
A study on the selection of local training sets for hierarchical
classification tasks

Jean Metz1, Alex A. Freitas2, Maria Carolina Monard1, Everton Alvares Cherman1

1Institute of Mathematics and Computer Science, University of São Paulo (USP)
Av. Trabalhador São Carlense 400, Centro, CEP: 13566-590, São Carlos – SP – Brasil

2School of Computing, University of Kent
CT2 7NF, Canterbury – Kent – U.K.

{metzz,mcmonard,echerman}@icmc.usp.br, A.A.Freitas@Kent.ac.uk

Abstract. In hierarchical classification tasks using the local approach, an im-
portant decision concerns the selection of training examples to build the local
classifiers. To this end, several policies, which take into account the class tax-
onomy information, have been proposed. However, a study of a comprehensive
comparison concerning the performance of these policies is still lacking. This
paper presents a comprehensive empirical evaluation of eight different policies
using 13 datasets. The results have shown that three of these policies outper-
formed the other five policies with statistically significant differences.

1. Introduction
Hierarchical classification is the task of categorizing examples into a set of classes consis-
tent with a predefined taxonomy organized in a hierarchical fashion. In other words, the
classes in the taxonomy relate to each other by means of generalization and specialization
relationships. Nowadays, a growing number of applications are specially suited for the
task of classifying objects into hierarchical structures [Silla Jr and Freitas 2011].

Hierarchical classification methods can be categorized according to several dif-
ferent criteria, such as data structure and the use of hierarchical information during the
training and prediction phase. Regarding the data structure, the class hierarchy is usually
represented by a tree or a direct acyclic graph (DAG) [Vens et al. 2008], where the main
difference is related to the number of parent classes per node. When a tree structure is
used, each node has only one parent node, with the obvious exception of the root node
that has no parent. On the other hand, whenever DAG is used, each non-root node is al-
lowed to have more than one parent. A direct consequence of this fact is the possibility of
reaching a certain node going through various paths in the class hierarchy. This increases
the complexity of the methods that use the DAG data structure. This paper focuses on
tree-based class hierarchy.

Considering the use of hierarchical information, the methods can be divided into
two types [Kiritchenko et al. 2006]: global (or big-bang) and local (or top-down level-
based). A learning approach is called global if it builds only one classifier to discrimi-
nate all categories in a hierarchy, somehow respecting the relationships between classes
in different levels of the taxonomy, and it is called local if it builds separate classifiers
associated to some of the nodes in the hierarchy, called local classifiers. During the clas-
sification stage, a local approach usually proceeds in a top-down fashion, also known as

Pachinko Machine strategy, first predicting the most relevant category(ies) of the top level
and then recursively predicting its child classes. This top-down prediction strategy stops
when a stop criterion is met or a leaf node is reached [Sun et al. 2003].

Furthermore, according to [Freitas and de Carvalho 2007], there are two distinct
broad types of prediction strategy for hierarchical classification methods: Mandatory leaf
node prediction (MLN), where the most specific class assigned to an instance must be a
leaf class, and Non-mandatory leaf node prediction (NMLN), where the most specific class
assigned to an instance may be either an internal or a leaf class in the class taxonomy.

A popular strategy for hierarchical classification using local methods builds a lo-
cal binary classifier for each node except the root. We call this method Hierarchical
Binary Relevance (HBR) in accordance with the Binary Relevance method for multilabel
classification introduced in [Tsoumakas et al. 2010]. It is worth noting that a hierarchical
classification task is in essence a multilabel task, since each example is possibly associ-
ated with more than one class at a time, one for each level of the taxonomy. However,
in the hierarchical context, the multiple labels assigned to each instance obey a specific
rule respecting the hierarchical organization of classes. In this paper, we focus on this
local HBR approach, which has the advantage of having a standard flat classification algo-
rithm which can be used to produce the local classifiers, avoiding the need for designing
a complex global hierarchical classification algorithm.

In the HBR approach, the main question is how to select the local training sets
used by the learning algorithm running at each node of the class hierarchy. Using a
straightforward strategy, for each class in the taxonomy, the examples of the entire training
set are labeled as positive if the instance is annotated with the respective class and negative
otherwise, resulting in a new binary training set of examples which is used to build the
local classifier. This naive approach solves the problem of selecting local training sets, but
it does not consider the hierarchical information in the class taxonomy and, consequently,
may result in suboptimal training sets.

Nonetheless, there are several other methods that can be applied to refine this se-
lection process, considering local information and paying attention to the topology of the
classification scheme. Although these methods have been proposed in the literature, to the
best of our knowledge, there is no work presenting a comprehensive empirical compari-
son of training set selection methods across several different application domains. In this
work, we experimentally analyzed the results obtained by 8 different training set selec-
tion policies in 13 hierarchical datasets. Six of these policies are based on mathematics set
operations and 2 are based on distance between the examples. Results show that the set
operation based policies are more efficient and effective than the distance based policies.
Moreover, three of the set operation based policies present better results.

