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Abstract. The present paper provides a complete first-order system for quan-
tum communication environments. These environments are static reliable syn-
chronous systems of quantum communication among agents and the formal sys-
tem defined combines probability and knowledge operators to describe them.

1. Introduction
In these days quantum computing is one of the main lines of research in computer science
[Nielson and Chuang 2000]. The interest basically relies on results that show, first, that
quantum computers can efficiently perform tasks for which nowadays we do not know
efficient classical algorithm [Shor 1994] and, second, on results that indicates the total se-
curity of quantum communication protocols [Mayers 2001]. Although some scientists are
suspicious about the viability of quantum computers (see, for instance, [Landauer 1995]),
the majority of them beliefs that quantum computation and information are physically
implementable and they will be a reality in the future (see, for instance, [Preskill 1998]).

In particular, according to [Ying 2010], quantum computing will have a strong
interplay with artificial intelligence, mainly with respect to distributed computation
and communication systems, because the physical implementation of functional quan-
tum computers is difficult and an important alternative is the distributed implementa-
tion [Yimsiriwattana and Lomonaco 2004]. Nonetheless, the possible physical imple-
mentation of quantum distributed systems still has foundational problems, associated
to the quantum decoherence and the accumulation and propagation of errors in quan-
tum computers. These problems are summarized in the question raised by Landauer in
[Landauer 1996]: how can coding prevent our quantum gates from making small errors,
if the code and the device have no way of knowing what gate we are trying to implement?

Landauer’s question indicates two central features of computing at the level of
quantum systems: probability and knowability. From the one hand, it is necessary to have
sophisticated devices to control the probability of errors during computations and, from
the other hand, the postulates of quantum mechanics establish that measurements change
these probability, that is to say, in a certain sense we have knowledge limitations about
quantum systems. In order to make explicit these features in the case of distributed com-
puting, the present paper we will provide a logical analysis of quantum communication
systems.

In section 2, the main previous works related to the theme of this paper are pre-
sented. In section 3, a formal description of quantum communication environments will
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be given. Only static synchronous communication of quantum messages among agents
in distributed environments is analyzed, which means that the time evolution of the mes-
sages and adversaries are not considered. In section 4, it will be associated a first-order
language to quantum communication environments that is able to express facts about
probability and knowability in these quantum systems. In section 5, first-order multi-
modal structures with probability operator are defined, which provides semantics for the
language defined. In section 6, a complete axiomatization of the quantum communication
structures will be given.

2. Previous works

Quantum communication systems were analyzed for the first time in
[van der Meyden and Patra 2003a], where it is proposed a modal logic for knowl-
edge and time in quantum protocols. No axiomatization was presented in that work, its
description of the quantum distributed systems will be, however, the main reference for
our definition of quantum communication environment. Our perspective is logical ori-
ented and restricted to communication systems, but an overview about others approaches
to distributed quantum system can be found in [Denchev and Pandurangan 2008].

It is important to emphasize that our approach to quantum communication sys-
tems, differently from [van der Meyden and Patra 2003a], is based on density operators.
According to [Cohen-Tannoudji et al. 1977], the formalization of quantum mechanics in
terms of density operators is more convenient than the formalization using the state vector
language for thinking about scenarios whose states are not completely known, although
both being mathematically equivalent. Communication environments are just such a kind
of scenario. For this reason, it seems to us that this approach is preferable.

Many logical system have been defined to axiomatize the characteristics of quan-
tum probability; the main references can be found in [K. Engesser and Lehmann 2009].
We mention in special the paper [van der Meyden and Patra 2003b] which provides a
clear axiomatization for measurement probabilities in quantum systems. In what fol-
lows we will incorporate some of the strategies of [van der Meyden and Patra 2003b]; the
differences will be indicated when we reach at the description of our axiomatic.

