
Enabling Reflection and Reconfiguration in CORBA

Thais Batista
Departamento de Informática e Matemática Aplicada

UFRN
thais@dimap.ufrn.br, http://www.dimap.ufrn.br

Renato Cerqueira
Noemi Rodriguez

Departamento de Informática
PUC-Rio

rcerq, noemi@inf.puc-rio.br, http://www.inf.puc-rio.br

Abstract

The OMG CORBA specification offers a series of reflective mechanisms that enable dynamic component
definition and dynamic configuration of applications. However, these mechanisms are very hard to use in
conventional language bindings, causing programmers to avoid their use and consequently choose to develop
applications with static behavior. This paper presents search facilities that take advantage of the dynamic
nature of the LuaOrb binding to provide the programmer with simple interfaces for identifying appropriate
components on the fly.

1 Introduction.

The dynamic and heterogeneous nature of current
systems and networks has triggered interest in tech-
niques that allow applications to obtain information
about available resources and their usage and to re-
configure themselves using this information. The
CORBA specification, similarly to other middleware
technologies, contains a series of reflective mech-
anisms that support such behavior, allowing pro-
grams to query their runtime environments and de-
termine current properties and services. The dy-
namic invocation interface (DII) allows a client to
incorporate access to new interfaces at runtime. On
the server side, the dynamic skeleton interface al-
lows a program, also at runtime, to incorporate new
interface implementations. The Trading, Naming,
and Interface Repository services allow applications
to obtain information about current active objects
and the interfaces they implement.

However, although these reflective facilities have
been available in several implemented ORBs for al-
most ten years, few systems have been reported to
take advantage of them. We believe that this is
largely due to the complexity of using and even of

understanding the relevant mechanisms and service
interfaces. Programmers prefer to create applica-
tions that are not so flexible as they could be than
to complicate their code and development process
by including access to CORBA’s reflective mecha-
nisms.

We have been involved for some years in investi-
gating the flexibility that an interpreted language
can add to component-based programming. The
LuaOrb system [3] provides a binding from CORBA
IDL to Lua [7], an interpreted programming lan-
guage with dynamic typing and flexible extension
mechanisms. This binding builds on the reflective
facilities of Lua to provide transparent support for
usage of DII and DSI. The LuaOrb system has
been available for some years and its use in some
projects [5, 6, 12, 4] has shown that programmers
will be ready to use the dynamic interfaces if they
are made easily available.

In this paper, we discuss how access to services
that are relevant for dynamic configuration can be
similarly simplified through the use of appropriate
abstractions and programming interfaces. We focus
on the problem of identifying appropriate objects
when configuring a CORBA application.



The LuaSpace environment [2] builds on LuaOrb
and related facilities to provide support for dynamic
configuration of CORBA-based applications. In Lu-
aSpace, the programmer uses Lua scripts to describe
the composition of his application. In this paper,
we describe the abstractions available for invoking
objects that satisfy sets of functional and/or non-
functional requirements.

The next section in this paper describes the search
facilities in LuaSpace. We first describe the Lua-
Trading and LuaRep libraries, which simplify ac-
cess to CORBA’s interface repository and Trading
Service, and then discuss a set of facilities that pro-
vide the programmer with high-level abstractions
for searching for components. Section 3 dicusses sce-
narios in which these facilities are useful. Finally,
section 4 contains some final remarks.

2 LuaSpace

LuaSpace is an environment for dynamic reconfigu-
ration of component-based applications that follows
a configuration-driven programming style where the
structure of the application is independent of com-
ponent implementations. In this environment, an
interpreted and procedural language — Lua [7] —
is used as the configuration language. Lua is dy-
namically typed: variables are not bound to types
although values are. Lua includes conventional as-
pects (syntax and control structures simliar to those
of Pascal) and also has several non-conventional fea-
tures, such as functions as first class values, tables,
which implement associatives arrays, and a set of
reflective facilities. Among Lua´s reflective facili-
ties, tag methods are the most generic mechanism.
Several situations in which the interpreter would in-
tuitively generate an error can be captured by a
programmer-defined function, called a tag method,
changing the language behavior in some way.

LuaSpace is composed by Lua and a set of tools
based on Lua. At the core of these tools is LuaOrb
[3], a binding between Lua and CORBA based on
CORBA´s Dynamic Invocation Interface (DII) and
on Lua’s tag method facility. This binding allows
dynamic access to remote CORBA objects as if they
were ordinary Lua objects. In addition, LuaOrb
uses CORBA Dynamic Skeleton Interface (DSI) to
allow dynamic instalation of new Lua objects in a
running server. Most LuaSpace tools use LuaOrb
to access CORBA objects.

