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Abstract. In this paper we introduce two novel ensemble models that ale bu
using Fuzzy ART (FA) and SOM networks as base classifiershisoptirpose,
we first describe three different strategies to convert thesipervised com-
petitive learning algorithms to supervised ones to alloenthto be applied to
pattern classification tasks. Then, a metaheuristic sofubased on a hybrid
PSO algorithm is devised for parameter optimization of tregpsed ensemble
classifiers. A comprehensive performance comparison uingenchmarking
data sets indicates that the FA- and SOM-based ensembkfias consistently
outperform ensembles built from standard supervised neww@avorks, such as
the Fuzzy ARTMAP and the Extreme Learning Machine.

1. Introduction

Neural classifiers are typically built from supervised fauitl neural networks
(ANNSs), such as the MLP and RBF Networks [Haykin 2008], ARTMAIRRt-n
works [Carpenter etal. 1991a] and, more recently, the Exdrdrmaarning Machine
(ELM) [Huang et al. 2006].

In contrast to learning stand-alone classifiers, Ensemldarriing (EL) has
been studied as an alternative to improve the generalizgamver of single classi-
fiers [Dietterich 2000]. The ensemble’s output is obtaingdcbmbining the outputs
of a set of single classifiers. The result is an ensemble ilggnmethod which can
reduce both the bias and the variance of single learningritigts and guarantee an
error less than or equal to the average quadratic error ofintigidual classifiers
[Krogh and Vedelsby 1995].

Unsupervised competitive learning ANNs, such as the SOMh{iten 1982],
the ART2 [Carpenter and Grossberg 1987a] and Fuzzy ART [Capebhal. 1991b] net-
works, for not requiring labeled data for training, are coomhy applied to data clus-
tering, vector quantization for signal/image compressamd dimensionality reduction
tasks. Available algorithms in both SOM and ART families amnsidered to be un-
stable algorithms andveak learners (indeed, these are typical features of ANNSs in
general), which are two base preconditions necessary fittitoy efficient ensembles
[Hansen and Salamon 2002]. However, the development of S&M-ART-based en-
semble models is still in its first infancy.

SOM-based classification ensembles frequently proceddthat following steps
[Corchado et al. 2007, Petrikieva and Fyfe 2002]: after inginseveral SOMs in the



usual unsupervised way, the training patterns are presemge more to the individual

maps in order to tag each neuron with the more frequent cdhst among those mapped
to that neuron. Then, each individual SOM in the ensemblpuistthe class label as-
sociated with the corresponding best-matching unit forvamginput pattern. Finally, a

majority voting rule is adopted in order to choose the finalisien of the ensemble.

ART-based ensemble models are less common. This can beredplzartly due
to the high number of parameters, such as the vigilance andhbice parameters, that
need to be set up in advance for this type of ANN architectdrgway, the works found
in the literature survey carried out for this research usB@MAP networks as base clas-
sifiers [Santos and Canuto 2008, Loo et al. 2006]. It was natdqarevious works using
ART networks. It is worth remembering that learning in ARTtwerks is unsupervised,
while for ARTMAP networks learning is supervised.

From the exposed so far, the main contributions of the ptgsagper is threefold.
The first one involves a comprehensive evaluation of theenfte of three different super-
vised variants of the SOM network in the performances of Skdded ensemble classi-
fiers. This approach gives rise to the MUSCLE (Multiple SOM Giisrs in Ensembles)
models. The second contribution consists in developing teetniques, inspired by the
supervised variants of the SOM, for building ART-based aride models. This approach
gives rise to the ARTIE (ART networks in Ensembles) modelse third contribution is
related with the proposal of a hybrid Particle Swarm Optation (PSO) technique for
tuning the parameters of the ARTIE and MUSCLE models.

The proposed models are compared with ensembles of two gnopupervised
algorithms (Fuzzy ARTMAP and ELM) using 10 benchmarkingadseéts. The obtained
results strongly suggest that the performances of ARTIEMUO&CLE architectures are
comparable to those achieved by ensembles of standardrsgeEneural networks.

The remaining part of this paper is organized as follows.dati®n 2 we present a
brief overview on the basic operations of the Fuzzy ART and/S@tworks. In Section
3 we introduce the ARTIE and MUSCLE models, as well as the I-BIR&jorithm. In
Section 4 we present and discuss the obtained results foeri¢hinarking classification
datasets. The paper is concluded in Section 5.

