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Abstract. In this master thesis, a geometrica#-HARD problem, theArt Gallery
problem is studied. The problem goal is to minimize the number ofagisuf-
ficient to cover the interior of an art gallery whose boundayepresented by
a simple polygon. Among the many variants, we focus on onewe guards
are stationary and restricted to vertices of the polygoniciitan be either or-
thogonal or general simple, without holes. An exact aldomtis proposed in
which the original continuous problem is discretized. Asoof correctness and
convergence of the algorithm to an optimal solution are giExtensive exper-
imentation with the algorithm show that it solves to optiityainstances with
more than ten times the size of the largest ones reportegearlthe literature.
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1. Introduction

Nowadays, security is one of the main concerns in our sacgttyies concerning robbed
banks, museums, homes and other buildings are well knowovati the world. As the
demand for low cost and effective security systems incieases important to fully un-
derstand the problem in order to improve efficiency. Theasdeon the Art Gallery
problems AGP) plays an important role in the decisions involved.

In 1973, Victor Klee posed the originatp problem, which consists in determin-
ing the minimum number of guards sufficient to cover the intesf ann-wall art gallery.
This work focus on the minimization problem of the specificaon where guards have
a 360° field of vision and their placement is restricted to the wewiof the simple poly-
gon, either orthogonal or general simple, that represéstetiter boundary of a given art
gallery. Both minimization problems have been prow#HARD and, while being one
of the most studied problems in computational geometrypatmo attempts to develop
an exact algorithm have been made, and none are completeer@ftand practical. In the
literature there is a number of works on approximation athors, as well as a few on the
placement of a sub-optimal number of guards.

This master thesis successfully addresses this problernsavell aligned within
the main context. We propose an exact and efficient algorifrgnform a theoretical
analysis on the convergence and exactness of the algorthdn¢arry out an extensive
experimental study on its practicality.

The proposed approach is iterative and consists of builamgitial discretization
of the simple polygon that represents the floor plan of théegal Once that phase is
complete, the problem is modeled as an instance of the céS&t Cover probler(scp),
which is solved and then refined until an optimal solution thee original problem is
attained.

Results from our work have been published on four intermatioonferences and
one international journal. Additionally, a technical vidabout our work was also pub-
lished accompanying one of those papers. Lastly, a benéhooanprised of all our in-
stances and results was made publicly available, for futareparative research. Some



of these papers are included as chapters of the thesis, etsos&d by the university’s
graduate program, along with detailed comments scatteithihwhose chapters to help
the reader to completely understand the details of the work.

In the first three chapters, we introduce the problem and @svation, explain
the theoretical concepts and definitions required for adoterstanding of the details,
and present the design of the algorithm, the proofs of coress and convergence, the
reduction between the problems, the discretization giiegeused in the experimental
evaluation and the process of building the instances. lyjrthlere is an appendix that
describes the development and implementation of the a@fgoyithe issues solved, the
design and project, and two interfaces built to perform tkgeemental and the human
evaluation and visualization of the algorithm.

2. Inception of the Algorithm

The geometrical perspective of the Art Gallery problem espnts am-wall art gallery
as a planar region whose boundary consists of a simple polyywith a setV of n
vertices. A vertex € V is denotedcconvexf the internal angle at is smaller thari 80°.
Whenever no confusion arisespoint in P will mean a point either in the interior or on
the boundary of°.

A visibility region Vis(v) of a vertexv € V' is the set of all points irP visible
fromv. Any pointy € P is visible from any other point € P if and only if the closed
segment joining: andy does not intersect the exterior Bf

A set of pointsS is called aguard setfor P if and only if every pointp € P is
visible from at least a poind € S. Thus, avertex guard set is any subset of vertices
such thalUgeG Vis(g) = P. As a vertex guard set guarantees that the entire gallery is
overseen by the guards in the set, it is easy to see thataramounts to finding the
smallest subset C V that is a vertex guard set fét.

The problem of finding the smallest vertex guard setfocan be regarded as
a specific Set Cover problers¢P), where we wish to find a smallest cardinality set of
visibility regions of the vertices oP whose union coveP, see Figure 1.

Itis important to notice that this is@ntinuousscpsince there are infinitely many
points in the interior ofP to be covered. Notwithstanding, the original problem can be
discretized in a finite number of representative point®pD(P), so that the formulation
becomes manageable. This leads to the following IP fornwnadf thescpr, whereA is
a matrix and4,; is set tol if and only if point: € D(P) is visible from vertex;j, or 0
otherwise;r; represents whether vertgxs in the solution set or not. We aim to minimize
z=min) ;. x; subjecttoy ; \, A;z; > 1,Vp; € D(P).

