
Encoding DL-Atoms in RuleML
Samy Sá1 and João Alcântara1

1Departamento de Computação, Universidade Federal do Ceará, P.O.Box 12166,
Fortaleza, CE, Brazil 60455-760

{samy,jnando}@lia.ufc.br

Abstract. We consider Description Logic Programs (DLPs) as consisting of a
description logic knowledge base L and a generalized extended logic program
P , which may contain queries to L through the DL-Atoms. Aiming to provide
general syntax for representing rules, RuleML is a markup language and can-
didate for a standard exchange rule language in the Web. Currently under de-
velopment from version 0.91 to version 1.0, its syntax still lacks the ability to
express DL-Atoms and, consequently, DL-Programs. In order to overcome this
gap, we propose an extension for RuleML expressive enough to represent all
sorts of DL-Atoms.

Resumo. Consideramos Description Logic Programs (DLPs) como estes que
consistem em uma base de conhecimento L em Lógica Descritiva e um pro-
grama em lógica estendido generalizado P , o qual pode conter consultas a L
através de DL-Átomos. Objetivando prover sintaxe geral para a representação
de regras, RuleML é uma linguagem candidata a padrão para troca de regras
na Web. Atualmente em desenvolvimento da versão 0.91 para 1.0, sua sin-
taxe ainda não tem a habilidade de expressar DL-Átomos e, consequentemente,
DL-Programs. Para superar esse obstáculo, nós propomos uma extensão para
RuleML expressiva o suficiente para representar todos os tipos de DL-Átomos.

1. Introduction
The Semantic Web [Berners-Lee and Fischetti 1999] is an extension of the World Wide
Web technology that aims to establish a pattern for expressing the intended meanings of
documents in the web along with their content. The Semantic Web consists of several
layers enabling to build ontologies with increasingly expressive power. XML is the
first layer and all others are built on top of it, meaning that documents in all superior
layers are valid XML documents. The current top layer of the stack being developed
comprises OWL and the representation of rules in order to allow reasoning over ontolo-
gies [Antoniou and van Harmelen 2008]. Now that OWL reaches a satisfactory level of
maturity, the urge to efficiently represent rules in the most variate formats has taken over
the Semantic Web development efforts and the W3C (World Wide Web Consortium) has
assigned a working group to design a Rule Interchange Format (RIF). As part of this
effort, the XML based Rule Markup Language (RuleML) [Dema and Hirtle 2006] is a
candidate for becoming the standard language for exchange and representation of rules
in both syntax and semantics. The main goal of RuleML is to allow the translation from
any rule systems to others, in a single general framework. Currently, RuleML is being
developed from version 0.91 into version 1.0. Even though there are improvements in the
language, it still lacks the ability to express some kinds of rules.



Various notions relating Description Logics (DL) [Baader et al. 2003] and Logic
Programming (LP) [Lloyd 1987] were proposed, including a translation from ontologies
in the Description Logic language ALCIQ to logic programs [Alsaç and Baral 2002]
and an algorithm to reduce a SHIQ knowledge base to a disjunctive datalog program
[Hustadt et al. 2007]. Other approaches involve proposing Description Logic Programs
as the intersection of horn logic programs and description logics [Grosof et al. 2003]
and an extension of answer set programming that supports inverted predicates
and infinite domains to integrate description logics and answer set programming
[Heymans and Vermeir 2003]. Eiter et al., however, proposed a different concept of De-
scription Logic Programming (DLP) in [Eiter et al. 2004, Eiter et al. 2008] to represent
and reason over ontologies. Their approach enables a great deal of ontology integration
on reasoning, as a logic program can access and consider the results of queries over
Description Logic ontologies (DL ontologies) represented in expressive languages such
as OWL DL or OWL Lite [Eiter et al. 2008]. Also, the results of queries might be based
on results from both the logic program and the ontology through special operators. Next,
we show a DLP rule taken from [Eiter et al. 2008] and explain its meaning.