2.1 Mirror Repositories: LuaRep and
LuaTrading

In this section we describe the Lua libraries that
allow the LuaSpace programmer to access the In-
terface Repository and Trading Service. Although
they are very different as to the service they pro-
vide, both the Interface Repository and the Trading
Service act as information repositories in CORBA
environments: interface descriptions, in one case,
and service descriptions and offers, in the other, are
maintained for queries and updates. IDL interfaces
for these services are quite complex: the program-
mer must typically invoke a large set of methods
in order to obtain some basic information such as
the signature of a given method. LuaRep and Lu-
aTrading create a simplified vision of these services
by mirroring the information repositories into lo-
cal Lua tables which act as proxies for the remote
repositories. All objects contained in the reposito-
ries appear as fields in the proxy. On the other hand,
assigning a new value to a field in one of these tables
will insert this value in the remote repository. The
libraries and the unifying concept of mirror reposi-
tories are described in detail in [9].

2.1.1 LuaTrading

The CORBA Trading Service is often described as a
yellow pages system [13]. It contains service offers
that associate object references with service types.
However, because the service types are not as widely
known as the ones in the yellow pages (painters,
plumbers, etc), the Trading Service also maintains
service type descriptions. These descriptions con-
tain IDL interface identifiers and sets of properties.
A service offer must contain values for the properties
defined for the corresponding service type.

The act of announcing a new service in a Trading
Service is called exporting a service offer. Symmet-
rically, we say a program is importing service offers
when it retrieves service offers from the repository.

One important feature of the Trading Service is
the provision of dynamic properties. Dynamic prop-
erties accomodate information that must be up-
dated frequently: values for dynamic properties are
references to objects that can provide the current
property value. This mechanism is specially rele-
vant in the context of dynamic configuration and



adaptation, since it can be used to maintain infor-
mation about resource usage and availability.

To query and update the information on a Trader,
the programmer must first obtain a proxy for the
appropriate repository. As an example, to obtain
a handle for the repository of type descriptions the
programmer can write:

typesRep = serviceTypesRep()

and then “walk through” the descriptions, for in-
stance using Lua’s predefined foreach function:

foreach(typesRep.servicetypes, print)

which will invoke function print for each field in ta-
ble typesRep.servicetypes. The program code
can use typesRep to select an appropriate service
type for the running application and then import
service offers associated to that type.

To import a service offer, the programmer may
use the importServiceOffers constructor. This con-
structor may be invoked with no arguments, causing
the search to return all offers for this service type,
or with arguments specifying property values to be
returned or constraints on property values, as in the
following code:

offers = importServiceOffers{

type="CertAuth",

properties = {"Methods",

"Price"},

constraint = "Price < 100",

pref = "min Price",

maxret = 3}

This invocation will assign to offers a table con-
taining at most three (maxret argument) service of-
fers of type "CertAuth" as well as the values of prop-
erties "Methods" and "Price" for these offers. The
constraint argument specifies that only offers with
prices below 100 should bee returned, and pref es-
tablishes the desired ordering for offers.

LuaTrading offers similar facilities for creating
new service types, exporting service offers, updat-
ing properties, and de-registering offers.

2.1.2 LuaRep

CORBA requires that any ORB implementation im-
plement the Interface Repository (IR) interface [10,
13]. The Interface Repository is a regular CORBA
object whose use is mandatory in both DSI and DII.

The LuaRep library allows the Lua programmer
to directly manipulate the information in the In-
terface Repository through a proxy, adding new in-
terfaces or retrieving information about registered
interfaces. This allows LuaOrb clients to issue re-
quests to services they have discovered dynamically
and to retrieve the signature of interfaces that have
been previously returned by LuaTrading operations.

To obtain a proxy for the Interface Repository,
the programmer must use the InterfaceRep con-
structor:

ir = InterfaceRep{}

Supposing that the programmer wants to know the
definition of book, which is defined in the repository
as a struct, he may write:

foreach(ir.book, print)

This code will print the name and type of each of the
fields defined in the Interface Repository for book.

2.2 Dynamic Component Selection

LuaSpace builds on the LuaRep and LuaTrading li-
braries to provide support for higher-level mecha-
nisms that simplify dynamic component selection.