Given a feasible solution to the IP above, lef(z) = {j € V | z; = 1}.
The constraints on the formulation states that every poift(iP) is visible from at least
one selected guard in the solution and the objective funaticnimizes the cardinality
z of Z(x). As the setD(P) is finite, the solution set for the discretized probléfr)
may not be a viable solution for the original problem, i.eveatex guard set foP. In
this scenario, the algorithm must iterate, picking a neverdigzation point inside each
uncovered region and solving an IP formulation for the s@®instance created.

One of the important results we proved is that once the adlguorfinds a solution for the
discretized instancé&( P, D(P)) which is viable for the original problem, that solution is
also optimal, i.e., a minimum vertex guard cover far



Figure 1. AGP as a specific scp

In order to prove that the algorithm will always find a viabéed thus optimal,
solution for the original problem, it suffices to determihe worst case for the number
of iterations. Consider the set of all visibility regionstb vertices in/. The edges of
these regions induce an arrangement of line segments withwhose faces are called
atomic visibility polygongavp). It has been shown that there are at n@&t?) AvPs.

It follows from the definition ofavps that if any point in the interior of an atomic
visibility polygonV is visible from a vertex guard, the entirety Bfmust also be. Since
any uncovered region is formed by the union of neighborings, and since after each
iteration one discretization point inside each of thoséoreg)is included into the formu-
lation, an upper bound on the maximum number of iteratiom®paed by the algorithm
is O(n?) and this establishes its convergence, see Figure 2.

Moreover, the above algorithm is actually a rough desa@iptf a Turing’s re-
duction from the Art Gallery problem to the Set Cover problenine reader must also
consider that if the initial discretization is comprisedtioé centroids of all atomic visi-
bility polygons, the algorithm needs no more than the fiestation to obtain an optimal
solution and this establishes a Karp’s reduction.

Notice that each iteration of the algorithm solvesxamHARD problem, thescr,
and its convergence is closely connected to the number afvens regions founded.
Furthermore, as the uncovered regions depends on the abfdloe initial discretization,
there is a trade off between speed and precision that one takesinto account when
designing a good discretization strategy. It must ideadjidgght enough to set up instances
of scpthat can rapidly be solved while minimizing the number ofatens required to
attain an optimal solution. At the same time, it is importargtart off with a discretization
that represents the polygon well.

3. Evaluation of the Algorithm

In order to evaluate the algorithm and test its practicabiliég several discretization
strategies were built, each one with its own purpose. Tlierean instance building
scheme was developed and implemented, with the abilityieigee thousands of random
orthogonal and general simple polygons, as well as of a feeratlasses of polygons.

Thus, an extensive experimental evaluation was conduatetithe results, sum-
marized in Figure 3, show that the overall best performanas achieved by theonvex



Figure 2. Visibility arrangement and a discretization with the centroids of all  AvPs.

verticesstrategy, where only the convex vertices of the polygonmekided in the initial
discretization set.
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Figure 3. Total processing time for different discretizati on strategies.

The Convex Vertices strategy yields a sparse discretizaial, as a consequence,
smallscprinstances, and yet dense enough to represent the polygdaiitydroad sense.
As it can be seen in Figure 3, this leads to a very fast implé¢atiem for instances of up
to 2500 vertices.

4. Conclusion and Key Contributions

In this master thesis, we describe our extensive resea Aft Gallery problem, where
the goal is to minimize the number of stationary vertex gaasdfficient to cover the
interior of an art gallery whose boundary is represented siynple polygon.

We designed the first known exact algorithm able to solve toradly (within
excellent overall computational times) instances of upetotimes the size of the ones
found in prior literature. Moreover, the algorithm provedde robust, in the sense it was
able to tackle instances from a broad range of polygon cdagsguding very degenerate
ones.

A theoretical analysis on the subject is presented, inotydifull chapter with all
basic definitions and concepts one needs to fully understengroblem, and a detailed



explanation of the reductions, both Turing’s and Karp’spirthe Art Gallery problem to
the Set Cover problem, which is the basis for our algorithma, fanally the proof from its
correctness and convergence.