Example 1.1 (Sample DLP Rule)

The following rule from a DLP P contains a query to a Description Logic on-
tology (DL ontology) L as its only condition. The query is described in the DL-Atom
DL[keyword∪+kw; inArea](P, A), in which keyword and inArea are terms from the
ontology L and kw is a predicate from the program P .

r : paperArea(P, A)← DL[keyword ∪+kw; inArea](P, A);

The above rule queries L to find to what area A the paper P belongs. In this
case, the query returns the results of the role inArea from L as a predicate inArea(P,A)
based on the consideration keyword∪+kw. This consideration means that the results of
DLP predicate kw augments (∪+) the set of results of the DL ontology role keyword, so
the result of the query is based on data from both the program P and ontology L.

As it can be taken from example 1.1, programs and DL ontologies can be combined
in very complex ways. In fact, DLP rules that include DL-Atoms are very peculiar, as
they present queries inside some atoms. This feature is not common and rule exchange
languages (RuleML v1.0 included) are not capable of expressing such queries. We point
out that this kind of integration is compliant to the the goals of the Semantic Web and,
as such, should be considered. In this paper we propose a modular extension capable of
comprising DLP rules while respecting XML compatibility and show how to encode the
characteristic atoms of these rules. We defend that our extension to RuleML 0.91 should
be considered for adoption in the development of RuleML 1.0. This extension makes
possible to represent DLP rules and therefore integrate description logic ontologies and
logic programs as rules from one another are exchanged in the Semantic Web.

A related work is [Damásio et al. 2006], in which the authors propose a general extension
to RuleML 0.9 for representing uncertainty rules from several frameworks such as fuzzy
and probabilistic logic programming. Their proposal is aimed at being modular, to make
for natural, easy to read translations while also trying to keep changes to the language of



RuleML 0.9 to a minimum. In this paper we adopt the same goals to propose an extension
in which it is also possible to represent DL-Atoms.

The rest of the paper is organized as follows. Section 2 briefly introduces Logic Programs,
Description Logics and the definitions of programs, rules, atoms and operators used to
relate ontologies and programs in DLP. Section 3 provides an analysis of available and
missing features of RuleML needed to express DL-Atoms and presents our suggested
extension. Section 4 shows how to encode DL-Rules in RuleML. We summarize the
steps towards proposing such extension, criticize results and comment on future work in
section 5.

2. Preliminaries

2.1. Extended Logic Programs

An Extended Logic Programs (ELP) [Gelfond and Lifschitz 1991] comprises a finite sets
of inferential rules of the form ri : A ← B1, . . . , Bk, notBk+1, . . . , notBm,m ≥ k ≥ 0,
where A, Bi, m ≥ i ≥ 0, are classical literals. We refer to the literal A as the Head of
the rule and the conjunction of the literals B1, . . . , Bk, notBk+1, . . . , notBm as the Body
of the rule and write Head(r) and Body(r) to refer to those. The semantics of such
programs are given by its Answer Sets (AS) [Gelfond and Lifschitz 1991].

2.2. Description Logics

Description logics (DL) [Baader et al. 2003] are a family of formal knowledge represen-
tation languages based on concepts and roles possibly applied to variables or terms rep-
resenting particular entities in a domain. A concept is a unary predicate that qualifies a
set of entities and a role is a binary predicate defining a relationship between entities. A
Description Logic knowledge base, sometimes referred to as an ontology, consists of two
parts traditionally referred to as the TBox (Terminological Box) and ABox (Assertional
Box). The first consists of assertions about concepts and roles in the sense of defining
their meaning towards each other (e.g concept inclusion). The second presents specific
information about particular entities belonging to concepts or pairs of entities belonging
to roles.

2.3. Description Logic Programs

The literature comprises several approaches to relate DL and logic program-
ming such as [Alsaç and Baral 2002, Hustadt et al. 2007, Grosof et al. 2003,
Heymans and Vermeir 2003, Eiter et al. 2004, Eiter et al. 2008]. Except by De-
scription Logic Programs (DLP) as in Eiter et al. [Eiter et al. 2004, Eiter et al. 2008],
the proposed syntax from all others can be easily expressed in RuleML. For instance, in
[Heymans and Vermeir 2003] it is proposed the inclusion of a predicate inversion opera-
tor to disjunctive logic programs syntax, resulting in the extended language Conceptual
Logic Programs (CLP). This extension allows for direct translation from DL formulas
using the Role Inversion construct. In CLP we write P−(X1, X2) to address the inverse
of P (X1, X2) (instead of using P ′(X2, X1) ↔ P (X1, X2)), P being a binary predicate,
or P−(X1) as the inverse of P (X1), P−(X1) = P (X1), P being a unary predicate.
There are a few ways we can represent such extension to syntax, such as by suggesting a
new tag to involve atoms and account for its inversion, a new attribute to the tag <Rel>



