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Abstract. We present a generalized closed-form framework for detecting data
alignments in large unordered noisy multidimensional datasets. In our ap-
proach, the intended type of data alignment may be a geometric shape
(e.g., straight line, circle, conic section) or any other structure, with arbitrary di-
mensionality, that can be characterized by a linear subspace. We also present an
extension of our detection scheme to data with Gaussian-distributed uncertainty.
The proposed extension makes the framework more robust to the detection of
spurious alignments. In contrast to existing solutions, the proposed approach is
independent of the geometric properties of the alignments to be detected. Also,
it is independent of the type of input data and automatically adapts to entries
of arbitrary dimensionality. This allows application of the proposed framework
(without changes) in a broad range of applications as a pattern detection tool.

1. Introduction

A central component of many computer vision and data mining applications is to identify
data alignments that emerge as well-defined structures or geometric patterns in datasets.
The identification of data alignments is also key in scientific fields such as particle physics
and astronomy, because data alignments define strong local coherence in data, and hence,
important features to be analyzed. For this reason, automatic detectors have been devel-
oped and used both by computer scientists as well as by researcher in many different areas.

The development of automatic detectors has been explored and extended in many
ways in order to produce techniques robust to the presence of noise and discontinuities in
large datasets. But, traditionally, detectors have been designed for specific types of align-
ments in a given type of input data. Such a specialization prevents the development of
generally applicable techniques and optimizations due to specificities in their formula-
tions. Thus, improvements on existing solutions need to be done on a case-by-case basis.

This work introduces a more general approach for detecting data alignments in
unordered noisy multidimensional data. It is focused on fulfill the lack of generality of
existing solutions. The proposed approach is based on the observation that a wide class
of alignments (e.g., straight lines, planes, circles, spheres, conic sections, among others),
as well as input entries, can be represented as linear subspaces. Thus, instead of defining
a different detector for each specific case and input data type, it is possible to design a
unifying framework to detect the occurrences of emerging subspaces in multidimensional
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Figure 1. (a) Detection of the 22 lines that best fit the edge pixels of the image.
(b) Concurrent detection of plane and spheres. The input dataset is comprised
by 43 points, 1 straight line, and 3 circles. The proposed approach was used,
without any changes, to automatically detect the structures shown in (a) and (b).
(c)-(d) A portion of the accumulator arrays produced for (a) using the sampling-
based and the error propagation-based voting schemes, respectively. The blue
regions A-D represent peaks of votes (i.e., detected straight lines).

datasets. The versatility of the framework is demonstrated in Figure 1, where it is applied
both on a straight line detection case (Figure 1a) as well as on concurrent detection of
multiple kinds of alignments with different geometric interpretations, in datasets contain-
ing multiple types of data (Figure 1b). Given its general nature, optimizations developed
for the proposed framework immediately benefit all the detection cases.

The contributions of this work include: (i) a general framework for subspace de-
tection in unordered multidimensional datasets; (ii) a parameterization scheme for sub-
spaces based on the rotation of a canonical subspace with the same dimensionality; (iii) an
algorithm that enumerates all instances of subspaces with a given dimensionality p that
either contain or are contained by an input subspace of arbitrary dimensionality; (iv) a pro-
cedure that maps subspaces with Gaussian distributed uncertainty to the parameter space
characterizing p-dimensional subspaces; (v) a number of experimental evidences support-
ing that the open affine covering of the Grassmannian (i.e., the set of all p-dimensional
linear subspaces of a vector space R™) can be used as an auxiliary space where the uncer-
tainty of some classes of analytical geometric shapes can be handled in a unified fashion;
and (vi) an algorithm that identifies local maxima in a multidimensional histogram.

Due to space limitation, this paper does not present a detailed de-
scription of the proposed algorithms or results achieved. The full disserta-
tion [Fernandes 2010] and the list of related publications, courses, pending submissions
and implementations [Fernandes and Oliveira 2008, Fernandes and Oliveira 2009,
Fernandes and Oliveira 2010,  Fernandes and Oliveira 2011] are  available in
http://www.inf.ufrgs.br/~laffernandes/ctd201 1.

2. Geometric Algebra

We have formulated the subspace detector using Geometric Algebra (GA). GA is a power-
ful mathematical system encompassing many mathematical concepts (e.g., complex num-
bers, quaternions, and Pliicker coordinates) under the same formalism. In GA, subspaces
are treated as primitives for computation. As such, it is an appropriate tool for modeling
the subspace-detection problem. Also, GA has been proven to be capable of represent-
ing many types of geometry. It is because GAs can be constructed over any type of
quadratic space, which includes real-valued vector spaces, and also more sophisticated
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Hilbert spaces, such as finite Fourier basis, finite random-variable spaces, and basis of
orthogonal polynomials, among others. In all cases, the concepts of subspaces, inter-
sections and combinations of subspaces are still valid and independent of the underlying
metric space, even though they may not have the same geometric meaning. We explore
the generality of these concepts while defining our subspace detection scheme.