In order to validate the algorithm, an implementation waly ftoded, as well as a
generator of multiple class instances. Besides genernatstgnces from a few well known
polygon classes, we developed a new benchmark class ofmmandio Koch polygons —
an extremely complex and hard to solve class of instancegedeirom a modified von
Koch curve. In the last part of the thesis, we share insightsiasimplementation issues,
degenerate instances, exact arithmetic which allowedpleimentation to be robust and
exact.

With all that, we carried out a broad experimental evaluatd the algorithm
implementation and analyzed the behavior and impact ofrakgiescretization strategies
on the many classes of instances at our disposal. In thetem8gst overall performance
strategy was found to be the one built with only the convexiees of the polygon. It was
shown to provide a perfect balance between speed and agcpeatorming only a few
iterations in a short computational time.

Besides, we generated and made available for future pudiecance the first and
only known benchmark of instances for the Art Gallery prolbleomprised of more than
10,000 instances with up to 2,500 vertices as well as all gtailéd results presented in
our work.

In conclusion we successfully built, implemented and tkste exact algorithm
that is able to solve extremely large instances (of up to@&tices) in a number of
iterations several orders smaller than the theoreticabuppund, within 800 seconds
when the best overall discretization strategy we found wasleyed.

5. Final Remarks and Relevance

This master thesis presents a broad multidisciplinaryystimdwo variants of an important
geometricaNP-HARD problem, the Art Gallery problem. This problem has beenesttbj
of study by many of the best known researchers in Computi@rometry for the past
40 years, including J. O’Rourke, V. Chvatal, D. T. Lee, A.ldn, A. Aggarwal, J. Ur-
rutia, S. K. Ghosh, among others. See [O’Rourke 1987, Led.an#l986, Urrutia 2000,
Ghosh 2010].

The fact that our published papers have already begun totbe aitests to the
relevance of our work: we have had 3 citations according wp8s and 8 according
to Google Scholar (excluding self-citations). Also, oupge’An IP solution to the art
gallery problem”, which appeared in the Proceedings of the 25th ACM Annual &m
sium on Computational Geometry, has been downloaded frerA@M Digital Library
85 times in the last 12 months and six times in the last six weddne.

We attribute the visibility our work is having to the fact thias the first exact and
efficient algorithm to optimally solve the problem in questjas well as for the extensive
experimental analysis of the practical viability of the @ithm, and lastly, for having
the first known benchmark of instances to the problem, availéor public reference
and use awww.ic.unicamp.brtcid/Problem-instances/Art-Gallerydopefully this will
allow other researchers to compare their results with oacteones.

Moreover, it is undoubtedly a recognition of excellenceftat that four refereed
international conferences and one international jourabliphed the papers that came out
of this Master’s thesis work. One of said conferences happehe one of the most pres-



tigious ones in experimental evaluation of algorithms —Slgenposium on Experimental
Algorithms, sea, formerly know as Workshop on Experimental Algorithms, WEA

Here is the full list of publication this work has generated.

1. M. C. Couto, P. J. de Rezende, and C. C. de Sofimagxact algorithm for min-
imizing vertex guards on art galleriedn International Transactions in Opera-
tional Research, available online since March 1st, 2011, no. doi: 10.111475-
3995.2011.00804.x., 27 pages.

2. M. C. Couto, P. J. de Rezende, and C. C. de SotimdP solution to the art gallery
problem.In SCG *09: Proceedings of the 25th annual symposium on Computa-
tional geometry, pages 88—89, New York, NY, USA, 2009. ACM.

3. M. C. Couto, C. C. de Souza, and P. J. de Rezesttategies for optimal placement
of surveillance cameras in art galleriedn GraphiCon 2008: XI International
Conference on Computer Graphics & Vision, vol. 1, pagehttp://www.graphicon.
ru/2008/proceedings/technical. htabmonosov Moscow State University, 2008.

4. M. C. Couto, C. C. de Souza, and P. J. de RezeRkdaperimental evaluation of an
exact algorithm for the orthogonal art gallery problein. WEA, Lecture Notesin
Computer Science, volume 5038, pages 101-113. Springer, 2008.

5. M. C. Couto, C. C. de Souza, and P. J. de RezeAdexact and efficient algorithm
for the orthogonal art gallery problemln Proc. of the XX Brazilian Symp. on
Comp. Graphics and Image Processing, pages 87-94. IEEE Computer Society,
2007.

This master thesis opens plenty opportunities for futuseaech which are de-
tailed both in the publications, and in the thesis itself.
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