to indicate inversion or just by using a simple translation that requires no change to
RuleML, such as done in [Grosof et al. 2003]. Since the role inversion construct can
be successfully represented in RuleML 0.91, we are left with only the approach due to
Eiter et al. in [Eiter et al. 2008] and [Eiter et al. 2004] for consideration. In their work,
characteristic atoms are introduced to the body of rules in order to integrate Description
Logic ontologies (DL ontologies) and extended logic programs. These atoms require
special attention, as they can not be expressed in RuleML 1.0. From this point and on,
we mean by DLP the notion introduced in [Eiter et al. 2004, Eiter et al. 2008]. In this
section we introduce the elements composing DLPs. Most of the definitions below are
taken from [Eiter et al. 2008], but the name of considerations is a suggestion of our own.

Definition 2.1 (DL-Queries) A DL-Query is a question to a DL knowledge base L in one
of the forms:

1. a concept inclusion axiom F or its negation ¬F .
2. C(t) or ¬C(t), where C is a concept and t is a term.
3. R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are both terms.

Definition 2.2 (Considerations) A Consideration is a sequence Siopipi, where Si is ei-
ther a concept or role from L, opi ∈ {∪+, ∪−, ∩−} and pi is, respectively, a unary or
binary predicate from P relative to Si.

The operators opi are able to augment or retract facts about Si (from L) or its negation
through pi (from P ) as (1.) opi = ∪+ increases the set of positive results of Si by adding
instances of pi while (2.) opi = ∪− increases the set of results of ¬Si by adding instances
of pi and (3.) opi = ∩− restricts possible results of Si to the ones of pi.

For instance, suppose a query Q : inArea to L depends on instances of keyword in the
TBox of L. In case the consideration keyword ∪ +kw is applied to Q, the instances of
predicate kw in P are taken as if they were translated to instances of keyword in L before
Q is processed and discarded right after, therefore possibly changing the output of Q.

Definition 2.3 (DL-Atoms) Special atoms allowed in the syntax of DLPs that specify
queries to L. DL-Atoms have the form

DL[S1op1p1, . . . , Smopmpm; Q](t), m ≥ 0,

where Q(t) is a DL-Query and each sequence Siopipi is a consideration to the query
Q(t).

A query inside DL-Atoms ask about the occurrence or evidence of either a description
logic axiom or its negation in L. Whenever a query Q(t) is to be calculated, it takes
into account inferences driven from P according to considerations to the query inside the
DL-Atom 1.

Definition 2.4 (DL-Rules) A DL-Rule is an extended logic program rule possi-
bly presenting DL-Atoms in its body. A DL-Rule has the form r : L0 ←
L1, . . . , Lk, notLk+1, . . . , notLm,m ≥ k ≥ 1, where L0 is a classical literal and Li,
m ≥ i ≥ 1, are either classical literals or DL-Atoms. We refer to L0 as the head of r and
the conjunction L1, . . . , Lk, notLk+1, . . . , notLm as the body of r.

1For a more detailed explanation, we invite the reader to address to [Eiter et al. 2004, Eiter et al. 2008].



Definition 2.5 (Description Logic Programs) A Description Logic Program (DLP) is a
pair KB = (L, P ), where L is a Description Logic knowledge base and P is a logic
program possibly with occurrence of DL-Rules. DLPs can present queries to L in the
body of rules of P and integrate the knowledge base and logic program allowing for rules
to work on top of ontologies and ontologies to be built on top of rules.

The following example is a partial transcript from [Eiter et al. 2004, Eiter et al. 2008].