2. Basics of Fuzzy ART and SOM Networks

This section summarizes the operations of Fuzzy ART and S@Marks as unsuper-
vised learning algorithms. Both networks are comprised eflager of neurons and their
corresponding weight (prototype) vectors and the traimraxess follows the principles
of competitive learning. According to this learning pagadi neurons “compete” in order
to find groups of similar unlabeled input patterns (clusigyior, equivalently, to achieve
a compact representation of the input patterns (vectortqadion).

2.1. The Fuzzy ART Network (FA)

The main idea behind any ART architecture is that, if an irgaitern is different enough
from the patterns already stored in the long-term memosy. (weights) of the net-
work, then create a new category (cluster) and associatédtfierent input pattern”
to it [Keskin andOzkan 2009]. This novelty detection mechanism is highlgetfe in
identifying abnormal (outliers) patterns in the data [Barr@nd Aguayo 2009].



The FA network extends ART1, which was originally designegtocess only
binary data [Carpenter and Grossberg 1987b], being ablstdedrn analog inputs. The
initial network contains only one neuron with its weight$ sét to 1. Leta(k) =
la1 (k) aa(k) --- a,(k)]*, ap-dimensional input pattern at theth learning iteration.
Then, the FA network algorithm follows the steps below.

Step 1 Complement code thg-dimensional input pattera(k) into a 2p-dimensional
vectorx(k) € R?: x(k) = [a(k) a®(k)|’, whereal(k) = 1 — a;(k), Vi €

{1,2,...,p}.
Step 2 Presentx(k) to the first layer of the networkl;, and compute the activations
T;(k),¥5 € {1,...,n}, wheren is the number of neurons of the network. For

each neuron, associated with a weight vecter;(k) € R*, compute the corre-
sponding activatiofl’;(k) as follows:

(k) A w(B)
LW = g Tl

where|x(k)| = S22, |;(k)| is the sum of the absolute value of the components of
x(k), the symbolA denotes the fuzzy minimum operator afd a small positive
real number known as the choice parameter.

Step 3 Find the index of the winning neurgii, i.e. the one with maximum activation:

7 (k) = arg max{T} (k)}. )

V3

Vie{l,2,...,n}, (2)

Step 4 Check if the winning neuronj* satisfies the vigilance criterion, i.e. if
|x(k) Awj-(k)|/ |x(k)] > p, where0 < p < 1 is the vigilance parameter. If
the vigilance test is satisfied, go to Step 5; otherwise t thgeactivation of neu-
ron j* to zero (i.e.7;-(k) = 0) and go to Step 3. The search is repeated until a
neuron passes the vigilance test or all neurons have bded téfsall neurons fail
to pass the vigilance test, create a new category using thentunput pattern as
its prototype vector and go to Step 1.

Step 5 Update the weight vector of the winning neuron:

wi«(k+1) =n(wp(k) Ax(k)) + (1 —n)wj-(k), 3)
where(0 < n < 1is the learning rate. Go to Step 1.

Steps 1 to 5 are repeated for each training pattern. In thgergast one training
epoch (one cycle through the training set) is used, singadin on-line operation. It is
important to note that after the training phase each neuefinek a cluster by a hyper-
box [Carpenter et al. 1991b]. The testing process is donegfra simple winner-take-all
competition based on Eq. (2).

2.2. The Self-Organizing Map (SOM)

Introduced by [Kohonen 1982], the SOM learns from examplesagping (projection)
from a high-dimensional continuous input spacento a low-dimensional discrete space
(lattice) Z of n neurons which are arranged in fixed topological forms, esga eectan-
gular 2-dimensional array. The map(x) : X — Z, defined by the weight matrix



W = (wy,Ws,...,W,),w; € R C X, assigns to each input vectafk) € R* C X a
winning neuronj*(k) € Z, determined by

J*(k) = argmin [la(k) — w;(k), (4)

where|| - || denotes the Euclidean distance &nig the current iteration of the algorithm.

