta-representation. It is
also possible, via Monitors, to capture events from the runtime execution
environment. A Monitor provides the same functionalities of a Metatable. The
difference between them is the possibility of defining a Monitor to handle events
related to elements that have not yet been declared in the application. The Monitor
accepts the same events handled by a Metatable (add, sub, index, newindex, etc) and
also a new one: noindex. This event is different from the index event because it is
invoked only when the correspondent index is not found.

Figure 13 shows how a monitor can be used to load a library only when it is
really used. This facility avoids unnecessary resource allocation. This example
defines the dynamic loading of the LuaSocket library. Thus, methods of the socket
object, such as bind and connect, that are not yet available in the execution
environment, is loaded. The first line creates a monitor to observe the events sent to
the socket object. Line 9 adds the loadmethod function to handle all events to socket
object that do not have an index. In the case of a noindex event, the function receives
as a parameter the name of the invoked function and the original parameters. Thus,
the socket.bind(“*”, 0) method, that does not exist yet, is handled by the monitor. The
monitor invokes loadmethod to load the LuaSocket library. Then, it gets and invokes
the socket.bind function through the metasocket meta-object.

The declaration of the socket object, on lines 3 and 4, is followed by the
automatic creation of a meta-object to represent the socket object. This meta-object is
also monitored by the monitor defined on line 1. The monitor does not interfere in a
second invocation, such as a invocation of socket.connect() method, since this
method has already been declared. The monitor interferes in the first execution of the
socket object. For instance, when the bind method, that has not been previously

declared, is invoked. In this case, loadmethod function is invoked to load the
LuaSocket library and to execute socket.bind. Lines 5 to 7 shows how a field
(socket.bind) of the automatically created meta-object is obtained and the socket.bind
function is invoked. The same functionality can be used by AspectLua to abstract
away the use of Monitors. For instance, the following code implements the same
functionality of Figure 13: aspect({name = 'lazyload'}, {pointcutname =
'loadmethod', designator = 'call', list = {'socket.*'}}, {type = 'before', action =
loadmethod}). In this case, AspectLua automatically defines the monitor to handle the
virtual join point (socket.*).

1 monitor = LuaMOP:createMonitor(“socket.*”)
2 function loadmethod(self, namefunc, arg)
3 dofile('luasocket/lua.lua')
4 socket = require("socket")
5 metasocket = LuaMOP:getMetaObject(namefunc)
6 local func = metasocket:getFunction()
7 return func(unpack(arg))
8 end
9 monitor:addEvent(“noindex”, loadmethod)

Figure 13: Using LuaMOP’s Monitor

4 Case Study
To illustrate the use of AspectLua we have implemented a case study of a banking
application with fault tolerance support. The application is composed of two different
components: a client and a server. Fault tolerance is based on the use of replicated
servers.

Client

Bank Server 2

Bank Server 1

Bank Server 3

deposit(5)
deposit(5)

deposit(5)

Figure 14: Replication Process

Figure 14 shows how the replication process works. A client invokes the deposit
method in BankServer2. BankServer2 processes the invocation and, through a
crosscutting code, forwards the request to BankServer1 and BankServer3. This
replication implies that all servers must contain the same value. This approach is
useful for fault tolerance because if BankServer2 is unavailable, the client-side can be

invoked to forward the request to BankServer1 or BankServer3. Figure 15 illustrates
the deposit method invocation from client to the bank server object. In this case, if the
bank object becomes unavailable, the application fails.

bank = luaorb.createproxy(readIOR("./account.ref"),"IDL:Account:1.0")
bank:deposit(5)

Figure 15: Client code

To overcome this problem, we insert an aspect in the bank object for searching
other implementations instead of returning an error to the client.

