
1

Towards a Meta-Modelling Approach to Configurable
Middleware

Nelly Bencomo1, Gordon Blair1, Geoff Coulson1, and Thais Batista2

1 Comp. Dept., InfoLab21, Lancaster University, Lancaster, LA1 4WA, UK
{nelly, gordon, geoff}@comp.lancs.ac.uk

 2 Comp. Scs. Dept., UFRN, 59072-970, Natal - RN, Brazil
thais@ufrnet.br

Abstract. In our research we are studying how to combine modelling, meta-
modelling, and reflection to systematically generate middleware configurations
that can be targeted at different application domains and deployment environ-
ments. Despite this generality our approach adopts a uniform set of concepts:
components, components frameworks, and reflection. Components and compo-
nent frameworks provide structure, and reflection provides dynamic
(re)configuration and extensibility for run-time evolution and adaptation. In this
paper we present meta-models that capture the generality inherent to our ap-
proach and form a basis for automatic generation of extensible “middleware
families” that can be instantiated differently depending on the application do-
main, QoS, deployment environment and degree of dynamic reconfigurability
required.

1. Introduction

Reflection has now emerged as an important technique in the support of more config-
urable and re-configurable middleware [1]. A number of experimental reflective mid-
dleware platforms have been developed and used in industry. In our research we
complement the use of reflection with the notions of components (language-
independent units of dynamic deployment), component frameworks (collections of
components that address a specific area of concern and accept additional plug-in
components) [9], and middleware families (abstract collections of component frame-
works that are tailored to specific application domains and deployment environ-
ments). In addition, middleware families employ reflection [7] to discover the current
structure and behaviour of the family instantiation, and to allow selected changes at
run-time for dynamically consistent evolution and adaptation. The end result is a
flexible middleware architecture that can be straightforwardly specialised to a wide
range of domains including multimedia, embedded systems [2], and mobile comput-
ing [5].

Challenging new requirements emerge when working with such architecture. Mid-
dleware developers are faced with a large number of variability decisions when plan-
ning configurations at various stages of the development cycle. These include deci-
sions in design, component development, integration, deployment and even at run-
time. These factors make it error-prone to manually guarantee that all these decisions

2

are consistent. In addition, such ad hoc approaches do not offer a formal foundation
for verification that the ultimately configured middleware will offer the required
functionality.

To address these issues, we are currently investigating the use of Model-Driven
Software Development (MDSD) techniques. MDSD is a new paradigm that encom-
passes domain analysis, meta-modelling and model-driven code generation. We be-
lieve that MDSD has great potential in systematically generating configurations of
middleware families. In our MDSD-based approach, we propose the capture of the
fundamental component-based programming concepts in a core set of meta-model
elements called a kernel. All middleware family members regardless of their domain
share this minimum set of concepts. On top of this, we propose a set of extension
meta-models which capture the extensibility characteristics of our underlying (con-
crete) component model and which can be plugged in as appropriate.

In the remainder of this paper we first, in section 2, introduce the main concepts of
our concrete component model. Then, in section 3, we discuss the MDSD-based
modelling of these concepts and show our current model-based realisation. Then in
section 4 we discuss the application of the meta-models and models in generating
middleware families. Finally, we present conclusions and discuss future work in sec-
tion 5.

2. A happy family: Lancaster’s reflective middleware

As mentioned, our notion of middleware families is based on three key concepts:
components, components frameworks, and reflection. Both the middleware platform
and the application are built from interconnected sets of components. The underlying
component model is based on OpenCOM[3], a general-purpose and language inde-
pendent component-based systems building technology. OpenCOM supports the
construction of dynamic systems that may require run-time reconfiguration. It is
straightforwardly deployable in a wide range of deployment environments ranging
from standard PCs, resource-poor PDAs, embedded systems with no OS support, and
high speed network processors. Components are complemented by the coarser-
grained notion of component frameworks (CFs) [9]. A CF is a set of components that
cooperate to address a required functionality or structure (e.g. service discovery and
advertising, security etc). CFs also accept additional ‘plug-in’ components that
change and extend behaviour. Many interpretations of the CF notion foresee only
design-time or build-time plugability. In our interpretation run-time plugability is also
included, and CFs actively police attempts to plug in new components according to
well-defined policies and constraints.

