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         Abstract—Character-based interactive storytelling, life simulation and game 

difficulty dynamic balancing are examples of topics that need to deal with 

autonomous agent evolution. Although the commercial appeal of such kind of 

feature, the research of new behaviors emergence in virtual societies is restricted 

to intelligent agents that do not learn. This work proposes a novel architecture of 

a multiagent system based on the M5P algorithm for generation of emergent 

behaviors in complex virtual worlds. Based on our obtained results, we describe 

the advantages of the reinforced learning based on numerical classifiers when 

compared with traditional interaction adaptations. 

1. Introduction 

In a previous work [Machado et al 2010], we defined an architecture for implementing 

strategy games with the possibility of occurrence of emergent behaviors. Through 

experiments, we demonstrated the advantages of using the M5P algorithm over others 

qualitative attributes classifiers. In this paper we extend the experiments for a multiagent 

based environment. 

 In a similar way, [Bakkes et al 2009] define a game strategy as a configuration of 

parameters that determine strategic behavior (such as how many aircraft units should be 

constructed, maximum air group size or maximum number of storage buildings). In this 

paper, domain knowledge is required in order to adapt the characters to game 

circumstances automatically by the game AI, and is exploited immediately to evoke 

effective behavior in a controlled manner in online matches. Experiments in a strategy 

game shown that proposed case-based adaptive game AI provides a strong basis for 

effectively adapting game AI. Our approach differs from this, since defines a simplest 

architecture in order to achieve the same goals and makes an evaluation about the 

interaction between the multiagents systems characters. Our method also maintains the 

rapid and reliable adaptation of game AI characteristics. 

 We maintain the emergent property achieved in [Machado et al 2010], enhancing 

knowledge properties presented by Crocomo et al. [Crocomo & Simões 2008] and 

[Hong & Cho 2005], where it is shown that machine learning processes in games that 

rules NPCs (non player character) behaviors (in this case, evolutionary algorithms) are 



able to emerge more complex strategies from simple behaviors.  

2. Related Work 

According to [Manslow 2002], the usage of adaptive learning in games is a trend and 

must be one of the most important improvements to the field. This topic is important not 

only for the improvement of AI behaviors, but specially for generating more robust and 

smart gameplay, according to the player characteristics. Within this field, our work is 

more focused on reinforcement and supervised learning approaches. 

 Our approach uses the supervised learning related to the examples input 

requirements and induction rules. We also use reinforcement learning, since the presence 

of rewards is a key factor for adapting the system for new cases. 

 In [Andrade et al 2005] and [Spronck et al 2004] it is shown efficient 

implementation of reinforcement learning as a mechanism of player adaption. The first 

work introduces the concept of a challenge function, which estimates the current player´s 

level and changes on the action selection mechanism for fighting games. The second 

work, presents rules that can be applied for each opponent type of the game.  

 This paper proposes the creation of a novel architecture using adaptive intelligent 

agents in a game, with dynamic parameters configuration based on the M5P algorithm. 

 AI-based storytelling is the mechanisms for automatic story generation, which 

can be based on autonomous artificial actors’ or on explicit plot representations 

[Cavazza et al 2002]. In the first the story diversity emerges from dynamic interaction 

between characters. 

 Although we present in this paper a novel adaptive game balancing, we also 

discuss the possibility of the usage of the technique for a narrative mediation approach in 

order to achieve more freedom and coherence for the plot generation guidelines, as 

presented in [Riedl 2003]. 

 Social AI in games study is important because in a reasonably deep virtual world, 

there are always ”boring” roles, that typical players are not going to feel pleasure to 

control, such as quest-givers, merchants, henchmen and thugs [Witze el al 2002]. A 

detailed study about life simulation and interaction can be found in [Pallay 2009]. The 

virtual world chosen for this study was Second Life [L.Lab 2011]. 

 In [Goertzel et al 2008] the authors proposed a general approach for teaching 

behaviors to AI-controlled artificial animals embodied in Second Life [L.Lab 2011] using 

imitative-reinforcement-corrective learning. It is shown the possibility of teaching an 

agent (animal) to generate new behaviors with gestures. 

 We proposed use machine learn techniques for a social environment instead for 

just one autonomous agent. 

3. Advantages of M5P Learning 

M5P [Quinlan 1992] is a reconstruction of Quinlan's M5 algorithm for inducing trees of 

regression models. M5P combines a conventional decision tree with the possibility of 

linear regression functions at the nodes. 