The remainder of this work is organized as follows: Section 2 presents funda-
mental concepts of the hierarchical classification tasks, as well as the selection of local
training set policies and the evaluation measures. Moreover, Section 2 also discusses re-
lated work. The experimental scenarios and analyses are presented in Section 3. Finally,
in Section 4 the conclusions and the future work directions are given.

2. Hierarchical classification

As stated before, a tree data structure or a DAG can be used to represent the class hierar-
chy. In this work, we use methods based on the tree data structure and assume the exis-
tence of the root class, which is the ancestor of all the other categories in the hierarchy.
Thus, the class taxonomy is defined as a partially order finite set τ = (L,≺) that enumer-
ates all class concepts (labels) in the application domain. L = {y1, y2, ..., yq} represents
the finite set of class labels and the operator ≺ represents the is-a relationship among the
labels in L. Thus, whenever an instance belongs to a class yj it also belongs to all ancestor
nodes of that class (true path rule). In this way, the assigned labels would be clearly con-
sistent with the class taxonomy structure. Following [Fagni and Sebastiani 2007], other
operators to describe hierarchical relationships are defined in Table 1.

Table 1. Hierarchical relationships.
Operator Description
↑ yj The parent of class yj
↓ yj The set of child classes of the class yj
⇑ yj The set of ancestor classes of the class yj
⇓ yj The set of descendant classes of the class yj
↔ yj The set of sibling classes of the class yj

The HBR is a popular local approach for hierarchical classification. In order to
build each local classifier in the HBR method, it is necessary to select the local training
set related to each class yj , namely Tryj . Therefore, HBR builds |L| − 1 local binary
classifiers considering the respective training set, i.e., one classifier for each class yj in
the taxonomy except the root node — Equation (1).

HBR = {Cyj(x, yj)→ ŷj ∈ {0, 1}| yj ∈ (L,≺) ∧ yj 6= root} (1)

Each of these local binary classifiers is able to predict whether a given example is
positive (ŷj = 1) or negative (ŷj = 0) for the respective class. Using a top-down predic-
tion strategy, whenever an example is predicted as positive, it is recursively presented to
the local child classifiers to perform the classification. This process continues until a stop
criterion is met or a leaf node is reached. The final hierarchical classification for a given
example is the aggregation of the labels positively predicted by all the independent binary
classifiers that respect the true path rule. It is worth noting that this method is naturally
multilabel in the sense that each example may be classified in different branches of the
class taxonomy. This aspect may be avoided by only assigning to the given example the
most likely class at each level, forcing only the children of the assigned class to classify
the example at the next level. In this work, we apply this strategy to constrain each exam-
ple to be assigned just one class at each level of the class hierarchy. Next we present the
local training set selection policies studied in this paper.

2.1. Local training set selection policies

Supervised learning is a two-stage process where known examples (labeled examples) of
a domain, named global training set Tr, are used by the learning algorithm to build (train)
a classifier, which is used during the second stage to make predictions of examples whose
classifications are unknown (unlabeled examples).

During the HBR training stage, for each class yj in the taxonomy a local classifier
Cyj is built by a learning algorithm using the positive set of examples Tr+yj (those that

represent the node yj) and the negative set of examples Tr−yj (those that represent instances
outside the node yj). Several policies have been proposed to select these sets of examples
from Tr in order to build each local classifier Cyj , described in Table 2.

Six of theses policies are defined based on mathematical operations over sets of
examples considering the class taxonomy and the most specific class assigned to each
example in Tr. Furthermore, the operator ∗, which is applied to a set of class labels,
represents all examples annotated with one of the specified labels as its most specific
class. The other two policies (B-Global and B-Local) are based on the distance between
examples.

Table 2. Policies for local training sets selection.
Policy Tr+yj Tr−yj Reference
All (L-Inclusive) ∗(yj∪ ⇓ yj) Tr − Tr+yj [Mladenić and Grobelnik 1998]
Hierarchical training set (S-Inclusive §) ∗(yj∪ ⇓ yj) ∗(↔ yj∪ ⇓ (↔ yj)) [Ceci and Malerba 2003]
Proper training set (S-Exclusive §) ∗(yj) ∗(↔ yj) [Ceci and Malerba 2003]
Inclusive ∗(yj∪ ⇓ yj) Tr − (Tr+yj ∪ ∗(⇑ yj)) [Eisner et al. 2005]
Exclusive ∗(yj) Tr − Tr+yj [Eisner et al. 2005]
L-Exclusive ∗(yj) Tr − ∗(yj∪ ⇓ yj) [Eisner et al. 2005]

B-Global ∗(yj∪ ⇓ yj)
η

argmin
E− /∈Tr+yj

σ(ζyj , E
−) [Fagni and Sebastiani 2007]

B-Local ∗(yj∪ ⇓ yj)
η

argmin
E− /∈Tr+yj

∑
E+∈χη

E−

σ(E+, E−) [Fagni and Sebastiani 2007]

χk
E− =

k
argmin

E+∈Tr+(yj)

σ(E−, E+)

§ The S in these policies means siblings.