Example 2.1 (Reviewer Selection) Suppose we want to assign reviewers to papers,
based on certain information about the papers and the available persons, using a de-
scription logic knowledge base LS which contains knowledge about scientific publica-
tions. Consider then the DL-Program KBS = (LS, PS), where PS contains in particular
the following DL-Rules:
(1) paper(p1); kw(p1, Semantic Web);
(2) paper(p2); kw(p2, Bioinformatics); kw(p2, Answer Set Programming);
(3) kw(P, K2)← kw(P, K1), DL[hasMember](S, K1), DL[hasMember](S, K2);
(4) paperArea(P, A)← DL[keyword ∪+kw; inArea](P, A);
(5) cand(X, P )← paperArea(P, A), DL[Referee](X), DL[expert](X, A).

Intuitively, (1) and (2) specify the keyword information of the papers p1, p2 which should
be assigned to reviewers. Rule (3) augments the set of keywords from PS for a paper
P with similar ones obtained through queries to LS . The DL-Atoms in (3) query LS

for keywords other than K1 that are members of the same keyword cluster S. Rule (4)
queries LS to assert a paper P to an area A while considering all results of keyword (from
LS) and kw (from PS) of P . Finally, rule (5) singles out review candidates based on the
information from experts among the reviewers according to LS . Note that, in view of
rules (3) to (5), information flows in both directions between the knowledge encoded in
LS and PS .

3. Extension of RuleML
RuleML [Tabet et al. 2001] is a normalized modular markup language designed to ex-
press and exchange rules in the Web. RuleML resorts to a set of tags and attributes
with preconceived nesting2 admissibility and semantics. About to enter version 1.0
[Dema and Hirtle 2006, Boley et al 2010], RuleML is fully XML compatible and capa-
ble of expressing rules in various working frameworks ranging from Datalog (function-
free horn logic) [Silberschatz et al. 2001] to HILOG [Chen et al. 1993]. Specialized
markup languages are also available for specific rule terminology3 such as FOL RuleML
[Boley et al 2004] for first order logic. Nonetheless, RuleML up to version 0.91 is unable
to express the special case of rules including sub-queries to external knowledge bases.
In this section we analyze the main issues for representing DL-Atoms and DL-Rules in
RuleML 0.91 and propose a minimal and modular extension. It means that (1) changes
to RuleML are kept to a minimum while attempting to maximize expressiveness; (2)
any valid RuleML document will still be a valid document in our extended version and
that future work should also be easily compatible to ours. Our extension also provides a
straight-forward translation of DLP-Rules.

2For any two particular tags, the tags nesting specifies whether or not one can be used in the scope of
the other.

3Specialized rule markup languages might present a different nesting or set of tags/attributes than that
of RuleML.



3.1. Special needs of DL-Atoms

We now summarize the features of DL-Atoms and which elements are missing for encod-
ing those features in RuleML 0.91.

• DL-Atoms should somehow be identified as a different kind of atom;
• The adequate structure for representing queries is the performative <Query>

[Dema and Hirtle 2006] but performatives can not occur nested in RuleML;
• Considerations relate concepts/roles in L to predicates in P and omit variables.

Also, there are no performatives or tags suitable to encompass the semantics of a
consideration.
• There are no tags for the operators ∪+, ∪−, ∩−.

Some of those issues are solved by employing tags already in RuleML. Relations as con-
cepts, roles and predicates can be comprised under the tag <Rel>. Variables and con-
stants can be expressed respectively by <Var> and <Ind>. Also, in order to associate
relations, it is enough to wrap them as the only content inside a tag <Implies>. In such a
case, the predicate (condition) comes first and the concept/role (conclusion) follows, just
as the first extends the second and not the opposite. In addition, we need to:

• Allow sub-queries in the body of rules.
• Represent the special operators ∪+, ∪−, ∩− used in considerations to DL-

Queries.
• Propose a set of tags and nesting capable of relating concepts/roles to predicates

in considerations.

3.2. Changes to syntax

In DLPs there may be atoms able to express taking action in which rules can query
other rules. The general construct for expressing action in RuleML are the performatives
[Dema and Hirtle 2006]. In plain RuleML there are three performatives: <Assert>,
<Query> and <Retract> and they are meant to add information, express queries and
eliminate information, respectively. In FOL RuleML 0.9 [Boley et al 2004], however, we
have the performative <Consider> meant to add information only locally, i.e., such in-
formation is not part of the theory where inference is driven, but extra. Thus <Consider>
seems to be the most adequate amongst performatives to express considerations to
queries within DL-Atoms.