 In previous work [Machado et al 2010], we experimentally demonstrate the 

advantages of using that algorithm (M5P) over decision tree learner (C4.5) and 

probabilistic learn method (Nayve Bayes). This behavior is due to its numerical 

classification, which guarantees the least loss of information (so accurately) for the next 

generations (stages). While its competitors just map the set of attribute values to a 

categorical target value. 

 When we build an architecture so that the M5P algorithm stays responsible to on-

line generate the evaluation function, we create an agent capable of adapting itself to 

dynamic and inaccessible ambient. In this case, this possible architecture takes advantage 

in comparison with traditional methods like the genetic algorithm, considering that 

although the latter does not require knowledge derived from the problem, it requires a 

pre-defined evaluation method of the result [Goldberg 1989]. 

 According to [Etemad-Shahidi & Mahjoobi 2009] and [Bhattacharya & 

Solomatine 2005], neural networks (NNs) are not as transparent as semi-empirical 

regression-based models. For this reason, the main advantage of model trees is that, 

compared to NNs, they represent understandable rules. In addition, NNs approach needs 

to find network parameters such as number of hidden layers and neurons by trial and 

error, which is time consuming.  

 In [Bhattacharya & Solomatine 2005] the predictive accuracy of the M5P model 

was observed to be very high and with similar results than the NN model built with the 

same data. 

4. Development Framework 

4.1. Approach 

Since the environment where the character is inserted is complex (inaccessible, 

stochastic, sequential and dynamic), this work discusses the intelligent agent architecture 

with individual learning. This not only happens in situations where each agent pursues its 

own learning objectives, but also when it’s learning can be affected by other agents. 

 Altogether these agents form a coordinated multi-agent system [Malone & 

Crowston 2004], where the coordination between the agents are defined by the 

dependency relations of shared resources. A multi-agent system is composed by two or 

more agents, in society form, with potential for self-sufficiency and emergency behavior. 

4.2. System Architecture Abstraction 

M5P-Reinforcement Learn Architecture (Figure 1) uses the M5P algorithm, which is 

capable of generating rules dynamically, with reinforcement learning, to update the 

database instances. Therefore this architecture has the characteristics of evolutionary 

classifier systems [Booker, Goldberg and Holland 1989] that are designed to absorb new 

information and devise continuously competing sets of hypotheses (expressed as rules) 

without disturbing already significantly capabilities acquired. Its steps are: 

1. Test of random cases at the environment: as happens in an on-line learning 

system, the agent starts with no previous knowledge, so at the risk of making 

mistakes. It explores the environment several times, with its attributes and/or actions 



defined in a varied form. The interaction mechanisms with the environment and the 

other agents are sensors and actuators. 

2. Incorporation to the instances base: in this step each case previously lived is 

added to the instances base, which functions as a "memory" of the agent that stores 

its experiences with their results. These results serve as reward of the architecture, 

characteristic of the reinforcement learning. 

3. Induction of learning rule: using the M5P algorithm, the trees and rules are 

induced from the base of instances. 

4. Generation of candidate instances, classification and selection of the best: this 

is a module diversifier so that the generated solution does not get stuck in local 

optima. Uses the elitist criterion to define the best solution of a new set randomly 

generated and ranked (classified) by the learning rule. 

5. Test of this case in the environment: this new generated instance is released in 

the environment for testing and evaluation. At this moment, the agent, with the 

same interaction mechanisms, explores the environment creating a new set of 

experiences for a later restart of the evolution system process. 

 

Figure 1 - M5P-Reinforcement Learn Architecture 

 Although this work evaluates a multi-agent system, this architecture specifies the 

learning process of only one agent. In the next session, this architecture is redesigned, 

applied and evaluated in a multi-agent system. 

5. Case Study 

5.1. Virtual environment plot 

The developed application, called “New World” (Figure 2), created for testing purposes 

of M5P-Reinforcement Architecture, fits in the context of life simulation. Its 3D 

environment reconstructs aspects of a real city, with a resting place and options of work 



and leisure. Each NPC is considered foreigner, initially. As such, it must 

experience/explore the city to be able to define the routine that best suits it later. 

 

Figure 2 – “New World”, the life simulation experiment. 