The rationale behind the All policy [Mladenić and Grobelnik 1998] is the use of
hierarchical information to select the local training set Tryj . Therefore, examples explic-
itly annotated with yj as well as any of the descendant classes of yj are included in Tr+yj ,
since by definition ∀yk ∈ (⇓ yj), yk ≺ yj . All examples not included in the positive set
are used as negative training examples. In other words, Tr−yj = Tr − Tr+yj . This policy
was later used in [Eisner et al. 2005] and was called Less-Inclusive. From now on, the
L-Inclusive term is adopted to refer to this policy.

The concept of exclusive and inclusive classifiers, presented
in [Eisner et al. 2005], can be used to clarify the definitions of some policies. Ac-
cording to the authors, a hierarchical classifier is considered exclusive if for a given
instance which is to be assigned to a class yj , only the local classifier Cyj predicts
positive, while every other local classifier in the hierarchy predicts negative, including
the predecessor classifiers of Cyj . In other words, the Cyj classifier excludes (negates)
every instance except the ones explicitly labeled with class yj , i.e., excludes all examples
in the set ¬(∗yj). On the other hand, the classifier is inclusive whenever an example
belongs to ∗yj and the classifier Cyj , as well as all ancestor classifiers predict positive for
this example. Thus, it considers (includes) the prediction of the ancestor classifiers and
not only Cyj .

All the 6 set operator based policies work in a similar way, first selecting the
examples in Tr+yj based on the most specific class (∗yj), and applying afterwards a
mathematical set operation over Tr and Tr+yj to define the Tr−yj set — Table 2. The
main difference among the 6 policies lies on the operation used and whether it is ap-
plied over all examples not in Tr+yj or a sub-set of it. Figure 1 illustrates the use
of these policies to select the local training set of class B, namely TrB, where L =

{G,W,B, F,NF, V, Z,NW,C,H, T}. The gray square indicates the target class for
which the training set is selected. The other class nodes participate with different roles
for each policy, determining whether an example is positive (⊕), negative () or ignored
(nodes with dotted lines).

G

W

B

F NF

V

NW

C H T

−

−

+

− −

−

−

− − −

(a) Exclusive

G

W

B

F NF

V

NW

C H T

−

−

+ −

−

− − −

(b) L-Exclusive

G

W

B

F NF

V

NW

C H T

−

−

+

+ +

−

−

− − −

(c) L-Inclusive

G

W

B

F NF

V

NW

C H T
+

+ +

−

−

− − −

(d) Inclusive

G

W

B

F NF

V

NW

C H T
+

+ +

−

(e) S-Inclusive

G

W

B

F NF

V

NW

C H T
+ −

(f) S-Exclusive

Figure 1. Illustration of the 6 set operation based policies.

According to the S-Inclusive policy, Tr−yj is chosen among the training examples
that are not positive for Cyj and may be assumed to be mostly correlated to yj , i.e., it
consists of all training examples labeled with classes that are siblings of the positive class
or descendants of those siblings. The basic idea is that Tr−yj includes the “quasi-positive”
examples of yj [Schapire et al. 1998]. In other words, the examples not in Tr+yj that are
closest to the boundary between the positive and the negative region of yj , and are thus
the most informative negative examples that can be used to build the local classifier. This
is beneficial also from the standpoint of efficiency, since fewer training examples are
involved. A variant of the S-Inclusive policy is called Siblings-Exclusive (S-Exclusive),
which restricts the selection of examples to the ones explicitly labeled with class yj and
their siblings, ignoring descendant classes.

The distance based policies (B-Global and B-Local) [Fagni and Sebastiani 2007]
also make use of the “quasi-positive” notion, more precisely, the “query-zoning” selection
strategy introduced in [Singhal et al. 1997]. In the vector space model, a query zone can
be envisioned as a volume of the vector space around a query object. In the context of
classification, a query zone for a new example can be simulated by considering a set of
training examples that have some similarity to the new example. Moreover, this concept
can be interpreted as a boundary region on the input space between positive and non-
positive examples. Therefore, it can be used to select the non-positive examples that
lie on the query-zone of the Tr+yj examples. The basic idea is that more informative
examples that lie on the borderline between positive and negative classes might increase
the classifier’s prediction power with a thinner adjustment on the hyperplanes between
classes.

In both distance based policies, the Tr+yj examples are defined as the set of exam-
ples with the most specific class label in the set {yj ∪(⇓ yj)}, i.e., the examples explicitly
labeled with one of the classes in the sub-tree rooted at yj . The Tr−yj examples are selected

from the non-positive example set, depending on the policy. To this end, the B-Global pol-
icy finds the centroid of Tr+yj and calculates the distances between the centroid and each
non-positive example. After that, it selects the η closest non-positive examples and in-
cludes them in Tr−yj . The B-Local policy uses a similar approach, but tries to identify the
“quasi-positive” examples within a more complex boundary region. In order to find this
boundary, B-Local uses not only one centroid but a small subset of k positive examples
to identify the closest non-positive examples while considering the overall shape of the
positive example space. Putting it in a different perspective, the B-Local policy calculates
for each non-positive example the sum of the distances to the k closest positive examples,
and selects the η non-positive examples that minimizes the calculated distance.