By assuming a model of geometry (MOG), one defines the space where data will
be encoded and provides a practical (geometric) interpretation to subspaces as input data
entries or resulting data alignments. Examples of MOGs successfully encoded by GA in-
clude Euclidean, Projective, Spherical, Hyperbolic, and Conic spaces. These MOGs pro-
vide practical applications for the proposed technique as a detector of emerging geometric
shapes on datasets like, but not limited to, images, volumetric datasets, and point clouds.

Only in the past few years GA became accessible to the computer sci-
ence researchers through specialized literature. With the aim of disseminating GA
within the Brazilian computer science community, the experience obtained from
this work has been used in the preparation of courses [Fernandes and Oliveira 2009,
Fernandes and Oliveira 2010] for providing an introduction to the fundamental concepts
of GA and discussing its great potential as a tool for representing and solving problems
in computer graphics, computer vision, and image processing.

3. Related Work

Most of the techniques for detecting data alignments are derived from the Hough Trans-
form (HT), Random Sample Consensus (RANSAC), or Tensor Voting (TV) paradigms. In
order to use the HT or RANSAC approaches, one needs to assume a mathematical model
for the intended type of data alignment (e.g., the normal equation of the line; the center-
radius parameterization of circles) with respect to the expected type of input data (usually
points). Although there are partial generalizations of the HT and RANSAC designed to
some classes of analytic shapes and HT's for non-analytic shapes, such approaches are still
restrictive regarding the assumed input or intended output data. The TV, on the other hand,
follows a generalized definition. The TV, however, returns all possible features (with any
dimensionality) at the same time. Such a behavior prevents the efficient detection of pre-
defined types of alignments, because it requires a subsequent filtering step.

We propose a voting-based framework for detecting the occurrences of emerging
linear subspaces (with a given dimensionality) in multidimensional datasets. The pro-
posed approach is based on the representation of subspaces as primitives in GA (Sec-
tion 2). By assuming a MOG, such subspaces can be geometrically interpreted as some
shape (e.g., straight lines, circles, planes, spheres, among others) or other data alignments
(e.g., customer behaviors may emerge as linearly correlated data in e-commerce data).
Unlike in conventional HTs, the parameterization used by the proposed approach is inde-
pendent of the geometric properties of the structure to be detected. When applied to the
detection of geometric shapes the proposed framework can be seen as the generalization
of the HTs for analytic shapes that can be represented by some linear subspace.

4. Overview of the General Subspace Detection Framework

The proposed subspace detection scheme takes as input a set X of subspaces (i.e., the
input dataset encoded into a MOG), the dimensionality p of subspaces interpreted as the



intended data alignment in the same MOG, and the dimensionality n of the whole underly-
ing space imposed by the MOG. The algorithm outputs the p-dimensional subspaces that
best fit the input set X'. The detection is performed using a three-step process: (i) create
an accumulator array as a discrete representation of the parameter space characterizing p-
dimensional subspaces; (i1) perform a voting procedure where the input dataset is mapped
to the accumulator array; and (iii) search for the peaks of votes in the accumulator, as they
correspond to the p-dimensional subspaces that best fit the input dataset. For the case of
uncertain input data, extended mapping and voting procedures are performed in step (ii).

4.1. Parameterization of Subspaces Interpreted as the Intended Data Alignment

In [Fernandes 2010] we show that a p-dimensional subspace in a n-dimensional space can
be characterized by a set of m = p (n — p) rotations applied to a canonical subspace used
as reference, where the values of n and p are related to the MOG where data has been
encoded and the type of data alignment one wants to detect, respectively.

By assuming that each one of the m rotation angles (¢;) related to the sequence
of rotation operations are in the [—7/2, 7/2) range, we ensure that such angles define a
parameter space for p-dimensional subspaces:

P™ = {(91,02,' s ,Hm) | Qt S [—71'/2,71'/2)}, (1)

where each parameter vector (6q,0s,--- ,6,,) € P™ characterizes an instance of a p-
dimensional subspace in the underlying n-dimensional space. The proposed parameter-
ization guarantees the use of the smallest set of parameters in the representation of the
intended subspaces. Thus, when applied as a shape detector (Figures la and 1b), the
proposed approach always represents the intended shapes in the most compact way.

In its first step, the proposed subspace detection framework discretizes P™, for
which an accumulator array is built to receive “votes”, and initially set its bins to zero.

4.2. Voting Process for Input Subspaces

The second step maps the input dataset to parameter space. Essentially, the mapping
procedure takes each r-dimensional subspace X,y in the input dataset X" and identifies
the parameters (coordinates in P*, Equation 1) of all p-dimensional subspaces related
to it. When r < p, the mapping procedure identifies in P all p-dimensional subspaces
containing X,y. If r > p, the procedure identifies in P"* all p-dimensional subspaces
contained in X,y. As the input entries are mapped, the bins of the accumulator related to
such a mapping are incremented by some importance value of the entry.