1 function trynewreferences(self, ...)
2 newbank = Generic()
3 table.remove(arg, 1)
4 newbank:deposit(unpack(arg))
5 end
6 client = Aspect:new()
7 client:aspect({name = clienteIntercept'},
 {name = 'replicationMethods',
 designator = 'call',
 list = { 'bank.deposit'} },
 {type = 'around', action = trynewreferences })

Figure 16: Client code

Figure 16 shows the code of the trynewreferences function. On line 2 the client
creates a generic connector [Batista and Carvalho 02] – a mechanism that
dynamically selects components to provide services required by an application. On
line 4 the deposit method is invoked. The function of the generic connector is to find
an element that implements the deposit method. An aspect that acts on the deposit
method of the bank object is defined on line 7. It executes the trynewreferences
function instead of executing the deposit method.

Figure 17 shows bank_impl table that represents the implementation of the
IDL:Account:1.0 CORBA interface. The deposit method is described by the code on
line 4. Finally, on line 6, the bank_impl implementation is registered at the searching
mechanism.

In order to dynamically adapt the server to include replication we define two
aspects. The first aspect defines that all invocations to the deposit method of Bank
should be followed by the execution of the replication_deposit method. Another
aspect is necessary to introduce the implementation of the deposit_rep function. This
function is invoked to replicate the information. This method is necessary to avoid
recursion among several servers. Since deposit_rep method does not exist in the
original Account interface, previously defined, the IDL with this function must be
loaded. This is illustrated on the first line of the code of Figure 18.

1 bal = 0
2 Bank = {
3 deposit = function(self,amount)
4 bal = bal + amount
5 end}
6 source_server,id = ls_createservant(Bank,
 "IDL:Account:1.0")

Figure 17: Server code without replication – coreServer.lua

The replication_deposit function represents the replication process. Lines 4 and
5 get the reference of the discovery service [Cacho et al. 04]. On line 7 the search
function is used to find out servers that have the deposit_rep operation and whose id
is different from the current server id (expressed by the offered variable). Next, the
deposit_rep method is invoked for all servers described at the search_result table.

1 os.execute("idl --feed-ir -ORBIfaceRepoAddr inet:localhost:15000
 account_rep.idl")
2 dofile("AspectLua.lua")
3 function replication_deposit(self,amount)
4 local proxy_Discovery=luaorb.createproxy(readIOR("./search.ref"),
 "IDL:CosDiscovering/SearchComponents:1.0")
5 proxy_Lookup = proxy_Discovery.getLookup
6 search_result = {}
7 search_result = proxy_Lookup:search(
 "(operationame =='deposit_rep')and
 (offerId != "..id..")")
8 replication = Generic()
9 for i,refid in ipairs(search_result) do
10 replication:deposit_rep(amount)("offerId=="..refid)
11 end
12 end
13 function deposit_rep(self,amount)
14 bal = bal + amount
15 end
16 a = Aspect:new()
17 a:aspect({name = 'AccountDeposit'},
 {name = 'replicationMethods', designator = 'call', list = {'Bank.deposit'}},
 {type ='before', action = replication_deposit})
18 a:aspect({name = 'AccountDeposit_rep'},
 {name = 'replicationMethods', designator='introduction',
 list = {'Bank.deposit_rep'} },
 {type ='after', action = deposit_rep})

Figure 18: Replication aspects – aspectServer.lua

After defining the aspect code, the next step is to specify the application
configuration file. This file defines the elements that compose the application: the

server code (coreServer.lua) and, optionally, the replication code. The user can choose
to include replication or not (Figure 19).

dofile("coreServer.lua")
print("Would you like to use replication ?(y,n)")
answer = io.read()
if (answer == "y") then
 dofile("aspectServer.lua")
end

Figure 19: Application configuration file

The possibility of choosing between inserting or not an aspect can cause
problems when different aspects acts on a same join point and when the execution
order can interfere in the final result. For instance, when executing the code illustrated
in Figure 5 the result can be unpredictable because it is not known if the replication
aspect will be applied or if the replication aspect use the setOrder function to modify
the execution order. Thus, it can be dangerous to use dynamic insertion of aspects
instead of using crosscutting concerns, especially when the execution order can
interfere in the final result. To overcomme this problem, in Figure 20 an alert is
defined to handle all invocations to the bank_impl.deposit join point Thus, when the
aspectServer.lua file is invoked, the fail_security function prints the following
message: “Fail security (probably): aspectServer.lua, addAspect”. The aldetail
parameter is provided by AspectLua to describe the method that is the source of an
alert. Alerts allow the programmer to be aware about the definition of aspects to a
given join point. As a consequence, the programmer can identify possible
interferences between aspects and define the proper execution order.