Although some papers report the impact of these policies on the prediction perfor-
mance of the HBR method, summarized in Table 3, to the best of our knowledge there is
no study showing conclusive experimental results comparing all these policies on differ-
ent domains and/or several datasets. Note that each of the projects mentioned in Table 3
carried out experiments with at most 4 training set selection policies and 2 datasets, whilst
in this paper we perform experiments with 8 policies and 13 datasets.

Table 3. Policies considered in related work (N better, and H worse).
Reference Policy

Exclusive L-Exclusive L-Inclusive Inclusive S-Inclusive S-Exclusive B-Global B-Local
[Ceci and Malerba 2003] N H

[Eisner et al. 2005] H H N N
[Fagni and Sebastiani 2007] N N H H

2.2. Hierarchical classifier evaluation

Conventional flat classification measures are not suitable for hierarchical classification
tasks, since they cannot handle different types of misclassification errors present in the
hierarchical scenario. Intuitively, a sibling or a parent node misclassification is less harm-
ful then a more distant node misclassification. For that reason, specialized measures con-
sistent with conventional non-hierarchical measures, as well as with the class taxonomy,
allowing for less severe misclassification errors, such as generalization and specialization
errors, are needed. Furthermore, flat classification measures cannot handle a partially
correct prediction, which is essential to evaluate hierarchical classifiers performance. In
this work, the hierarchical version of the standard precision and recall measures proposed
in [Kiritchenko et al. 2006] and defined by Equations (2) and (3), respectively, are used,
where TP refers to true positive, FP to false positive and FN to false negative. It is
important to mention that these measures are actually a micro-average of the traditional
precision (Prj) and recall (Rej) obtained for each label in the hierarchy. The use of
averaged measures contributes to a more precise overall evaluation of the experimental
results, since local evaluation would produce as many precision and recall values as the
number of classes in the taxonomy, making the analysis impractical when there are too
many classes in the taxonomy.

Another measure commonly used combines the precision and recall values into
one single value called f-Measure — Equation (4). In our experimental evaluation, we
used β = 1, giving precision and recall equal weights.

hPrµ =

∑|L|
j=1 |TPyj |∑|L|

j=1(|TPyj |+ |FPyj |)
(2) hReµ =

∑|L|
j=1 |TPyj |∑|L|

j=1(|TPyj |+ |FNyj |)
(3)

Fβ =
(β2 + 1)× hPrµ × hReµ

β2 × hPrµ + hReµ
; whereβ ∈ [0,∞) (4)

3. Experimental Analysis
The main purpose of this experimental analysis is to assess the impact of the 8 different
policies to select the local training sets on the performance of the HBR method.

3.1. Datasets and Protocol

The experiments were carried out with 13 datasets from three different domains. Table 4
describes the datasets, where #E, #F and |L| are the number of examples, number of
features and number of class labels, respectively. Column |L| per level shows the number
of labels in each level of the class taxonomy, except for the root. The last column (Label
Cardin.), shows the average number of class labels per example.

Table 4. Datasets description.
Dataset Domain MLN #E #F |L| |L| per level Label Cardin.
HGlass Glass Identification yes 214 9 9 2, 5, 2 2.682
Fabien Music Genre Classification yes 4188 40 20 2, 9, 9 2.645
Marsyas Music Genre Classification yes 4188 30 20 2, 9, 9 2.645
ThomasRH Music Genre Classification yes 4188 60 20 2, 9, 9 2.645
ThomasSSD Music Genre Classification yes 4188 168 20 2, 9, 9 2.645
G-Pfam † Protein Function no 7053 75 192 12, 52, 79, 49 2.841
G-Prints † Protein Function no 5404 283 179 8, 46, 76, 49 3.009
G-Prosite † Protein Function no 6246 129 187 9, 50, 79, 49 2.951
G-Interpro † Protein Function no 7444 450 198 12, 54, 82, 50 2.823
E-Pfam ‡ Protein Function no 13987 708 333 6, 41, 96, 190 3.667
E-Prints ‡ Protein Function no 14025 382 351 6, 45, 92, 208 3.699
E-Prosite ‡ Protein Function no 14041 585 324 6, 42, 89, 187 3.690
E-Interpro ‡ Protein Function no 14027 1216 330 6, 41, 96, 187 3.660

†: Classes are functions of GPCR proteins; ‡: Classes are functions of enzymes

The HBR method with top-down prediction strategy implemented in HARPIA 1,
a framework for hierarchical classification, was used. This framework makes extensive
use of the Weka2 java library for machine learning. The experiments were carried out
using two different flat classification algorithms to build the local binary classifiers: J48,
a decision tree learning algorithm and Naı̈ve Bayes (NB), both implemented in the Weka
library [Witten et al. 2011].