In conventional voting-based approaches, such as the HTs, the input data type
is known a priori. Thus, conventional mapping procedures predefine which parameters
of the related parameter vectors must be arbitrated and which ones must be computed.
The proposed approach, on the other hand, does not have prior information about input
data. It decides at runtime how to treat each parameter. Such a behavior is key for the
generality of the proposed detection framework, providing a closed-form solution for the
detection of subspaces of a given dimensionality p on datasets that may be heterogeneous
and contain elements (i.e., subspaces) with arbitrary dimensionalities (0 < r < n). Such
a feature is illustrated by Figure 1b, where the input dataset is comprised by subspaces
geometrically interpreted as points, straight line, and circles.



4.3. Voting Process for Input Subspaces with Uncertainty

Experimental (real) data often contain some uncertainty due to imprecision in the instru-
ments used to collect them. Such an uncertainty can be taken into account while per-
forming subspace detection by supersampling input entries according to their distribution
of uncertainty and, in turn, by processing each sample with the technique described in
Section 4.2. The quality of sampling-based approaches, however, depends on the number
of samples, and the computational load increases as more samples are used.

In order to avoid the brute force sampling approach, we propose an extended map-
ping and voting procedures for input data with Gaussian-distributed uncertainty. The
extended mapping procedure is based on first-order error propagation analysis. It trans-
ports the uncertainty of each input element throughout the computations into an auxiliary
parameter space where the uncertainty is described by a multivariate Gaussian distribu-
tion. In turn, such a distribution is mapped to the actual parameter space, leading to
non-Gaussian distributions of votes in the accumulator array.

Figures 1c and 1d present a comparison between a portion of the accumulator
arrays produced for Figure 1a with a sampling-based voting using the technique described
in Section 4.2 and the technique described in the current section, respectively. Notice
that error propagation produces smoother distributions of votes than the sampling-based
approach. As a result, the latter is less prone to the detection of spurious subspaces.

4.4. Peak Detection

The last step of the subspace detection framework is performed after the voting procedure
has been applied to all input data entries X,y € X. It consists in identifying the bins
that correspond to local maxima in the accumulator array. For this step we propose a
sweep-hyperplane-based peak detection scheme developed for accumulator arrays having
arbitrary dimensionality. The proposed approach is an extension of the peak detection
technique described in [Fernandes and Oliveira 2008] for 2-dimensional accumulator ar-
rays. The technique returns a list with all detected vote peaks, sorted according to their
importance (i.e., number of votes). The coordinates of such bins (i.e., parameter vectors)
are used to retrieve the most significant p-dimensional subspaces.

5. Results

The proposed approach has been demonstrated by proof of concept implementations of
the described algorithms. We have used our own GA library (i.e., Geometric Algebra
Template Library, GATL) in such implementations. We intend to make all C++ and
MATLAB® code publicly available after the publication of pending submissions.

The implementations have been validated by applying the subspace detection
framework to real and synthetic datasets. As a closed-form solution, the same implemen-
tation of the proposed framework allows the detection of subspaces that best fit an input
set of subspaces with different dimensionalities and different geometric interpretations
(e.g., points, straight line and circles — Figure 1b). Also, it allows the concurrent detection
of subspaces with different geometric interpretations but with the same dimensionality
in a given MOG (e.g., plane and spheres — Figure 1b). Our results have shown that the
proposed approach can identify subspaces even in the presence of noise and outliers.



In [Fernandes 2010] we show that an approximation of the dth-order Voronoi dia-
gram of a set of points in R? can be retrieved as byproduct of the detection of subspaces
geometrically interpreted as circles, spheres, and their higher-dimensional counterparts.

6. Conclusions

We presented a framework for detecting emerging data alignments in unordered noisy
multidimensional data. The proposed subspace detector is based on a voting strategy, and
it is formulated with GA. By doing so, the technique takes advantage of the conceptual
simplicity of the voting paradigm for pattern recognition, while exploring the superior
modeling capability of computational primitives and operations in GA.

The time complexity of our approach is the same as of conventional HTs' mul-
tiplied by p?, for r > p: O(p? (m — k) s* N). A naive implementation of our approach
suffers from the same drawbacks as HTs: large memory requirement and computational
cost. However, as any HT, it is robust to the presence of outliers and is suitable for imple-
mentation on massively parallel architectures. Moreover, the generality of our technique
should enable new and exciting applications in many different areas, because it avoids tai-
loring a different solution for each specific case of detection. As a result, we believe it will
stimulate research on new optimization approaches for subspace detection. We also hope
it will contribute to the popularization of GA among the computer science community.

We have demonstrated the application of the proposed approach on datasets cho-
sen because of their visually-compelling structures. However, one should note that, given
its generality, our framework is not restricted to the detection of geometric shapes. It
can be applied to any domain in which a problem can be cast as a subspace detection
one. For example, the subspace clustering problem in data mining applications. Also,
the proposed general parameterization for data alignments may be useful while defining
machine learning techniques. Since our approach is independent of the metric properties
of the underlying space where data resides, it can be used, without any change, for the
detection of subspaces having different interpretations (e.g., different MOGs), including
some that may be defined in the future.
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