In previous versions, RuleML had an attribute @kind exclusive to tags <Implies>. This
attribute was used to identify the kind of implication by values ”fo” for first order and
”lp” for logic programming, but it was renamed in RuleML 0.91 to @material. Other
work such as [Damásio et al. 2006] proposes applying @kind back to elements and
connectives to express the language in which such elements should be interpreted. We
defend the usefulness of @kind as such, as its use in <Atom> with a new possible
value ”dl” is enough for identifying DL-Atoms. Also, note that the nesting of queries
inside tags <Atom> identified as DL-Atoms is adequate to express the queries inside
DL-Atoms. Considerations should be expressed inside the same element <Atom> as its
related query, and we use the performative <Consider> to do so. Relations from both
P and L are related inside each consideration through the use of <Implies>. Finally,
instead of proposing new tags for the operators ∪+, ∪− and ∩−, we show how they can



be translated into RuleML as specific sequences of nested tags inside DL-Atoms. We
have then extended RuleML by:

• allowing the performatives <Query> and <Consider> to occur inside elements
<Atom>;
• adding @kind to elements <Atom> and a new possible value ”dl”.

We now show the mentioned elements and performatives content models from RuleML
0.91 in the same style as in [Damásio et al. 2006, Dema and Hirtle 2006]. The exact same
changes would be applied to the current proposal of RuleML version 1.0. Below, our
proposed changes are typed in bold to emphasize which elements are being added as part
of our proposed extension.

Figure 1. Content Model for Performatives

We change the content models for performatives in two ways. First, performative
<Query> can now occur inside <Atom> elements. The second change introduces
<Consider> in standard RuleML with the same possible content as <Query> and also
able to occur inside <Atom> elements. Optional parameters receive a question mark (?).
When a parameter can occur zero or multiple times we use a star mark (*).

Figure 2. Content Model for Elements

Content models for elements are changed in three ways. Elements <Atom> can now
show performatives <Query> and <Consider> and have a new attribute @kind. We also
enable the possible value ”dl” to @kind. Having introduced these changes, we can now
encode DLP rules in RuleML as expounded in the sequel.

4. Encoding DLP Rules
In this section we show how to use the extended RuleML syntax proposed in section 3
to encode DLPs. As extended logic programs can be easily expressed in RuleML 1.0,
only DL-Atoms are left for encoding. Indeed, each kind of consideration in a DL-Atom
requires a specific codification in RuleML. For an easier comprehension of the reader, we
opt to show our translation through examples of DLP rules.



4.1. DL-Atoms with no Considerations to the Query

The first kind of DL-Atom to be considered consists of just a query to L, with no consid-
erations. RuleML provides a performative <Query>, but does not allow for its use inside
tags <body>. We simply extend the syntax of RuleML so we can have this behavior of
tags, and identify the atom as being of kind DL through attribute @kind inside <Atom>.
The value ”dl” for @kind is a new possible value, added to our extension.

Example 4.1 Consider the DL-Atom DL[inArea](P, A), that specify a query to find in
L what papers (P ) qualifies in which areas (A). This single DL-Atom can be represented
in our extension as

<Atom kind = "dl">
<Query>

<Atom>
<Rel>inArea</Rel>
<Var>P</Var>
<Var>A</Var>

</Atom>
</Query>

</Atom>

In this example, @kind has the value ”dl” in <Atom> and the performative <Query>
inside it. Both changes are necessary to translate DL-Atoms to RuleML and back.
Content of <Query> is still as usual.

4.2. DL-Atoms with Considerations to the Query

In order to represent more complex DL-Rules, we need to deal with considerations and,
in particular, to translate the operators ∪+, ∪−, ∩−. In order to introduce considera-
tions inside DL-Atoms, we use the performative <Consider> from FOL RuleML (0.9)
[Boley et al 2004]. For simplicity, our examples will only have one consideration at a time
and its query content omitted, as they can still be encoded as shown in Subsection 4.1 in a
DL-Atom with considerations. For the general case, multiple occurrences of <Consider>
take place. We now present a brief account for each kind of consideration found in DLPs.