The 8 selection policies were used to construct the training sets to build the local
classifiers. As the distance based policies are parametric, for a fair comparison with the
set operator based policies, we set up the number of negative examples (η) to be equal
to the number of positive examples. Moreover, 5 different values for k (1, 3, 5, 7 and 9)
were used with the B-Local policy.

All the reported results were obtained using 5×2-fold cross validation with paired
folds, i.e., the same training and testing partitions were used to assess the performance of

1http://labic.icmc.usp.br/software-and-application-tools
2http://www.cs.waikato.ac.nz/ml/weka

all different configurations of the HBR method. In order to analyze whether there is a
difference among the policies impact on the predictive accuracy, we run the Friedman’s
test3 with the null hypothesis that the performance of the algorithms using any of the
policies are comparable considering all the results. When the null hypothesis is rejected
by the Friedman’s test, at 95% of confidence level, we proceed with the Nemenyi’s post-
hoc test to detect which differences among the methods are significant. According to
this test, the performance of two methods is significantly different if the corresponding
average ranks differ by at least the critical difference (CD). The results and discussion are
presented next.

3.2. Evaluation

The evaluation considers (a) whether the degree of inclusion affects the overall perfor-
mance of the algorithm when using a set operation based policy; (b) analyzing the effect
of the k parameter for the B-Local policy; and (c) the overall comparison of all policies.

Figure 2 shows the results obtained with J48 as a base classifier using set opera-
tion based policies, where policies are indicated on the X-axis and the average of the F µ

1
4

values are shown on the Y-axis. For the sake of visualization, only 6 datasets are shown
in this figure, since the results for some datasets were similar. More specifically, there is
no significant difference using E-Pfam, E-Prints, E-Prosite and E-Interpro datasets. The
same happened for other pairs of datasets, such as G-Pfam and G-Prosite; G-Interpro and
G-Prints; Marsyas and ThomasSSD; and finally Fabien and ThomasRH. Due to space
restriction, as the results using NB as the base classifier follow the same pattern, the cor-
responding figure is omitted5.

Figure 2 clearly shows the tendency of improvement on the overall performance of
the HBR method using more inclusive policies, as for all cases the exclusive policies were
outperformed by the inclusive ones. In fact, when using exclusive policies with datasets
where all examples are annotated with only leaf classes, the local training sets selected to
build the the internal classifiers will be empty, resulting in very poor classifiers that reject
(predict negative) any new example. These “empty” classifiers have a strong influence
on the overall degradation of the HBR global performance. Even when the datasets have
examples explicitly annotated with internal classes, there may exist some classes with no
examples, also contributing to the degradation of the final model.

When the prediction type is set to MLN (Figure 2(a)), i.e., mandatory leaf node
prediction, even when examples are classified as negative by all the classifiers at a certain
level, they are inspected by all the immediate lower level classifiers in the branch where
the confidence on the negative prediction is lower (“less negative”), i.e., the classification
continues through the branch being mostly “positive”. This means the final classification
is incorrect with a high probability, or even random. On the other hand, if the prediction
type is NMLN, i.e., non-mandatory leaf node prediction, whenever an example is predicted
as negative by all classifiers at a certain level, it is not inspected by deeper classifiers.

As the first level local classifiers might be “empty” for all exclusive policies, they
would predict any presented examples as negative, resulting in cumulative errors and

3See [Demsar 2006] for a thorough discussion regarding statistical tests in machine learning research.
4F-Measure using β = 1 and the micro version of the precision (hPrµ) and recall (hReµ).
5All tabulated results can be found in http://www.icmc.usp.br/ metzz/archives/harpia/

Exclusive to Inclusive Trend − MLN − J48

F
1−

M
ic

ro

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E L−E S−E S−I L−I I

Hglass
Fabien
Marsyas
G−Pfam
G−Interpro
E−Pfam

(a)

Exclusive to Inclusive Trend − NMLN − J48

F
1−

M
ic

ro

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E L−E S−E S−I L−I I

Hglass
Fabien
Marsyas
G−Pfam
G−Interpro
E−Pfam

(b)
Figure 2. Set operator based policies. Exclusive (E), L-Exclusive (L-E), S-
Exclusive (S-E), S-Inclusive (S-I), L-Inclusive (L-I) and Inclusive (I).

degrading the HBR global performance. This explains Figure 2(b), where the use of the
policies Exclusive, L-Exclusive and S-Exclusive with the datasets Fabien and Marsyas
resulted in 0.00 F µ

1 . Similar results were obtained with G-Pfam, G-Interpro and E-Pfam
datasets, showing F µ

1 values close to zero. In contrast, the more inclusive policies, which
prevent the creation of classifiers with empty training sets, show better results.