The weight vector of the current winning neuron and the orfiets meighboring
neurons are simultaneously adjusted according to theAwitplearning rule:

wi(k +1) = w;(k) + a(k)h(", J; k)[a(k) — w; (k)] (5)

where0 < «(k) < 1 is the learning rate and(;*, j; k) is a weighting function which
limits the neighborhood of the winning neuron. A usual cediar i(j*, j; k) is given by
the Gaussian function:

w5 i) = esp (122, ©

wherer; andr;- are respectively, the coordinates of the neurpasd j* in the output
array, ands(k) > 0 defines the radius of the neighborhood function at iteratioifhe
variablesa(k) ando (k) should both decay with time to guarantee stable convergeince
the weight vectors. In this paper, we adopt an exponent@dyléor both variables:

RNy o\ /T)
alk) = a <—> and o(k) = oy (—) (7)

Qg 0o
whereqy (0y) andar (o7) are the initial and final values ef(k) (o(k)), respectively.

Weight adjustment is performed until a steady state of dlobdering of the
weight vectors has been achieved. In this case, we say thatdlp has converged. The
resulting map also preserves the topology of the input sasnplthe sense that adjacent
patterns are mapped into adjacent regions on the map. Dimstmpology-preserving
property, the SOM is able to cluster input information analtip relationships of the data
on the map. In this paper, the SOM is trained for one epoch orityg testing phase is
similar to FA networks, with a winner-take-all competitibased on Eq. (4).

3. The Proposed Approaches

The MUSCLE model extends previous SOM-based EL models [Cdchaal. 2007,

Petrikieva and Fyfe 2002] by developing two other ways ofigleeg SOM-based EL
classifiers. Previous ART-based EL models [Santos and C20@®, Loo et al. 2006]

are built using ARTMAP networks, which are supervised dfeess. The ARTIE model,

inspired by the strategies used by the MUSCLE models, is al mmoach for building

ART-based EL classifiers from the FA networks. Finally, aeldwbrid PSO method
is proposed for parameter optimization of the base classifised by the MUSCLE and
ARTIE models. More details are given in the following senso

3.1. Adapting FA and SOM for Classification Problems

In order to use FA and SOM networks for supervised classificasome modifications
are necessary in their original learning algorithms. Thesent paper will focus on three
strategies for designing FA- and SOM-based classifierssd b#rategies, identified by a
suffix Ci, i € {1, 2,3}, have been used to design SOM-based classifiers. Howehe to
best of our knowledge, it is the first time they are used togfeBA-based classifiers.



3.1.1. Strategy C1: Post-Training Neuron Labeling

In this approach the SOM and FA networks are trained in thalususupervised way.
Afterwards, a neuron labeling process is carried out byemsg the training dataset
once again to the corresponding network and determiningvtheing neuron for each
pattern vector, according to Eq. (4) for SOM networks or E).for FA networks. The
label of the winning neuron is assigned on a majority votiagi. Ties can be broken by
random selection of the competing labels.

During the testing phase, the winning neuron for an unknoattepn is searched
through Eq. (4) for SOM networks, or through Eq. (2) for FAwetks. The predicted
class for the current input pattern is then the class agealigith the winning neuron.

Regarding the SOM, this strategy has been used for the defssgmyte classifiers
[Wyns et al. 2004, Christodoulou et al. 2003]; however, inse¢hat it was never tested
before with the FA network.

3.1.2. Strategy C2: One Network per Class

The second strategy uses one SOM (or FA) network for eachablaclass; for instance,
if three classes of data are available, three SOMs (or thisg Will be trained, one for
each class. The several SOMs (or FAs), however, are tramspendently, using only
the data vectors of the class it represents. There is no oedukf several SOMs (or FAS)
to have the same number of neurons, unless for the sake di@tgmuring testing, the
winning neuron is searched among the neurons of all avaifga@M (or FA) networks, so
that its class label is assigned to the current input vector.

As occurs for the Strategy C1, the Strategy C2 has been usee befohe design
of SOM-based classifiers [Souzanior et al. 2011, Biebelmann et al. 1996]; however, it
seems that it was never tested before with the FA network.

3.1.3. Strategy C3: Augmenting Input Space Dimension with @ss Labels

In the third strategy, the SOM (or FA) network is made supadiby adding class infor-
mation to each input data vector. Specifically, the inputmes (k) are now formed of
two parts,x,(k) andx;(k), wherex,(k) is the pattern vector itself an< (k) is the cor-
responding class label af,(%). During training, these vectors are concatenated to build
augmented vectors(k) = [x,(k) x;(k)]” which are used as inputs to the SOM (or FA)
network. The corresponding augmented weight vectorgk) = [w” (k) w'(k)]", are
adjusted as in the usual SOM/FA training procedure.