1 function fail_security (self, aldetail)
2 print(“Fail security (probably):”, aldetail.file, aldetail.opname)
3 end
4 Aspect: addAlert(“*”, “Bank.deposit”, fail_security)

Figure 20: Defining a security Alert

5 Performance Evaluation
This section discusses performance issues regarding the use of a meta-representation
in the Lua execution environment. The tests compare the execution time with and
without the use of a meta-object. X and Y functions were used in the comparison and
they were executed respectively in 59.72µs and 3.91 µs with no meta-object
associated with them. The evaluation was done in a PC Duron 1.6MHz with 256MB
of RAM, using Linux-Mandrake 9.2.

Table 1 shows the results of the performance tests. The first line shows a
comparison between the execution time of X and Y functions and the execution time

of X function associated with a meta-object that contains the Y function as a
PreMethod. The difference is low, considering the time needed by the meta-object to
manage the messages. The second line compares the access and execution time of a
method that belongs to an object (table), for example Bank.X(), to the same object
associated with a meta-object. The difference between these two invocations will be
greater only when, on the following line, a function (Y) is associated with the Bank
meta-object to be executed after the X function. In this case the difference increases
from 2.15µs (on the previous line) to 6.7µs. This difference is related to the amount of
time involved in loading the functions associated with the Metafield.

Test Without

Meta-Object
With Meta-

Object
Execution of X and Y Functions 63.75 66.95
Execution of X function, via an object (table) 61.03 63.18
Execution of X and Y functions, via an object
(table)

64.34 71.04

Reading a variable 0.94 2.86
Writing in a variable 1.19 3.09

Table 1: Performance Evaluation. Time in µs.

The two last lines of Table 1 compare the times to read and to write in a global
variable. The difference (almost three times) between the execution times is more
related to the execution time of reading and writing a variable, which is lower than
any other inconsistency in the algorithms used by the meta-object.

6 Related Work

Related work include some AOP languages built on top of scripting languages. The
most important are three AOP extensions based on well-known scripting languages:
Python [Rossum 03], Ruby [Thomas and Hunt 00] and Smalltalk [Goldberg and
Robson 83]. AOPy [Dechow 03] is built on top of Python. AOPy implements method-
interception by wrapping methods inside the advice. Aspects definition uses the
designator call and just one join point can be defined in a pointcut. In contrast,
AspectLua supports the definition of several join points. AspectR [Bryant and Feldt
02] is built on top of Ruby. It implements AOP by wrapping code around existing
methods in classes and supports wildcards. AspectS [Hirschfeld 02] is a
Squeak/Smalltalk extension to support AOP. It uses modules and meta-level
programming to handle AOP. It also supports wildcards.

The fact of being scripting languages brings some similarities among these AOP
languages and AspectLua: they are built on top of a scripting language, no new
language constructs are needed and aspect weaving occurs at runtime. The main
difference between AspectLua and the other extensions is that none of them include
all features supported by AspectLua. AOPy is very simple and supports only basic
concepts. It does not support wildcards. Neither AOPy nor AspectR use a MOP to
support AOP. AspectS has more similarities with AspectLua: both use a MOP, allow
the definition of aspect precedence order, support the use of wildcards. However,

none of these extensions allows the association of aspects with undeclared elements
(virtual join points). [Miles 04] provides a similar mechanism that does not use the
idea of virtual join points because this approach uses a proxy to represent the join
points. In addition, AspectLua includes alerts as a mechanism to help the programmer
to manage aspects execution order.