With respect to knowledge operators in distributed quantum system, the main
works are again [van der Meyden and Patra 2003a] and [Baltag and Smets 2010]. Our
treatment of knowability presented bellow is similar to that in [Baltag and Smets 2010].
Nevertheless, the axiomatic presented here is essentially different from the previous ap-
proaches, because we will relate knowability to quantum communication. In fact, the ax-
iomatics defined here for the knowledge operator in communication environments permits
to express many properties that the previous ones are not able to express. Unfortunately,
there is no space to show this expressive power in the present paper. In section 7, we will
indicate some future works, and to analyse the expressive power of the system outlined in
this paper is indeed one of these works.

In what follows we will presuppose knowledge about quantum mechanics, as
presented for instance in [Cohen-Tannoudji et al. 1977, Nielson and Chuang 2000], and
about modal logics, for instance [Carnielli and Pizzi 2008].



3. Quantum communication environments
We will define quantum communication environments in terms of the concepts of
agents and informational states. This analysis is restricted to static reliable synchronous
communication among agents.

Definition 3.1. An agent g is a finite set of propositions, i.e., g = {p1, . . . , pn} where
each pi is a proposition. A group of agents is a non-empty finite set of agents. The notion
of proposition is primitive.

To model the communication among agents, we assume that for each agent g in a
group G there is a codification cod of the propositions of g as sequences of bits.

Definition 3.2. Let G = {g1, . . . , gn} be a group of agents. The message assignment is
the function msg : {1, 2, . . . , n} → codi where codi : gi → {0, 1}m is a function which
associates a code of length m to each proposition of agent gi (this code is a sequence
of bits with length m). Each msg(i) will be called a message, and we will write MG to
denote the set of all messages of G.

By the first postulate of quantum mechanics [Cohen-Tannoudji et al. 1977,
Nielson and Chuang 2000], to the agents’ messages there is a corresponding Hilbert
space that represents these messages as physical entities.

Definition 3.3. Let G = {g1, . . . , gn} be a group of agents. The set of possible messages
HG of G is the complex Hilbert space generated by MG, i.e., HG is a set of normalized
vectors | 〉 : MG → C, equipped with the inner product, such that

∑
m∈MG

||m〉|2 <∞.

As we said in the previous section, in communications environments the states
of the systems may be not completely known. Then, to formalize the messages while
quantum states, we will use the density operator language.

Definition 3.4. Given a set of vectors |msg1〉, . . . , |msgk〉 in HG associated to the mes-
sages in MG with respective probability amplitudes p1, . . . , pk, the density operator for
the system HG is the operador ρG defined by the equation

ρG
def
=

k∑
i=1

pi|msgi〉〈msgi|,

where |msgi〉〈msgi|, the outer product of msgi ∈MG, is called a quantum message.

Due to one of the postulates of quantum mechanics [Cohen-Tannoudji et al. 1977,
Nielson and Chuang 2000], any vector inHG can be represented as sequences of quantum
bits (qubit for short), which are represented by the two dimensional Hilbert space HG,
with a preferred orthonormal basis given by the two vectors |0〉 and |1〉. More precisely,
an m-qubit Hilbert space is a space H

m

G of dimension 2m with the form

HG

m︷ ︸︸ ︷
⊗ · · ·⊗HG,

where ⊗ is the tensor product. We write |v1, . . . , vm〉 for the vector |v1〉 ⊗ · · · ⊗ |vm〉 in
H

m

G , where each vj is either 0 or 1. The set of vectors |v1, . . . , vm〉 is a basis ofH
m

G , called
the computational basis. We will identify HG with H

m

G and will just write HG.



In a quantum passing message system, each message is thought of as being in the
possession of some agent, but this agent may change from time to time, as an agent can
send some of its message to another. Following [van der Meyden and Patra 2003a], we
define a function to denote the location of each message.

Definition 3.5. LetHG be the Hilbert space of the group of agentsG = {g1, . . . , gn}. The
m-location assignment is the function loc : HG → {1, 2, . . . , n} such that loc(msg(i))
denotes that agent gi has the message msg(i) of HG.