Figure 1. The OpenCOM main concepts

receptacle

binding
interface

component

runtime
API

capsule

3

The basic concepts of OpenCOM are depicted in figure 1. Specifically, capsules

are containing entities that offer a component run-time (CRT) API for the loading,
binding etc. of components. Components are language-independent units of deploy-
ment that support interfaces and receptacles (receptacles are “required interfaces” that
indicate a unit of service requirement). Bindings are associations between a single
interface and a single receptacle. The CRT API is roughly as follows (many details
have been omitted for reasons of space). The role of the notify() call is discussed
below.

struct load(comp_type name);
status unload(struct t);
comp_inst bind(ipnt_inst interface, ipnt_inst receptacle);
status notify(callback c);

The architecture into which this fits is shown in figure 2. The layer immediately

above the CRT consists of the so-called caplet extensions and a set of reflective ex-
tensions. The role of the caplet CF is to provide structured support for extensibility at
the deployment environment level in terms of pluggable caplets which are subscopes
within a capsule that are used for a variety of purposes including sandboxing and
supporting heterogeneous programming languages. The reflective services then pro-
vide generic support for target system reconfiguration—i.e. inspecting, adapting and
extending the structure and behaviour of systems at runtime (see below). Both the
caplet and reflective extensions are independently and optionally deployable (using
the CRT), and their precise configuration can be tailored to the needs of the target
system and deployment environment.

Figure 2.OpenCOM Architecture

The Reflection Services
As mentioned, reflection is used to support introspection and adaptation of the un-

derlying component/ CF structures [1]. A pillar of our approach to reflection is to
provide an extensible suite of orthogonal meta-models each of which is optional and
can be dynamically loaded when required, and unloaded when no longer required.
The meta-models manage both evolution and consistency of the base-level system.
The motivation of this approach is to provide a separation of concerns at the meta-
level and hence reduce complexity. Three reflective meta-models are currently sup-
ported:

deployment environment (hardware and/or software)

CRT

reflective extensions

CRT API

caplet extensions

target system

4

The architecture meta-model represents the current topology of a composition of
components within a capsule; it is used to inspect (discover), adapt and extend a set
of components. For example, we might want to change or insert a compression com-
ponent to operate efficiently over a wireless link. This meta-model provides access to
the implementation of the meta-component that has a component graph where com-
ponents are nodes and bindings are arcs. Inspection is achieved by traversing the
graph, and adaptation/extension is realized by inserting or removing nodes or arcs.

The interface meta-model supports the dynamic discovery of the set of interfaces
defined on a component; support is also provided for the dynamic invocation of meth-
ods defined on these interfaces [1]. Both capabilities together enable the invocation of
interfaces whose types were unknown at design time.

The interception meta-model supports the dynamic interception of incoming
method calls on interfaces and also the association of pre- and post-method-call code
[1]. The code elements that are interposed are called interceptors. For example, in the
above wireless link scenario we might want to use an interceptor to monitor the con-
ditions under which the compressor should be switched.

Causal connection between the base-level system and the meta-models is achieved
via the above-mentioned notify() operation from the CRT API. This operation allows
meta-models to register a callback that is invoked every time a subsequent call (bind,
load, etc) is made on the CRT. The callback invocation contains all the parameter
values of the call and so gives the callback holder a complete picture of all activity in
the capsule. As an example, the architecture meta-model uses a notify callback to
keep itself updated with information associated with the internal topology of the cap-
sule contents. In case a meta-model needs to change the base-level configuration in
some way, it simply invokes the respective operation (bind, load etc.) in the API. In
this way, the causal-connection relation between the base and the meta level is main-
tained.

3. Modelling

In this section we present a set of UML meta-models that support the abstract
specification of families of middleware. Figure 3 shows the three packages that com-
prise the OpenCOM metamodel. The Kernel package includes the fundamental model
elements of OpenCOM: viz. component, capsule, interface, receptacle, binding, com-
posite component and component framework. On top of this, the Caplet Extensions
package includes the fundamental model elements of the caplet extensions in Open-
COM: viz. caplets, loaders, and binders. This package provides structured support for
extensibility at the deployment environment level in terms of pluggable extensions.
The Reflective Extensions package includes the fundamental model elements of the
OpenCOM reflective meta-models (see the three reflective packages in Figure 3).