 The agents have two types of intelligent behavior: simple reactive and with 

learning aspects. The first refers to its instincts, such as moving, mapping a route 

between origin and destination, avoiding obstacles, stopping to chat when it meets with 

another agent (with no exchange of information). The second relates to decide, based on 

experience, which is the best routine for its day. 

 The options the city offers to them, here called “waypoints”, may be one of the 

types: work (with payment), leisure (that, although has financial costs, gives satisfaction) 

or inn/hotel (to spend the night with no expenses and no satisfaction). A routine consists 

of the waypoints that the agent decided to visit during the working time of the day. 

 The day has 24 hours. Around 23:00 the agents must go rest until 7:00. So they 

have an average of 16 working hours to assemble an agenda. Thus, given the need for 

money (which can be obtained at the waypoints that offer work) to achieve satisfaction 

(at the waypoints that provide entertainment), the NPC needs to explore the environment 

to learn how to optimize its routine during the day. 

 Among the complications of this virtual environment, in which the programmer 

or a player’s character can influence, we can cite: 

 Assuming that the agent is employed, if another company discloses the 

increased value of the base salary, the agent can end by pleading for this job. 

 Assuming that a new leisure option appears in the city, the agent may want 

to experience. 

 In a particular route can be placed a “thief”, in this case its diary routine may 

be compromised, so the agent will need to define a new one. 

5.2. Developed application 

The application New World was developed on the M5P-Reinforcement Architecture, the 

suggested technology in [Machado et al 2010] and the exchange of information made 

through threads for the multi-agent system. The experiments in this environment were 

realized through alterations in the waypoints parameters. 

 As [Machado et al 2010], to develop an intelligent agent architecture with 

learning applied to the generation of new strategies for a game, it was used a framework 



integrating Unity 3D (game engine), Microsoft Visual Studio (server development IDE), 

C#, Weka and IKVM. 

 Despite all the advantages of using Mono, the C# compiler version included in 

the Unity3D package, it had incompatibilities with the Weka DLL interpreted by IKVM 

in the experiments we ran. More specifically, the problem was related to the garbage 

collector. To circumvent this problem, we opted for integrating Unity3D with a server 

module developed using Visual Studio and making the connections through sockets. 

 This client-server system can be seen as implementing a kind of reinforcement 

learning strategy because it generates an output that has never been presented to it, 

which is rewarded with a score (which represents the knowledge generated by the 

classifiers). 

 A multithreading system was developed with a communication protocol between 

the client and the server to guarantee the generation of multiple agents in the 

environment.  

5.3. Definition of the Instances Base 

For the proposed application, the instance base consists of the waypoints that the agent 

can visit. It is defined dynamically and its attributes are numerical as specified in the M5P 

algorithm. They are named as follows: 

             @relation RotinaAgente        (1) 

@attribute wp1 numeric 

@attribute wp2 numeric 

… 

@attribute wpN numeric 

           @attribute satisfaction numeric 

 In this first version, the implemented waypoints are (Table 1):  

Table 1. Waypoints and its characteristics 

Attr. Waypoint Salary Cost Satisfaction Time 

wp1 Office 8 0 0 5 

wp2 Police station 5 0 0 4 

wp3 Hospital 3 0 0 3 

wp4 Industry 2 0 0 2 

wp5 Pizza Store 0 4 5 4 

wp6 Boite 0 3 3 3 

wp7 Circus 0 2 2 2 

wp8 Square 0 0 1 3 

 The value of the salary represents the remuneration per day that the waypoint 

provides. In this first version, the money does not accumulate from one day to another. 

The cost is the value that the waypoint requires for the agent to use it. The satisfaction is 

the classifier attribute of the system. It is the sum of the accumulated values of 

satisfaction on a day that defines whether a routine is good or not. The time represents 

the hours that each waypoint takes to be used by the agent. Like said before, the sum of 

the times cannot be higher than16. Analyzing two simple instances we have [Table 2]: 



Table 2. Examples of instances 

wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 satisfaction 

2 0 0 0 0 1 1 0 5 

0 1 0 0 1 0 0 2 7 

 Where in the first case the agent worked two shifts at the Office, then went to the 

boite, and finally to the circus. He raised a total of 16 and spent 5. In the second case it 

worked a shift at the Police station, went to the pizzeria and spent the rest of the time in 

the square, having a total compensation of 5 and a total expense of 4. The better of these 

two instances was the second one, due to its satisfaction value. 