As the exclusive policies performed clearly worse than the inclusive ones, from
now on we focus our analysis on the inclusive and distance based policies. Figure 3
shows the effect of the variation on the k parameter for the B-Local policy using the
NMLN prediction strategy, where the different k values are indicated on the X-axis and
the average of the F µ

1 values are shown on the Y-axis. It can be observed that, in most
cases, increasing the value of k results in smaller F µ

1 values. The only exception is for the
HGlass dataset. In some cases, the effect of increasing k shows slight degradation or even
no degradation at all, as for ThomasRH and ThomasSSD datasets in Figure 3(a). In other
cases, there is a considerable deterioration of F µ

1 , such as with G-Pfam and G-Prosite
datasets. Similar behavior was observed for the MLN prediction strategy. As the best F µ

1

values of the B-Local policy were obtained for k = 1, we proceed our analysis of the
B-Local policy only considering k = 1.

Best Local Policy − NMLN − J48

F
1−

M
ic

ro

●

● ●
●

●

●
●

● ●

●

0.
2

0.
4

0.
6

0.
8

1 3 5 7 9

●

●

Hglass
Fabien
Marsyas
Thomas−rh
Thomas−ssd
G−Pfam
G−Prints
G−prosite
G−Interpro
E−Pfam
E−Prints
E−prosite
E−Interpro

(a)

Best Local Policy − NMLN − NB

F
1−

M
ic

ro

●

● ● ●
●

●

●

●
●

●

0.
4

0.
6

0.
8

1 3 5 7 9

●

●

Hglass
Fabien
Marsyas
Thomas−rh
Thomas−ssd
G−Pfam
G−Prints
G−prosite
G−Interpro
E−Pfam
E−Prints
E−prosite
E−Interpro

(b)
Figure 3. The influence of the k parameter value on the B-Local policy.

The results for the inclusive and distance based policies are presented in Table 5,
which is divided into 4 quarters, each one corresponding to a combination of one base

classifier (J48 or NB) and one prediction type (MLN or NMLN). For each quarter, the aver-
age of the F µ

1 measure obtained by the HBR method using the different policies to generate
the local training sets is shown. The numbers in brackets correspond to the standard devi-
ation. Moreover, the last line (labeled as # wins) shows the number of datasets for which
the respective policy achieved the greatest F µ

1 value. For the sake of visualization, the
best values for each dataset in each quarter are shown in bold.

Table 5. Average Fµ
1 values using NB and J48 with MLN and NMLN prediction types.

J48
Dataset B-Local k − 1 B-Global S-Inclusive L-Inclusive Inclusive B-Local k − 1 B-Global S-Inclusive L-Inclusive Inclusive

MLN NMLN
HGlass 0.68(0.09) 0.68(0.07) 0.80(0.02) 0.79(0.02) 0.79(0.02) 0.68(0.09) 0.68(0.07) 0.80(0.03) 0.79(0.02) 0.79(0.02)
Fabien 0.47(0.03) 0.38(0.03) 0.57(0.01) 0.56(0.01) 0.56(0.01) 0.47(0.03) 0.37(0.03) 0.59(0.01) 0.59(0.01) 0.59(0.01)
Marsyas 0.53(0.02) 0.47(0.02) 0.66(0.01) 0.64(0.01) 0.64(0.01) 0.54(0.02) 0.47(0.02) 0.68(0.01) 0.68(0.01) 0.68(0.01)
ThomasRH 0.34(0.03) 0.30(0.03) 0.53(0.01) 0.52(0.01) 0.52(0.01) 0.33(0.03) 0.29(0.03) 0.55(0.01) 0.55(0.01) 0.55(0.01)
ThomasSSD 0.49(0.02) 0.42(0.03) 0.66(0.01) 0.65(0.01) 0.65(0.01) 0.49(0.02) 0.42(0.03) 0.68(0.01) 0.69(0.01) 0.69(0.01)
G-Pfam 0.44(0.04) 0.33(0.05) 0.58(0.01) 0.56(0.01) 0.56(0.01) 0.49(0.04) 0.38(0.05) 0.65(0.00) 0.63(0.01) 0.63(0.01)
G-Prints 0.59(0.05) 0.56(0.05) 0.73(0.01) 0.72(0.01) 0.72(0.01) 0.62(0.05) 0.58(0.04) 0.80(0.00) 0.81(0.01) 0.81(0.00)
G-Prosite 0.39(0.03) 0.22(0.05) 0.56(0.01) 0.54(0.01) 0.54(0.01) 0.42(0.02) 0.25(0.05) 0.64(0.01) 0.61(0.01) 0.61(0.00)
G-Interpro 0.60(0.07) 0.58(0.04) 0.74(0.01) 0.74(0.00) 0.74(0.00) 0.62(0.07) 0.60(0.04) 0.81(0.00) 0.81(0.00) 0.81(0.00)
E-Pfam 0.80(0.06) 0.57(0.10) 0.92(0.00) 0.92(0.00) 0.92(0.00) 0.84(0.06) 0.63(0.09) 0.94(0.00) 0.96(0.00) 0.95(0.00)
E-Prints 0.74(0.04) 0.51(0.03) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.78(0.04) 0.56(0.03) 0.92(0.00) 0.94(0.00) 0.93(0.00)
E-Prosite 0.82(0.06) 0.58(0.14) 0.93(0.00) 0.92(0.00) 0.93(0.00) 0.85(0.06) 0.63(0.14) 0.94(0.00) 0.96(0.00) 0.95(0.00)
E-Interpro 0.79(0.06) 0.72(0.03) 0.93(0.00) 0.92(0.00) 0.93(0.00) 0.83(0.05) 0.77(0.03) 0.95(0.00) 0.96(0.00) 0.96(0.00)
wins 0 0 13 3 5 0 0 7 10 7