5

Figure 3. The OpenCOM Metamodel

Crucially, these meta-models are organised in terms of a structure with two or-
thogonal dimensions. One axis of this is the UML hierarchy (with its layer M0, M1,
M2, and M3) and the other is a division into base level and (reflective) meta-level1.
This is illustrated in Figure 4. All the meta-models (packages) we have described
above populate the UML M2 level; however, while the kernel and caplet extensions
packages live in the base-level, the reflective extensions live in the meta-level. The
intention is that middleware family specifications will populate the UML M1 level
and, of course, instantiations of these specifications will populate the UML M0 level.
As a consequence, in implementation the meta-objects are optional and can be dy-
namically loaded/unloaded when required.

Figure 4 also shows an example instantiation of the model in terms of a very sim-
ple application example that illustrated the intended use of the model. This is a “cal-
culator” which contains three sub-components; an adder, a multiplier and a calculator.
The calculator component offers the services of adding and multiplying based on the
services of the adder and multiplier components.

Figure 4 only shows details about the reflective architecture package. Work related
to the reflective interception and interface packages have been done but it is not
shown in this paper for reasons of space.

1 Note that there is a potentially-confusing terminological clash here between the UML “meta-level” and

“reflective meta-levels”. These two concepts are entirely distinct; nevertheless we are forced to employ
both of these terms because they are so well established in their respective communities.

6

Figure 4. UML Models and Reflective Architecture of a Calculator Configuration

Finally, Figure 5 shows how the causal connection between the base and meta-
levels is generically modelled in terms of a UML sequence diagram. This is based on
the semantics of the notify() operation discussed above. The sequence diagram repre-
sents (part of) the dynamic behaviour specification of OpenCOM as opposed to the
static structure of the models that was shown in Figure 4. Different models at level
M1 will reuse or instantiate this generic causal-connection diagram.

Figure 5. Sequence Diagram for Causal Connection when calling the bind operation

Meta
Mod
M2

Model
M1

Architecture Meta Model

Model
M0
(Run-time
Instances)

Meta Model
Interface

MOF
M3

Calculator

Adder

SubtractorBinding

Binding
ICalculator

Capsule
ICapsule

Calculator
Architecture

<<instance

<<instance <<instance

<<instance

c:
Calculator

a:
Adder

s:
Subtractor

b1:
Binding

b2:
Binding

cp:Capsule
ICapsule

a :
Architecture

Meta - LevelBase - Level

Kernel
Caplet Extensions

OpenCOM
Component

Meta Model
Interception

Reflective Extensions

RArchitecture

NodeGraph

Edges 1

2

7

4. Discussion

We now turn to the application of the meta-modelling concepts to give support to
the specification and efficient generation of middleware families. We apply the ap-
proach in terms of both configuration (i.e. establishing an initial set of components in
a target deployment environment, and reconfiguration (i.e. making changes to the
initial set of components at runtime).

In outline, different middleware configurations are generated from models that are
written in terms of the above meta-models. The models are sufficiently abstract that a
number of different concrete OpenCOM-level configurations of components can be
generated from them (i.e. the mapping of UML to Open COM components is not
simply 1:1). The concrete configurations that are generated are determined by the
following dimensions of variability:

• quality of service (QoS)
• deployment environment
• (re)configurability
The QoS dimension allows the abstract-to-concrete mapping to be influenced by

consideration such as mobility (e.g. whether the components should be able to mi-
grate), dependability (e.g. whether certain components should be replicated), or secu-
rity (e.g. whether certain components are allowed to dynamically load other compo-
nents). For example, consider an application with a QoS requirement for mobile code.
In the generated Open COM-level configuration, this will indicate the inclusion of the
caplet extension. The caplet extension is needed because of its support for sandbox-
ing untrusted components, and for its provision of specialised loaders that are able to
load remote objects. It will also indicate the inclusion of a security CF to validate the
remote components. All of this machinery will be transparently instantiated without
having to be explicitly present in the UML model.