Note that the letter m in the expression “m-location assignment” is to remember
that the codes are sequences of qubits with length m. These sequences of qubits represent
in quantum terms the previous codes of the messagens in MG. Now we can model the
reliable synchronous communication of quantum messages among the agents as the
transmission of quantum messages from one agent to another agent in a group.

Definition 3.6. Let HG be the Hilbert space of group of agents G = {g1, . . . , gn}. The
channel assignment is the function chan : {1, 2, . . . , n}2 → HG such that chan(i, j) =
|msg〉means that the quantum message |msg〉 has been transmitted from agent gi to agent
gj .

Suppose that loc−1(i) = {il, . . . , ik} is the set of indices of the quantum messages
located at agent i. Then agent i is able to perform a general measurement on these
k messages. We represent a quantum operation on k messages by a finite sequence
of operators M = (M1, . . . ,Ml) with each Mj operating on HG. Suppose the agents
simultaneously perform the quantum measurements (M1, . . . ,Ml) where each Mi is a
measurement on the ki = |loc−1(i)| quantum message located at agent i. Each operation
Mi products some outcome mi, the index of some linear transformation Mj operating on
HG. We represent a combined outcome of these measurements by a new function from
agents to outcomes.

Definition 3.7. Let HG be the set of possible messages of a group of agents G =
{g1, . . . , gn} and M = (M1, . . . ,Ml) be a finite sequence of operators on HG. The
measurement assignment is the function res : G → M × R such that res(i) = (Mi,mi)
records the measurement performed and the outcome obtained by the agent i.

By one of postulates of quantum mechanics [Cohen-Tannoudji et al. 1977,
Nielson and Chuang 2000], each measurement Mi is a self-adjoint linear operator and
the outcome of a measurement is a real number. So the measurement assignment res is
well-defined. In this way, we conclude our description of the quantum communication
environments.

Definition 3.8. A quantum communication environment is a tuple E = (G,S) where G
is a group of agents and S = {s1, . . . , sm} is the set of informational states for sj =
(msg, loc, chan, res).

Since we are confined to a static description of quantum communication
environments, we will not consider the postulate of quantum mechanics that ex-
presses which the time evolution of quantum systems is given by an unitary operator
[Cohen-Tannoudji et al. 1977, Nielson and Chuang 2000].



4. Quantum communication languages

A quantum communication language is specified by defining its alphabet, terms and
formulas.

Definition 4.1. Let E = (G,S) be a quantum communication environment. The language
of E is the multimodal first-order language with equality L such that:

1. The alphabet of L has two sorts of variables, one sort for scalars and other for
vectors, as well as an infinite set of basis variables {~v, ~w, . . .} to represent the
basis set considered for HG

1;
2. For each of these basis variables ~v, the alphabet of L also has a finite set of

constant vectors ~v0, . . . , ~vm representing the vectors in the basis of HG;
3. The alphabet of L has the scalar constants 0 and 1 and the vector constants ~0 and
~1;

4. The alphabet of L has the functions symbols −, + and × for the usual opera-
tions on elements in a real-closed field, the function symbols ¬v, +v, ×s and ×v

for the orthocomplement, matrix addition, multiplication by a scalar and matrix
multiplication on vector spaces;

5. The alphabet of L has a unary probability operator P and a binary basis transfor-
mation Mij;

6. The alphabet of L has knowledge operators KI , one for each subgroup of agents
I ⊆ G;

7. Nothing more except the symbols specified above are in the alphabet of L.

The definitions of all syntactic notions are as in [Carnielli and Pizzi 2008],
including the terms and formulas, except by the following differences.

Definition 4.2. The set of terms of L is such that:

1. The matrix terms of L are defined in the following way:

(a) The constant vectors and variables for constant vectors are matrix terms;
(b) If α and β are matrix terms and a is an scalar constant, then ¬vα, a×s α,

α +v β and α×v β also are terms.