NB
HGlass 0.62(0.08) 0.63(0.08) 0.68(0.04) 0.75(0.03) 0.75(0.03) 0.60(0.08) 0.61(0.07) 0.68(0.04) 0.75(0.03) 0.75(0.03)
Fabien 0.44(0.04) 0.37(0.01) 0.51(0.01) 0.52(0.01) 0.52(0.01) 0.44(0.04) 0.37(0.01) 0.51(0.00) 0.52(0.01) 0.52(0.01)
Marsyas 0.53(0.03) 0.48(0.01) 0.65(0.00) 0.65(0.00) 0.65(0.00) 0.52(0.03) 0.47(0.01) 0.66(0.00) 0.66(0.00) 0.66(0.00)
ThomasRH 0.35(0.01) 0.34(0.00) 0.51(0.00) 0.51(0.00) 0.51(0.00) 0.31(0.00) 0.29(0.01) 0.51(0.00) 0.51(0.00) 0.51(0.00)
ThomasSSD 0.45(0.01) 0.42(0.01) 0.60(0.01) 0.57(0.01) 0.57(0.01) 0.39(0.01) 0.40(0.01) 0.60(0.01) 0.57(0.01) 0.57(0.01)
G-Pfam 0.53(0.01) 0.46(0.01) 0.57(0.00) 0.57(0.00) 0.57(0.00) 0.54(0.01) 0.48(0.01) 0.64(0.00) 0.64(0.00) 0.64(0.00)
G-Prints 0.66(0.01) 0.63(0.01) 0.66(0.00) 0.66(0.00) 0.66(0.00) 0.68(0.01) 0.63(0.01) 0.72(0.01) 0.72(0.01) 0.72(0.01)
G-Prosite 0.50(0.01) 0.41(0.01) 0.55(0.01) 0.55(0.01) 0.55(0.01) 0.51(0.01) 0.42(0.01) 0.61(0.00) 0.61(0.00) 0.62(0.00)
G-Interpro 0.68(0.01) 0.67(0.01) 0.66(0.01) 0.66(0.01) 0.66(0.01) 0.70(0.01) 0.68(0.01) 0.72(0.00) 0.73(0.00) 0.73(0.00)
E-Pfam 0.68(0.03) 0.55(0.03) 0.80(0.00) 0.80(0.00) 0.81(0.00) 0.72(0.02) 0.59(0.03) 0.82(0.00) 0.79(0.01) 0.79(0.00)
E-Prints 0.70(0.02) 0.58(0.03) 0.83(0.00) 0.84(0.00) 0.84(0.00) 0.73(0.02) 0.61(0.03) 0.85(0.00) 0.84(0.00) 0.84(0.00)
E-Prosite 0.75(0.04) 0.65(0.02) 0.85(0.00) 0.85(0.00) 0.85(0.00) 0.77(0.04) 0.67(0.02) 0.87(0.00) 0.86(0.00) 0.86(0.00)
E-Interpro 0.77(0.02) 0.77(0.01) 0.80(0.00) 0.80(0.00) 0.80(0.00) 0.80(0.02) 0.81(0.02) 0.83(0.01) 0.81(0.00) 0.81(0.00)
wins 2 0 8 10 11 0 0 9 7 8

An interesting aspect to be evaluated is whether the MLN prediction is better than
the NMLN prediction. Considering the performance for each dataset, NMLN has outper-
formed MLN in more than 80% of the experiments, while for the other portion, both pre-
diction types performed equally. Summing up, NMLN would be a preferable prediction
type.

Regarding the policies and considering the number of times that the highest F µ
1

value was obtained (Table 5), it is easily observed that the S-Inclusive policy outperforms
the others, and that the set operation based policies outperform the distance based poli-
cies. These numbers, for the 52 experiments, are summarized in Table 6.