4.2.1. Considerations to the Query with operator ∪+

Whenever the operator ∪+ is used in a consideration Siopipi, the instances of pi in P add
to the instances of Si in L for processing the query. As such, the consideration works in
similar way to a normal logic program rule with Si in the head and pi in the body. Its
result, however, is to be reconsidered each time the query is needed during execution of
the DLP. We encode the consideration Si ∪+pi using the same structure of general logic
programs rules inside an occurrence of the performative <Consider>

Example 4.2 Let us recall the DL-Atom DL[keyword ∪+ kw; inArea](P, A) from rule
(4) of Example 2.1. The query is the same of Example 4.1, but it has to take into account
the extension of keyword (from LS) by the results of kw (from PS). By the application of
the operator∪+, kw extends the set of positive occurrences of keyword as kw(p, k) allows



to consider keyword(p, k). We write the DL-Atom DL[keyword ∪+ kw; inArea](P, A)
in RuleML as:

<Atom kind = "dl">
<Consider>

<Implies closure = "universal">
<Atom>

<Rel>kw</Rel>
</Atom>
<Atom>

<Rel>keyword</Rel>
</Atom>

</Implies>
</Consider>
<Query> ... </Query>

</Atom>

Our considerations are represented through the performative <Consider> with a connec-
tive <Implies> as its only content. We call attention to the lack of variables in each
occurrence of <Atom> above, as considerations in DL-Atoms do not enumerate the vari-
ables for any of the predicates. Both predicates in each consideration are supposed to
have the same number and order of arguments.

4.2.2. Considerations to the Query with operator ∪−

The operator ∪− in Si ∪ −pi means that any instance of pi in P adds to the instances
of ¬Si in L for processing the query. As in Subsection 4.2.1, we use the performative
<Consider>, but now the conclusion inside <Implies> is negated.

Example 4.3 The DL-Atom DL[isMale ∪− isFemale; gender](A, S) express a query
about the gender of animals who accounts that females are not males. The instances of
the predicate isFemale in P extend the set of negative instances of the concept isMale in
L. It is represented in RuleML as follows:

<Atom kind = "dl">
<Consider>

<Implies closure = "universal">
<Atom>

<Rel>isFemale</Rel>
</Atom>
<Neg>

<Atom>
<Rel>isMale</Rel>

</Atom>
</Neg>

</Implies>
</Consider>
<Query> ... </Query>

</Atom>



The only difference between two considerations (i) Si ∪+ pi and (ii) Si ∪− pi is that re-
sults of pi add to the set of positive instances of Si in (i) and to the negative instances of Si

in (ii). Their representation differs by the negation of the second atom (head/conclusion)
through the use of the connective <Neg>.

4.2.3. Considerations to the Query with operator ∩−

Considerations of the kind Si ∩ −pi are such that the failure in proving instances of pi
in P adds to the instances of ¬Si in L for processing the query, restricting the results of
Si to those of pi. In this sense, the negation as failure is applied to the condition inside
<Implies> and conclusion is negated as in 4.3.

Example 4.4 Consider the DL-Atom DL[Referee ∩ − poss Referee; Referee](X)
meant to restrict the concept Referee (from L) up to the values to which poss Referee
(from P ) is true. It can be represented in RuleML as follows:

<Atom kind = "dl">
<Consider>

<Implies closure = "universal">
<Naf>

<Atom>
<Rel>poss_Referee</Rel>

</Atom>
</Naf>
<Neg>

<Atom>
<Rel>Referee</Rel>

</Atom>
</Neg>

</Implies>
</Consider>
<Query> ... </Query>

</Atom>

Just as the operator ∩− is defined, we use negation as failure of poss Referee as premise
in order to extend the set of negative instances of Referee.