LAC – Lua Aspectual Component [Herrmann and Mezini 01] – is a Lua
extension whose main goal is to support the idea of Aspectual Components (AC)
[Lierberherr et al. 99]. LAC is quite different of AspectLua because it elements are
defined in order to support the idea of AC while AspectLua elements are defined
following the traditional AOP concepts. LAC imposes a template where components
and aspects are defined by different styles of classes. In contrast, AspectLua uses
tables to represent aspects. The focus of LAC is in a model to implement AC. After
defining this model, Lua was chosen to implement it. In contrast, the focus of
AspectLua is in using Lua as an AOP language without introducing new commands
or structure.

PROSE (PROgrammable extenSions of sErvices) [Popovici et al. 02] is a
platform based on Java, which supports dynamic AOP. As AspectLua, PROSE does
not introduce a new syntax for defining aspects. It uses the Java language itself.
Aspects are created by writing Java classes based on the PROSE library. In PROSE,
as in AspectLua, aspects can be woven and unwoven at rutntime. In the same way,
there is no need of a special compiler. It also offers an Aspect Monitor tool that shows a
tree-like structure of aspects describing the crosscut objects and the join-points in the
running application. It uses the Java Virtual Machine Debug Interface (JVMDI) and just-
in-time (JIT) features to make it possible the interception and execution of aspects. Among
a lot of similarities, there are some important differences from PROSE to AspectLua: (i)
AspectLua uses a pure interpreted approach; (ii) PROSE does not offer a rich API
including methods for monitoring aspects definition and for determining aspect execution
order.

In terms of dynamic insertion of new funcionalities, interceptors of middleware
platforms are a simplified form of join points that are tightly coupled with the
middleware internal structure. So, interceptors do not address separation of concerns.
Furthermore, in this mechanism, advices are inserted by registering callback functions
and follow a lot of constraints to avoid infinite recursions.

7 Final Remarks

In this paper we presented AspectLua - an AOP extension to the Lua language that
shares some common features of other AOP scripting languages and introduces some
new mechanisms to give a powerfull support to dynamic adaptability Aspects are
defined using AspectLua that relies on LuaMOP that supports the dynamic weaving
by exploiting the reflective features of Lua. We have described in detail how the
weaving process takes place. As aspects are defined using Lua tables, it is not
necessary to use different languages for the component code and for the aspect code.
For both programs the Lua language is used.

The infrastructure provides a range of features that introduces a great deal of
flexibility to AOP: it is possible to define aspects at runtime; it supports the definition
of aspect precedence order, wildcards, and the association of aspects with undeclared
elements. It is worth pointing out that the concept of virtual join points is very useful
for dynamicity because it allows the dynamic insertion of aspects according to a new
functionality of the component program. It goes beyond current AOP approaches
where join points are linked to elements statically defined. In addition, this work
proposed the idea of applying alerts to give an automatic support for managing
aspects precedence order.

Dynamic AOP language is not new. However, the dynamic AOP approach
presented in this work combines a set of features that are not offered together by other
AOP language. We have chosen Lua because it is small, easy to use and it provides
reflective mechanisms that allow extension of the language.

Acknowledgements

This work was supported by the Brazilian Research Council, CNPq, under process
55.2007/02-1

References

[Batista and Carvalho 02] Batista, T., Carvalho, M.: “Component-Based Applications: A
Dynamic Reconfiguration Approach with Fault Tolerance Support”. In Software Composition
Workshop (SC) - affiliated to European Joint Conferences on Theory and Practice of Software
(ETAPS), Grenoble - FR, April 2002. Published in Electronic Notes in Theorical Computer
Science (ENTCS), Vol. 65, Number 4, (2002).

[Bryant and Feldt 02] Bryant, A., Feldt, R.: “AspectR - Simple aspect-oriented programming in
Ruby”, Available at http://aspectr.sourceforge.net/, (2002)

[Cacho et al. 04] Cacho, N., Batista T., Elias, G.: “Um Serviço CORBA para Descoberta de
Componentes”. 18th Brazilian Symposium on Software Engineering (SBES’2004). Brasília,
DF, (2004), 273-288.