The deployment environment dimension refers to the resource capabilities of the
hardware/software environment in which the system will be deployed. Consider, for
example, a distributed application that is deployed in a heterogeneous environment
consisting of PCs, PDAs and resource-poor sensor motes. While it would be unprob-
lematic to deploy the whole of the reflective extensions package on the PCs and
maybe the PDAs, this may not be possible on the sensor motes where perhaps only
components related to the kernel package might be deployed. This would preclude the
use, e.g., of the caplet extensions on the motes and thus restrict the functionality
available in that environment. We are currently working on the design of specific
middleware configurations addressing embedded systems domains where extremely
resource-constrained environments are found [2].

Finally, the configurability dimension refers to the degree of reflective support that
will be required at runtime. This essentially determines which of the reflective exten-
sions will be instantiated. For example, if performance monitoring for QoS purposes
is required, the interception meta-model would be included but not the others. Alter-
natively, if the application might need components to be added or replaced at runtime,
the architecture meta-model would additionally be needed [6].

The above example raised the possibility of multiple dimensions potentially cross-
cutting each other (i.e. QoS and configurability). Such cross-cutting is expected to be

8

a common occurrence. Aspect Oriented Software Development (AOSD) offers tech-
niques that may help us address this problem..

5. Conclusions and Future Work

We have developed a set of metamodels that assist in the specification of middleware
families and in the generation of specific family members which are determined by
quality of service, deployment environment and configurability dimensions of vari-
ability. The metamodels capture the main concepts of the design philosophy of our
middleware family: components, components frameworks, reflection for dynamic
(re)configuration and extensibility. First, a package called Kernel containing the
meta-model of the fundamental concepts is proposed. The UML specifications of
reflective metamodels and caplets as extensions of the kernel are then presented in the
packages Caplet Extensions and Reflective Extensions. As a result, at runtime the
components/CFs related to caplets extensions and the meta-objects are optionally
dynamically (un)loaded when pluggable extensions and reflective capabilities are
required. In the particular case of the modelling of reflection, this paper describes
how metamodels and models specify the causal connection between the base and
meta-level.

We are now investigating how to generate different middleware configurations
while keeping decisions that are generic to a set of configurations at the metamodel
level design. More work has to be done to completely identify the variability among
the related configurations (members) of middleware families to support an efficient
generation of configurations. Another key area of future work will be to maintain the
UML models at runtime and to keep this causally connected with the underlying
running system in order to support reconfiguration. We also plan to investigate how
solutions for the crosscutting problems we described can be found in the area AOSD.

References

1. Blair, G., Coulson, G., Grace, P.: Research Directions in Reflective Middleware: the Lancaster Ex-
perience, Proc. 3rd Workshop on Reflective and Adaptive Middleware (RM2004), (2004), 262-267.

2. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The RUNES Middleware: A Recon-
figurable Component-based Approach to Networked Embedded Systems, PIMRC05,(2005)

3. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A Component Model for Building
Systems Software, Proc. IASTED Software Engineering and Applications (SEA’04), USA, (2004)

4. Gabriel R., Bobroe D., White J., CLOS in Context – The Shape of the Design Space, in Object-
Oriented Programming – the CLOS perspective, Chapter 2, MIT Press, 1993, 29-61

5. Grace P., Blair G. Samuel S.: "ReMMoC: A Reflective Middleware to Support Mobile Client Interop-
erability". Proc of International Symposium on Distributed Objects and Applications (DOA), (2003)

6. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W, Duce, D., Cooper, C.: GRIDKIT:
Pluggable Overlay Networks for Grid Computing, Proc. Distributed Objects and Applications
(DOA’04), (2004)

7. Maes, P., “Concepts and Experiments in Computational Reflection”, Proc. OOPSLA'87, Vol. 22 of
ACM SIGPLAN Notices, pp147-155, ACM Press, 1987.

8. Okamura H., Ishikawa Y., Tokoro M.: Metalevel Decomposition in AL-1/D, Proceedings of the First
JSSST International Symposium on Object Technologies for Advanced Software (1993), 110-127

9. Szyperski C.: Component Software: Beyond Object-Oriented Programming, Addison-Wesley, (2002)