The Table 1 summarizes the uses of connectives <Neg> and <Naf> for each
operator:

\ <Neg> <Naf>
∪+ No No
∪− Yes No
∩− Yes Yes

Table 1. Usage of <Neg> and <Naf> for each operator in DLP

DL-Rules can be encoded as most extended logic program rules, the only difference being
the possible DL-Atoms in the body. We presented how to translate these atoms to RuleML



in a way that both syntax and semantics of DL-Atoms are properly represented. We
reinforce that multiple occurrences of the performative <Consider> are needed in case
of a DL-Atom with multiple considerations to its query.

5. Conclusion
We have proposed an extension for RuleML capable of expressing DL-Atoms and al-
lowing exchange of DL-Programs rules in the Web. This extension relies on the use of
the attribute @kind and occurrence of performatives <Query> and <Consider> inside
<Atom> elements and should be considered for inclusion in RuleML 1.0. We also show
through examples how this simple extension enables expression of DL-Atoms and, con-
sequently, DL-Programs. This extension does not introduce new terminology to RuleML,
for it only suggests new uses and nesting for current tags and an attribute. It provides the
necessary expressive power and a straightforward encoding capable of coping with both
syntax and semantics of DL-Rules. We defend that allowing performatives to occur in-
side atoms in the body of rules is very useful, as it also makes possible to easily represent
commands from rule based language such as append(X) from Prolog through the use of a
performative <Assert>. A more profound study of performatives inside atoms is left for
future work. Also, we intend to work on the development of RuleML editors to include
our suggestions.

6. Acknowledgements
Research partially supported by CAPES (PROCAD).

References
Alsaç, G. and Baral, C. (2002). Reasoning in description logics using declarative logic

programming. Technical report, Arizona State University, Arizona.

Antoniou, G. and van Harmelen, F. (2008). A Semantic Web Primer. MIT Press, Cam-
bridge, MA, 2. edition.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., edi-
tors (2003). The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Berners-Lee, T. and Fischetti, M. (1999). Weaving the Web. Harper.

Boley et al, H. (2004). The first-order logic web language v0.9. http://ruleml.
org/fol/.

Boley et al, H. (2010). Ruleml v1.0 specification. http://www.ruleml.org/1.0/.

Chen, W., Kifer, M., and Warren, D. S. (1993). HILOG: A foundation for higher-order
logic programming. JOURNAL OF LOGIC PROGRAMMING, 15(3):187–230.

Damásio, C. V., Pan, J. Z., Stoilos, G., and Straccia, U. (2006). An approach to represent-
ing uncertainty rules in ruleml. In Eiter, T., Franconi, E., Hodgson, R., and Stephens,
S., editors, RuleML. IEEE Computer Society.

Dema, T. and Hirtle, D. (2006). Content models for ruleml 0.91. http://ruleml.
org/1.0/xsd/content_models_10.pdf.



Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2008). Combining
answer set programming with description logics for the semantic web. Artif. Intell.,
172(12-13):1495–1539.

Eiter, T., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2004). Well-founded seman-
tics for description logic programs in the semantic web. In Antoniou, G. and Boley,
H., editors, RuleML, volume 3323 of LNCS, pages 81–97. Springer.

Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386.

Grosof, B., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic programs:
Combining logic programs with description logics. In Proceedings of the World Wide
Web Conference (WWW2003), Hungary.

Heymans, S. and Vermeir, D. (2003). Integrating description logics and answer set pro-
gramming. In Bry, F., Henze, N., and Maluszynski, J., editors, Proc. of International
Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR 2003), vol-
ume 2901 of LNCS, pages 146–159. Springer.

Hustadt, U., Motik, B., and Sattler, U. (2007). Reasoning in description logics by a
reduction to disjunctive datalog. J. Autom. Reason., 39(3):351–384.

Lloyd, J. (1987). Foundations of Logic Programming (2nd Extended Edition). Springer-
Verlag.

Silberschatz, A., Korth, H., and Sudarshan, S. (2001). Database System Concepts, 4th
Edition. McGraw-Hill.

Tabet, S., Boley, H., and Wagner, G. (2001). Design rationale of RuleML: A markup
language for semantic web rules. In Cruz, I. F., Decker, S., Euzenat, J., and McGuin-
ness, D. L., editors, Proc. Semantic Web Working Symposium, Stanford University,
California.