Table 6. Comparison of Policies.
B-Local k − 1 B-Global S-Inclusive L-Inclusive Inclusive

2 0 37 30 31

In order to analyze whether the difference among the policies impact on the HBR
performance, we run the Friedman’s hypothesis test with the null hypothesis that the dif-
ferent policies do not affect the final performance of the HBR method. As the hypothesis

was rejected, we run the post-hoc test Nemenyi, that shows significant differences be-
tween methods whenever their average ranks differ by at least the critical value (CD). The
results of the Nemenyi’s test can be represented in a simple diagram (Figure 4), where
the main line is the X-axis on which the average ranks of the methods are plotted (lower
average rank is better). The secondary lines beneath the main axis connect groups that are
not significantly different. Moreover, the critical difference (CD) is shown just above the
main line. These diagrams ensure the observations aforementioned, that the set opera-
tion based policies are better than the distance based policies. Notwithstanding, they also
show that there is no statistically significant difference among S-Inclusive, L-Inclusive
and Inclusive policies. Thus, a good criterion to choose one among these policies could
be the number of examples included in the negative local training set, since the smaller
the set the faster the training stage is. Taking this into account, S-Inclusive policy should
be chosen, since it always selects less examples to use in the local training sets than the
other two policies (see Figure 1).

CD

1 2 3 4 5

L-Inclusive
Inclusive

S-Inclusive

B-Global
B-Local-k1

(a) J48 base classifier.

CD

1 2 3 4 5

S-Inclusive
Inclusive

L-Inclusive

B-Global
B-Local-k1

(b) NB base classifier.
Figure 4. Visualization of the Nemenyi post-hoc test. Groups of methods that are
not significantly different (at p < 0.05) are connected.

4. Conclusions
This paper presented a discussion on 8 different policies to select local training sets for
the Hierarchical Binary Relevance method, a popular hierarchical classification method.
The policies were evaluated using two different base classifiers in 13 datasets from three
different domains. Results show that the inclusive set operation based policies are better
than the exclusive and the distance based ones. Moreover, hypothesis tests show that using
NB as the base classifier, all inclusive set operation policies are significantly better (at
p < 0.05) than the others. Using J48 as the base classifier, although the S-Inclusive policy
shows better results than the Exclusive and the distance based policies, the difference is
not statistically significantly better. Regarding L-Inclusive and Inclusive policies, both
were significantly better than distance based policies.

As future work, we intend to extend the experimental evaluation of the three best
policies, considering not only datasets from other domains but also a more detailed anal-
ysis, as well as a greater number of evaluation measures.

Acknowldgements: This research was supported by the Brazilian Research Coun-
cils FAPESP and CAPES. We would like to thank Mr. Carlos Silla Jr for providing the
datasets with protein descriptors used in this paper.

References
Ceci, M. and Malerba, D. (2003). Hierarchical classification of HTML documents

with WebClass II. In Proceedings of the 25th European conference on IR research,
ECIR’03, pages 57–72, Berlin, Heidelberg. Springer-Verlag.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30.

Eisner, R., Poulin, B., Szafron, D., Lu, P., and Greiner, R. (2005). Improving protein
function prediction using the hierarchical structure of the gene ontology. In In Proc.
IEEE CIBCB, pages 1–10.

Fagni, T. and Sebastiani, F. (2007). On the selection of negative examples for hierarchical
text categorization. In Proceedings of The 3rd Language Technology Conference, pages
24–28.

Freitas, A. and de Carvalho, A. C. (2007). A tutorial on hierarchical classification with
applications in bioinformatics. In Taniar, D., editor, Research and Trends in Data
Mining Technologies and Applications, chapter 7, pages 175–208. IGI Global.

Kiritchenko, S., Matwin, S., Nock, R., and Famili, A. (2006). Learning and evaluation in
the presence of class hierarchies: Application to text categorization. In Lamontagne, L.
and Marchand, M., editors, Advances in Artificial Intelligence, volume 4013 of Lecture
Notes in Computer Science, pages 395–406. Springer Berlin / Heidelberg.

Mladenić, D. and Grobelnik, M. (1998). Feature selection for classification based on text
hierarchy. In Text and the Web, Conference on Automated Learning and Discovery
CONALD-98, pages 1–6.

Schapire, R. E., Singer, Y., and Singhal, A. (1998). Boosting and Rocchio applied to text
filtering. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’98, pages 215–223, New
York, NY, USA. ACM.

Silla Jr, C. and Freitas, A. (2011). A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 1:1–42.

Singhal, A., Mitra, M., and Buckley, C. (1997). Learning routing queries in a query zone.
In Proceedings of the 20th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’97, pages 25–32, New York, NY,
USA. ACM.

Sun, A., Lim, E., and Ng, W. (2003). Performance measurement framework for hierar-
chical text classification. Journal of the American Society for Information Science and
Technology, 54:1014–1028.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining multi-label data. In Maimon,
O. and Rokach, L., editors, Data Mining and Knowledge Discovery Handbook, pages
667–685. Springer US.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008). Decision trees
for hierarchical multi-label classification. Machine Learning, 73(2):185–214.

Witten, I. H., Frank, E., Holmes, G., and Hall, M. (2011). Data Mining: Practical ma-
chine learning tools and techniques, volume 1. Morgan Kaufmann Publishers Inc.,
San Francisco, California, USA, 3rd edition.