2. If α is a matrix term, then P (α) is a term of L. These terms are called probability
terms.

3. If ~v and ~w are basis variables, then Mij(~v, ~w) is a term of L. These terms are
called transformation terms.

4. The matrix, probability and transformation terms are just the terms of L defined
by the conditions (1), (2) and (3) above.

Moreover, the scalar terms are just the terms defined in L from 0 and 1 using −,
+ or × as well as any pseudo-term defined using these scalar constants and funtions2.

1Since the expressiveness of many-sorted logic and first-order logic is the same [Hodges 2005, p.202-
206], we will omit the reference to sorts.

2Pseudo-terms are formulas that defines elements is the structure considered. For example, terms for
denoting real numbers and complex numbers can be defined in L as pseudo-terms.



In quantum mechanics probability has a crucial role. Hence it is important
to designate some special formulas that express facts about probabilities in quantum
communication environments.

Definition 4.3. In the set of formulas of L a linear probability atom is an expression of
the form a1×P 1(α1) + · · ·+ ak ×P 1(αk) = a, where each ai is a scalar term as well as
a, and each αi is a matrix term.

As the language L has knowledge operators KI for subgroups of agents, it
can state facts about distributed knowledge in communication environments, such as in
[Baltag and Smets 2010]. In particular, the description of the knowledge of an individ-
ual agent i is described by K{i}, which we abbreviate by Ki. Besides, L has probability
and transformation operators similar to [van der Meyden and Patra 2003b], and so it can
also state properties about quantum distributed knowledge. Concepts like entanglement
of information, phase relations, uncertainty relation, etc, also can be expressed in L. This
shows that the language L has enough expressiveness with respect to quantum communi-
cation environments. For instance, the statement that agent i knows the message α with
probability 1√

2
can be expressed by the sentence KiP (α) = 1√

2
of the language L3.

5. Quantum communication structures
Quantum communication environments are distributed systems, so we need a semantics
for the language L which permits us to consider the transmission of quantum messages
among the agents. For such an aim, we define the notion of informational range.

Definition 5.1. Let E = (G,S) be a communication environment. The informational
range RG of the group G is a family of binary relations ≈I on H2

G, one for each I ⊆ G,
i.e,

RG = {≈I⊆ H2
G : I ⊆ G}.

Intuitively, an informational range shows how the information is available among
the subgroups of agents. From this concept, we can define equivalence relations among
the information associated to the agent’s messages.

Definition 5.2. Let E = (G,S) be a communication environment andRG be the informa-
tional range ofG. AnE-quantum communication frame is a multi-modal frame (HG, RG)
such that:

Equivalence : For each I ⊆ G, ≈I is an equivalence relation;
Observability : For all s, r,∈ HG and I ⊆ G, if s = r then s ≈I r;
Monotonicity : For all I, J ⊆ G, if I ⊆ J then ≈J⊆≈I;
Vacuousness : For all s, r,∈ HG, s ≈� r.

The equivalence condition establishes that if s ≈I r then the subgroup I cannot
distinguish the informational state s from r, that is to say, s and r are indistinguishable
to I . One the other hand, by the observability condition, if r and s are equals then every

3The expression 1√
2

is a pseudo-term that is definable using the symbols for field expression of the
language L.



group of agents cannot distinguish between r and s. The monotonicity expresses that if
some informational states are indistinguishable for a group of agents I then these states
are also indistinguishable for any subgroup J of I . Finally, the vacuouness says that the
empty group cannot distinguish between any two informational states, which is true for it
is unable to make any observation.