The search function dynamically searches for ob-
jects that satisfy different search criteria. Possible
criteria are: object name, signatures of methods,
and properties (non-functional features). This func-
tion receives as a parameter a combination of search
criteria and returns a list of objects that satisfy the
given requirements. Its argument is a Lua table that
contains criterion types (name, operation, or proper-
ties) and associated expressions. Logical operators
(and, or, not) are used to combine the different cri-
terion types and to determine the relationship be-
tween different items associated with a same selec-
tion criterion. The following code shows an example
of the use of search.

listdoctor = search{

{NAME="doctor"}, "and",

{PROPERTIES =

"hospital=’MedicalCenter’ and

speciality =´pneumologist´"}, "or",

{OPERATION = "urgentcall()"}}

The use of the search function allows the pro-
grammer to invoke a single function independently
of the search criterion, while at a lower level each cri-
terion is related to a different CORBA service. The
CORBA Name Service provides access to objects by



their name and the CORBA Trading Service allows
the programmer to search for objects according to
their properties. The search function provides an
uniform and easy-to-use interface.

One important aspect of the search function
mechanism is that it provides support for structural
compatibility [11]. When looking for a component
that will act as a service supplier in a distributed
application, it is often the case that the program-
mer is not interested in the precise interface that
the object implements: what he needs is a compo-
nent that provides a set of methods with the ex-
pected signatures. Searching for an object that im-
plements a given set of methods requires using the
Trading Service to find out what interface is imple-
mented by each registered object and then accessing
the Interface Repository to determine the signatures
of the methods in each interface. The search func-
tion hides the complexity of this procedure from the
programmer, creating an abstraction by means of
which he can search for all objects with interfaces
that are structurally compatible with the one given
as a parameter to search.

Another selection mechanism offered by LuaSpace
is the Collection mechanism. Collections are Lua ta-
bles that group sets of components with some com-
mon feature. A collection acts as a broker for the
objects it contains in that their methods can be in-
voked directly on the collection object. This invo-
cation triggers the dynamic selection of the instance
that will handle the request. This implicit selection
is done according the selection strategy associated
to the Collection. This strategy is implemented as a
Lua function that is called in every method request
in order to select the collection member that should
handle the request. The selection strategy could
favor load balancing, fault tolerance, or a combina-
tion of these and other non-functional requirements
(A set of tools described in [4] provide support for
programming such selection strategies.). The col-
lection’s members can be explicitly inserted or can
be the result of an invocation of the search function.

Combining the search and collection mechanisms,
the LuaSpace programmer can create a number of
powerful abstractions. One example we have ex-
plored is the generic connector [1]. The generic
connector allows the programmer to dynamically in-
voke any required method on a generic object. This
generic object selects an active component whose
signature is compatible with the invoked method,
and then goes through with the invocation, acting

as a generic provider of the requested method. An
invocation on a generic connector can also, option-
ally, provide a set of properties as an argument. The
generic connector invokes the search function to look
for appropriate components, and stores the result-
ing objects in a collection; finally, it invokes the re-
quired method and sends the returned results back
to the caller.

3 First Experiments with LuaSpace

To evaluate the dynamic reconfiguration features of
LuaSpace and its related tools, we have been ap-
plying them to different application scenarios. We
have used it to prototype a collaborative CAD en-
vironment [5] and to build a multiple display view-
ing system for virtual environments [6]. But by far
the most exciting scenario in which we have applied
LuaOrb and LuaSpace was a middleware for ubiqui-
tous computing applications, called Gaia [12]. Gaia
is a middleware infrastructure that coordinates soft-
ware entities and heterogeneous networked devices
contained in a physical space. Typically, ubiquitous
computing applications strongly demand dynamic
adaptation capabilities, since they can be affected
by many external factors, such as user mobility, re-
source availability, and different contextual proper-
ties.

Gaia is based on CORBA and its standard ser-
vices, namely Trading Service, Naming Service, and
Event Service. These and other specific Gaia ser-
vices, such as a context service, a presence service,
a context-aware file system, and a component man-
agement subsystem, provide a powerful software in-
frastructure that converts physical spaces and their
ubiquitous computing devices into a programmable
computing system. However, all these services and
the meta-information they provide about their dig-
ital and physical environments make the task of de-
veloping applications with traditional CORBA pro-
gramming languages, such as Java and C++, even
more difficult.

In order to provide a better programming sup-
port, Gaia uses LuaSpace mechanisms to automate
management and configuration tasks, describe and
create ubiquitous computing scenarios, test compo-
nents, and prototype new applications.