[Dechow 03] Dechow, D.: “Advanced Separation of Concerns for Dynamic, Lightweight
Languages”, In: 5th Generative Programming and Component Engineering (GPCE) Young
Researchers Workshop Available at
http://se.inf.ethz.ch/events/gpce_yrw03/program/program.html, (2003).

[Gal et al. 01] Gal, A., Schröder-Preikschat, W., Spinczyk, O.: “AspectC++: Language
Proposal and Prototype Implementation”. University of Magdeburg. (2001)

[Goldberg and Robson (83)] Goldberg, A., Robson, D.: “Smalltalk-80: The Language and Its
Implementation”. Addison-Wesley, (1983).

[Herrmann and Mezini 01] Herrmann S., Mezini M.: “Combining Composition Styles in the
Evolvable Language LAC”, In: Workshop on Advanced Separation of Concerns in Software
Engineering (ASoC) at the 23nd International Conference on Software Engineering (ICSE),
(2001).

[Hirschfeld 02] Hirschfeld, R.: “AspectS – Aspect-Oriented Programming with Squeak”, In
Revised Papers from the International Conference NetObjectDays on Objects, Components,

Architectures, Services, and Applications for a Networked World, , Lecture Notes in Computer
Science (LNCS), Vol. 2591, Springer-Verlag, London, UK, (2002), 216-232.

[Ierusalimsky et al. 96] Ierusalimsky, R., Figueiredo, L. H., Celes, W.: “Lua – an extensible
extension language”. Software: Practice and Experience, 26(6), (1996), 635-652,

[Kiczales et al. (91)] Kiczales, G., des Rivieres, J., Bobrow, D.: “The Art of the Metaobject
Protocol”, MIT Press, (1991).

[Kiczales et al. 97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,
Loingtier, J., Irwin, J.: “Aspect-Oriented Programming”, In: ECOOP’97 — European
Conference on Object-Oriented Programming”, Proceedings of ECOOP´97. Springer-Verlag,
Finland, (1997)

[Kiczales et al. 01] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: “An Overview of AspectJ”, In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP '01). Lecture Notes in Computer Science, vol. 2072, J.
Knudsen, Ed. Budapest, Hungary, (2001), 327-353.

[Kojarski et al. 03] Kojarski, S., Lieberherr, K., Lorenz, D.H., Hirschfeld, R.: (2003)
“Aspectual Reflection”. In Proceedings of the AOSD 2003 Workshop on Software-Engineering
Properties of Languages for Aspect Technologies (SPLAT), Boston, MA, USA, March 18,
(2003), 17-21.

[Liang 04] Liang, C.: “Programming language concepts and Perl”. J. Comput. Small Coll. 19, 5
May (2004), 193-204.

[Lierberherr et al. 99] Lierberherr, K., Lorenz, D., Mezini M.: (1999) “Programming with
Aspectual Components”, In: Technical Report NU-CCS99 –01, Notheastern University.

[Miles 04] Miles, R.: “Lazy Loading with Aspects”, ONJava.com, available at:
http://www.onjava.com/pub/a/onjava/2004/03/17/lazyAspects.html, (2004).

[Popovici et al. 02] Popovici, A., Gross, T., Alonso, G. (2002) “Dynamic Weaving for Aspect-
Oriented Programming” In Proceedings of Int’l Conference on Aspect-Oriented Software
Development (AOSD’02), ACM Press, (2002), 141-147.

[Rossum 03] Rossum, G. V.: “Python Reference Manual”, Available at
http://www.python.org/doc/current/ref/ref.html. (2003)

[Sullivan 01] Sullivan, G.: “Aspect-Oriented Programming using Reflection and Metaobject
Protocols”. Communications of the ACM. Vol., 44, Issue 10, October (2001), 95-97.

[Thomas and Hunt 00] Thomas D., Hunt A.: (2000) “Programming Ruby: A Pragmatic
Programmer's Guide”, Available at http://www.rubycentral.com/book/. (2000)