 If the agent does not have enough money to pay for the leisure waypoint that is in 

its instance, it will be standing in the front of the waypoint until its end time. The agent 

will not receive satisfaction. 

 If the agent decides to go to a waypoint that gives remuneration and the same is 

closed, destroyed or out of work, the agent will be standing in front of the waypoint until 

its end of time. The agent will not receive remuneration. 

5.4. System Architecture 

To avoid the elaboration of more complex schemes, we decided to join, in an activity 

diagram, the server and the client modules to illustrate the applied architecture (as in 

Figure 3). 

 The client initializes after the server, instantiates a predetermined number of 

agents and warns the latter. The server, in turn, creates a thread for each agent. Each 

process created uses the learning module with the M5P algorithm. As described in 

[Machado et al 2010], in this moment the Weka’s DLL starts to be interpreted by 

IKVM. 

 The client, in turn, starts the simulation. Each agent thread has the client-server 

communication protocol. As can be seen in the Agent Thread Module (Figure 3), at this 

moment the M5P-Reinforcement Learn is implemented.  

 Considering the agent in an individual manner we have it beginning by generating 

an instance (set of waypoints that forms a routine) randomly. After, it leaves the hostel 

and visits the waypoints until runs out of valid period of the day. We consider as trial 

period, this 10 initial days constant that the agents will use to collect information from 

the environment.  Once the visits are over, the routine information and the satisfaction 

gained each day are sent for the server that induces the tree and linear equations. Then 

generates a set of 40 valid instances (which sum of hours of their times are less or equal 

to 16), rank them through the learning rule, elects the better and sends to the client. 

 This ranking is done by the comparison of the attributes classified by the 

satisfaction field of the instances base. As can be seen, best instance definition is not 

based on simple summation of the satisfaction of each waypoint, at the moment. This fact 

is justified since not necessarily an instance with only entertainment is good, since the 

agent must work to have money to spend on them. Hence the necessity of learning rule. 



 

Figure 3 - Example of an application of the M5P-Reinforcement Learn Architecture to a 

simulation of artificial life. The states represented by blue are executed by the Server 

and the states in pink are executed by the client (virtual environment). 

 The simulation, on the client side, restarts from there. If the number of agents and 

the characteristics of the waypoints do not change, every new day the learned instance 

tends to be similar to the previous. Otherwise changes may occur. The random 

component of the stage of diversification of the algorithm ensures that, even if the agent 

has a belief that a routine is good, perchance it might know another. 

 Another important feature of the system is the dynamic definition of the attributes 

of the instances base, which ensures that the agent can receive new information about 

waypoints that were not programmed by the developer. 

5.5. Experiments and preliminary results 

We realized two batteries of experiments, one to evaluate the evolution of the characters 

and another to verify their adaptation to the environment. 

 The first set of experiments was realized with 4 individuals during 20 days. In the 

first 9, they gathered data and in the following they defined their routine based on 

experience to optimize their satisfaction (the higher the better satisfaction). This 

experiment was repeated 10 times and the average of satisfaction per individual can be 

seen in the Figure 4. 



 

Figure 4: Results of the satisfaction increase based on the learning period 

 As from the 10th day, satisfaction grew and stabilized close to the value 5, it was 

shown that the agents are capable to perceive the environment and optimize their results. 

 To test the adaptation, we compromised the environment right after the agent’s 

learning. Since the 10th day, each agent started to use its learning and since the 15th day 

we raised the salary of the office, reduced the salary of the industry and took the entire 

satisfaction of the boite. In this experiment, the instances base for learning was tested in 

two different ways: with no limit of records and with limit (containing only the 10 and 5 

last days). It is observed that 10 tests were performed for each of the three forms 

described. Results can be seen in the Figure 5: 

 

Figure 5: Agent adaption with three experimental bases and different information values. 

 In this experiment, although since day 15 the three configurations had a drastic 

and expected income fall, what really matters is the evolution from that day on. When we 

store the good and bad cases and then completely change the values of the classifiers 

attributes, our instances base passes through a latency of learning that can compromise 

next results. This is what happened in the configuration without limit, which until the 

30th day failed to achieve the performance demonstrated at its peak period (days 10 to 

14). However, if we have a small instance base we will not have a rule ready to handle all 

cases, and although a drastic change can be quickly bypassed, its result does not have 

constancy, it is what happens with the base with the last 5 instances. The best case of 

adaptation has been generated in the intermediate case, where with 10 instances the 

individual can create a consistent learning rule and at the same time short enough to fit 

the new cases without much learning latency. 