Currently, we are working on a specialized version
of Gaia to support distributed and collaborative sci-



entific applications. This new infrastructure, called
GaiaVR, has two new challenges: In the back-end,
it has to integrate a grid of computational resources
and, in the front-end, it has to allow user interaction
through geographically distributed immersive visu-
alization rooms. In GaiaVR, we are using LuaTrad-
ing to simplify system management and application
development. We are using the search mechanism of
LuaSpace to specify application templates. Instead
of specifying the exact components, an application
template provides a more abstract description of
the components that should be used to assemble a
GaiaVR application. These descriptions are based
on functional and non-functional properties of the
desired components. LuaSpace’s search mechanism
uses these descriptions to select the actual compo-
nents.

4 Final Remarks

In this paper, we presented an environment that of-
fers facilities for dynamic configuration and manage-
ment of applications. The facilities we described are
not novel in themselves: the functionality they of-
fer is also available directly from CORBA’s services
and features. However, we believe that the complex-
ity of using CORBA’s reflective mechanisms directly
from a conventional language binding is such that
programmers avoid creating applications that make
use of them. It is thus important to create new pro-
gramming interfaces that make reflective features
effectively available to programmers. Since there is
a consensus that middleware technologies will con-
tinue incorporating new reflective features [8], such
programming interface should become even more
important in a near future.

Our previous work with Lua and LuaOrb has been
building up into a series of support tools which now
make it easier to explore the presented ideas in the
Lua environment. However, the search mechanisms
we described could also have been built in other in-
terpreted languages, such as CorbaScript or Python.

References

[1] T. Batista, C. Chavez, and N. Rodriguez. Dy-
namic Reconfiguration through a Generic Connec-
tor. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques
and Applications (PDPTA’00), volume II, pages

1127 – 1132, Las Vegas - Nevada - USA, June 2000.
CSREA Press.

[2] T. Batista and N. Rodriguez. Dynamic Reconfig-
uration of Component-based Applications. In 5th
International Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE-2000),
pages 32–39, Limerick, Ireland, 10-11 June 2000.
IEEE, IEEE Computer Society.

[3] R. Cerqueira, C. Cassino, and R. Ierusalimschy.
Dynamic component gluing across different com-
ponentware systems. In International Symposium
on Distributed Objects and Applications (DOA’99),
pages 362–371, Edinburgh, Scotland, September
1999. OMG, IEEE Press.

[4] A. L. de Moura, C. Ururahy, R. Cerqueira, and
N. Rodriguez. Dynamic support for distributed
auto-adaptive applications. In Proceedings of
AOPDCS - Workshop on Aspect Oriented Program-
ming for Distributed Computing Systems (held in
conjunction with IEEE ICDCS 2002), pages 451–
456, Vienna, Austria, July 2002.

[5] B. Feijó, P. Rodacki, J. Bento, S. Scheer, and
R. Cerqueira. Reactive design agents in solid
modelling. In J.S. Gero and F. Sudweeks, edi-
tors, Artificial Intelligence in Design’98, pages 557–
577. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1998.

[6] A. Ferreira, R. Cerqueira, W. Celes, and Marcelo
Gattass. Multiple display viewing architecture
for virtual environments over heterogeneous net-
works. In Proceedings of SIBGRAPI’99, pages 83–
92, Campinas, Brazil, 1999. SBC, IEEE Computer
Society.

[7] R. Ierusalimschy, L. H. Figueiredo, and W. Celes.
Lua - an extensible extension language. Software:
Practice and Experience, 26(6):635–652, 1996.

[8] F. Kon, F. Costa, G. Blair, and R. H. Campbell.
The case for reflective middleware. Communica-
tions of The ACM, 45(6):33–38, 2002.

[9] L. Nogueira. Um ambiente de gerência de aplicações
CORBA. Master’s thesis, Depto de Informática,
PUC-Rio, 2001.

[10] OMG. The Common Object Broker Architecture
and Specification. Technical Report Revision 2.2,
OMG, 1998.

[11] N. Rodriguez, R. Ierusalimschy, and J. L. Rangel.
Types in School. Sigplan Notices, 28(8):81–89,
1993.

[12] M. Román, C. Hess, R. Cerqueira, Anand Ran-
ganat, Roy H. Campbell, and Klara Nahrstedt. A
middleware infrastructure for active spaces. IEEE
Pervasive Computing, 1(4):74–83, 2002.

[13] Jon Siegel. CORBA Fundamentals and Program-
ming. Wiley, 1996.