Definition 5.3. Let E = (G,S) be a communication environment and (HG, RG) be an E-
quantum communication frame. A quantum communication structure A for the language
L is the tuple A = (HG, RG, IG) in which IG is an interpretation function from L to HG

such that:

1. IG(0) is the number zero and IG(1) is the number one in the complex field C of
HG;

2. IG(~0) is the null matrix and IG(~1) is the identity matrix of HG;
3. For each state constant ~vi of L, IG(~vi) is the matrix |vi〉〈vi| where |vi〉 is the i-th

vector of the computational basis of HG;
4. IG(−), IG(+) and IG(×) are the functions inverse, plus and times, respectively,

on the complex field C of HG;
5. IG(¬b) is the projection operator⊥ projecting onto the orthogonal complement of

the image of HG under the state considered, IG(+v) is the matrix addition of HG,
IG(×s) is matrix multiplication by a scalar and IG(×v) is the matrix multiplica-
tion of HG

4;
6. IG(P ) is the unary operator on HG such that IG(P )(|vi〉) is the trace

of the matrix |vi〉〈vi||vi〉〈vi|, i.e., IA(P )(|vi〉) := Tr(|vi〉〈vi||vi〉〈vi|) :=∑
j(|vi〉〈vi||vi〉〈vi|)jj = |〈vi|vi〉|2;

7. IG(Mi,j) is the binary operator on HG such that IG(Mi,j)(|v〉, |w〉) is the element
vij such that M = (vij) is the m ×m unitary complex matrix for which M |v〉 =
|w〉.

From the notion of quantum communication structure, we define the satisfatibil-
ity relation �s as in [Carnielli and Pizzi 2008]. We only emphasize the case for modal
formulas:

A �s KIφ if, and only if, for all r ∈ HG such that r ≈I s, A �r φ.

6. Quantum communication axiomatics
In this section we will define a theory T for quantum communication environments. We
will presuppose a derivability relation ` defined according to some classical calculus
for first-order logic, for instance the one in [Carnielli and Pizzi 2008], and we will only
specify the new axioms and rules of T . The axiomatization of T consists of four parts,
each dealing with one aspect of these communication systems.

The first part of T has axioms to express that the set of possible messages is an
m-dimensional Hilbert space, where m is the maximum length of the messages in MG,
and that the Hilbert space is a orthocomplemented lattice.

(A1) (~v1 ∨ · · · ∨ ~vn) ∧ (¬i = j → ¬(~vi ∧ ~vj))

4We will omit ×v when it is clear that we are considering the matrix multiplication.



(A2) (α×v ¬vα = ~0) ∧ (α +v ¬vα = ~1) ∧ (¬v¬vα = α)
(A3) (α ≤ β → ¬vβ ≤ ¬vα) ∧ (α×v (¬vα +v (α×v β)) ≤ β)

The second part of T has axioms to state the properties of the quantum probability
operator for quantum communication environments.

(A4) 0 ≤ P (α) ∧ P (α) ≤ 1.
(A5) P (α +v ¬vβ) = 1
(A6) P (α×v β) + P (α×v ¬vβ) = P (α)
(A7) α = (a1 ×s ~v1) +v · · · +v (an ×s ~vn) → (P (β) = |a1|2 + · · · + |am|2 ∧ β =

(
√
P (β))−1 × ((a1 ×s ~v1) +v · · · +v (am ×s ~vm))) if the measurement was done

on the vectors in {~vi}i≤n.

Note that these axioms are different from those given in
[van der Meyden and Patra 2003b]. They explicitly formalize the main property of
measuments in quantum mechanics. Besides, in our approach the distributivity of
probability is the sentence α = β → P (α) = P (β), which is an immediate theorem due
to the Leibniz’s law for equality.

The third part of T has axioms for basis transformation, which corresponds to
the identity matrix when the basis is not changed and consecutive basis transformations
correspond to matrix multiplication.