 From these experiments we can conclude that when we use the M5P-

Reinforcement Learn Architecture and we configure the learning with a regular tax of 

experience storage we can ensure satisfactory evolution and adaptation of the agents. 

 Greedy methods such as stabilize the behavior keeping the best rule were not 

evaluated. 

6. Emergent Behaviors Generated 

As in [Machado et al 2010], through the resource management system for generating 

strategies present in the application it was able to adapt to the enemy and environment 

using emergent behaviors, in the experiments done in the New World environment, the 

agents have adapted, in their own way, to the situation. As can be seen in Table 3 in a 

same test and environment, and with the same configuration of waypoints, different 

agents were able to generate completely different efficient rules. 

Table 3. Rules Generated by M5P Algorithm of Three Individuals in the Day 20 

Pizza_Store <= 0.5 : LM1 (15/26.974%) 

Pizza_Store >  0.5 : LM2 (14/51.011%) 

LM num: 1 

satisfaction =   0.6785 * office    +   1.759 * Pizza_Store 

                 + 0.9362 * circus     +   1.3564 * park    +   0.3925 

LM num: 2 

satisfaction =   1.2996 * office  +   1.8197 * Pizza_Store 

                   + 0.8736 * boite   +   2.565 

LM num: 1 

satisfaction =   1.4356 * police  +   0.8362 * Pizza_Store 

              - 1.187 * boite    +   1.3149 * circus    +   2.0125 

LM num: 1 

satisfaction =    -0.6679 * industry +  2.9391 * Pizza_Store +   2.5821 

 Reviewing the rules of each individual (Table 3) we realize that the first, if 

doesn’t have much chance to go to the pizzeria, prefers to work in the office and have 

fun at the pizzeria, at the circus and/or at the square, but if it has the chance to go to the 

pizzeria, prefers more work in the office and also have fun at the pizzeria and/or at the 

boite. The second decided much more for the work at the police station, and 

entertainment at the pizzeria and circus, this avoids the most the club. The third is most 

simple: works anywhere but avoids the industry and tends to have fun ate the pizzeria. 

7. Architecture Applications 

Considering a multi-agents environment with learning utilizing a M5P Reinforcement 

Architecture we can highlight the applications: 

 Using criteria such as the restriction on learning mediated by a challenge function, 

each intelligent agent can learn just enough to ensure good gameplay regarding 

the balancing of the difficulty in a game of strategy. 

 The intelligent collective behavior generated by the interaction of the agents with 

learning can provide an environment even more diversified for character-based 

interactive historytelling. For such it would only be necessary the incorporation 

of a module to ensure consistency of the storyline. 



 In applications in the style of life simulation, the use of learning ensures that the 

agents are ready to adapt to new situations for which they were not previously 

programed. So responding in a human-like manner to the global interactions. 

8. Conclusions 

In this work, the M5P Reinforcement Architecture was developed, applied to intelligent 

agents with learning immersed in complex environments in the field of electronic games 

and simulation. Its implementation and experiments were conducted in a multi-agent 

environment called “New World”, whose technology was first defined in [Machado et al 

2010]. 

 This architecture was suggested for any electronic game genre with multiple 

agents, especially for character-based interactive storytelling, life simulation and game 

difficulty dynamic balancing. 

 The M5P Reinforcement Architecture proposes the on-line training of the 

individual in the environment, feeding the numerical classifier with the system reward and 

inducing a tree with linear equations easy to interpret, solving many of the challenges 

cited by [Manslow 2002].   

 The experiments demonstrated that the numerical M5P classifier, present in this 

architecture, offers better performance for a partial instance base (not complete). Which 

guarantees a satisfactory evolution and a better adaptation of the agents (questioning 

presented in [Rollings and Ernest 2006]). 

 In our experiments all the agents had the same loading parameters. A future 

project would be to evaluate the behavior of this multi-agent system with agents with 

different profiles. For example, an individual with less willingness to work, other with 

higher yield (works better or moves faster), another with a slower rate of adaptation 

(which can take more time to identify a good schedule). Evaluation of the system 

performance in an overgrowth in the generation of such individuals is also considered 

future work. 
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