(A8) Mij(~v, ~w) = M∗
ij(~w,~v)

(A9) (i = j →Mij(~v,~v) = 1) ∧ (¬i = j →Mij(~v,~v) = 0)
(A10) Mij(~v, ~x) = (Mi1(~v, ~w)×Mi1(~w, ~x)) + · · ·+ (Mim(~v, ~w)×Mim(~w, ~x))

Differently from [van der Meyden and Patra 2003b], we have fixed the compu-
tational basis for the transformations, which is in accordance with the fact that quan-
tum measurements in other bases can be carried out by combining unitary transfor-
mation and measurements on the computational basis [Cohen-Tannoudji et al. 1977,
Nielson and Chuang 2000]. In this way, we can define the transition proba-
bility operator T (a quantum analogue of conditional probabilities) defined in
[van der Meyden and Patra 2003b] stating that T (~vi, ~wj) = |Mi,j(~v, ~w)|2. Note, more-
over, that from axiomsA8 andA10, it is possible to derive unitarity of the transformations
((Mi1(~v, ~w)×M∗

j1(~v, ~w)) + · · ·+ (Mim(~v, ~w)×M∗
jm(~v, ~w))) = 1.

The fourth, and last, part of T has axioms for knowledge operators. These axioms
are the usual axioms of the epistemic logic [Baltag and Smets 2010], but in the context of
the general framework for distributed knowledge developed here.

(A11) If T ` φ then T ` KGφ.
(A12) If I ⊆ J then T ` KIφ→ KJφ.
(A13) KG(φ→ ψ)→ (KGφ→ KGψ)
(A14) KGφ→ KGKGφ
(A15) ¬KGφ→ KG¬KGφ

In this way, we end the definition of T .

Definition 6.1. Let E = (G,S) be a quantum communication environment. The theory
of E is the first-order theory T with the axioms and rules A1-A15 defined above plus a
complete axiomatization for algebraically closed fields.



Since Tarski showed in [Tarski 1951] that the algebraically closed fields can be
completely axiomatized, the theory T is well-defined. Furthermore, we can prove the
adequacy of T with respect to quantum communication structures A.

Theorem 6.1. For all sentence φ of L, T ` φ if, and only if, A � φ.

Proof sketch: The soundness, T ` φ implies A � φ, is straightforward. The complete-
ness, A � φ implies T ` φ, is a non-trivial task. It comprises an appropriate combination
of the completeness proof given in [van der Meyden and Patra 2003b], for the probability
and transformation part of T , and the completeness proof for the calculus of orthocom-
plemented lattice, for the algebraic part of T , with a construction of canonical models for
multi-modal logics, for the epistemic part of T 5.

7. Future works

The completeness of the theory T with respect to quantum communication structures
shows the adequacy of our approach from a logical point of view. Nonetheless, we have
not explored the expressiveness of this framework with respect to distributed quantum
systems. An interesting development of our work is to examine that expressiveness.

In our approach we have not considered the time evolution of quantum systems.
An interesting approach would be to extend our axiomatic with modalities for time. In
[van der Meyden and Patra 2003a], a first attempt was realized, but it is to much restricted
and no axioms were exhibited. We believe that a more compelling approach would be to
use the logic CTL with probability, for instance as that showed in [Brázdil et al. 2008] or
as in [Baltazar et al. 2008].

In quantum mechanics, tensor product has a crucial significance. We can already
handle this to some extent simply by applying our language to the case where the dimen-
sion of the Hilbert space HG is a restricted product, but it is desirable to have the tensor
product as a more integral part of the language. In [Mateus and Sernadas 2006], it was
showed a quantum logic capable to expresses tensor product, but such a logical system is
so complicated and we cannot foresee how to combine it with multi-modal logic, as we
need in quantum communication environments.

To conclude, it is important to mention that we have not analyzed ques-
tions of computational complexity. As we work with probability operators in quan-
tum systems, it would be desirable to analyze the probabilistic satisfiability problem
[Georgakopoulos et al. 1988] in the context of quantum communication environments.
In fact it is the quantum version of the satisfiability problem [Bravyi 2006] which is in
question, for quantum systems have quantum probability and not the classical one. We
do not know if the logical system presented in this paper is able to express the quantum
satisfiability problem. If it can, then we can analyze open problems about quantum satis-
fiability using our logical system, from the one hand, and to examine the complexity of
quantum communication in distributed systems, for the other.

5The complete proof will be presented in the extended version of this paper.
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