During recognition of an unknown vectafk), only itsx, part is compared with
the corresponding part of the weight vectors. Then, thes¢ddsel of the unknown pattern
vector is decided on the basis of twé. (k) part of the winning weight vectow - (k). The
index of the component of. (k) with highest value defines the class labekof).

As occurs for the Strategies C1 and C2, the Strategy C3 has beenhbas
fore for the design of SOM-based classifiers [Xiao et al. 208&-Hoyo et al. 2003,
Kohonen 1988]; however, it seems that it was never testeatdefith the FA network.
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Figure 1. ARTIE and MUSCLE models.

3.2. ARTIE: ART networks In Ensembles

The Fuzzy ARTMAP (FAM) network is a supervised learning neetithat utilizes FA as
building block. For being a supervised classifier, FAM is &ura choice for the base
classifier in building EL models [Santos and Canuto 2008, Liad.€2006]. However, as
described previously, the Strategies C1, C2 and C3 can be ugethtthe FA network
into a supervised classifier. This way, FA networks can ats@esas base learners for
building EL models for classification. This approach giviss to the ARTIE model.

The immediate advantage in using FA-based classifiersad$i@M-based as base
learners is related with the computational costs. Trai@ang\RTIE model requires half
the number of FA networks required by an ensemble of ARTM&B-hetworks and,
hence, half the number of parameters. Since FA is simpler BAdV, building ARTIE
classifiers is expected to be much easier.

Each one of ARTIE'S. base classifiers are trained independently using different
subsets of the original training set. Theses subsets aatedrasing the BaggindBoot-
strap Aggregating) method with the objective of generatingrsity [Breiman 1996].
Figure 1(a) shows the block diagram of the ARTIE model. Thigouof ARTIE is de-
cided with a simple majority voting process within the réswlf the single classifiers.

It is necessary to determine some parameters of FA networkghéir use in
ARTIE models, namely: the vigilance parametethe choice parametgrand the learn-
ing stepn. In order to find almost optimal values for these problenmegmeparameters,
a hybrid PSO strategy is introduced in Section 3.4.

3.3. MUSCLE: MU ltiple SOM C Lassifiers in Ensembles

As mentioned in Section 1, the SOM network has been been usé&ld iclassifiers
[Corchado et al. 2007, Petrikieva and Fyfe 2002]. For thippse, the Strategy C1 has
been the chosen one. However, Strategies C2 and C3 can alsed®ughe same pur-
pose. Thus, in doing so, we aimed at extending the rangeerhalive ways of building
SOM-based EL classifiers. This approach gives rise to the GLLESModel.

!Bagging is carried out by sampling (with replacement) irmirexamples, forming new training sets,
usually with the same size of the original one. For a trairsegof N samples andV being large enough,

this procedure causes each sample to have a probabil(t%@ﬂN ~ 0.368 of not being chosen.



MUSCLE's base classifiers have the same dimensions and pa@amBiversity
is obtained through random weight initialization and ugimg Bagging for data set selec-
tion. The final result is obtained by a simple majority votengong the base classifiers,
as with the ARTIE model. Figure 1(b) shows the block diagrdithe MUSCLE model.

As the ARTIE model, the MUSCLE model also needs some paramétebe
tuned. The main parameters are the dimensions of the nig@n@ P), the initial and
final learning stepsrg andrn,) and the initial and final spread parameters &ndoy).
In order to find almost optimal values for all these problgreesfic parameters, a hybrid
PSO strategy is introduced in the next section.

3.4. An Improved Hybrid Particle Swarm Optimization

The Particle Swarm Optimization (PSO) method [Kennedy aoerEart 1995] is inspired
by the social behavior and auto-organization of bird flogkamd fish schooling. The ex-
change of information among the population generates exjbm for better solutions,
while the individual learning corresponds to the explostatomponent, providing a com-
bination of global and local search to the algorithm [Peelei@nd Chipperfield 2010].

In [He and Wang 2007] it is proposed a variant of the origin&OPalgorithm,
called Hybrid Particle Swarm Optimization (HPSO), by adrfieasibility-based rules for
handling constraints and a local search step based on Sedudanealing (SA). In this
paper, for the sake of parameter optimization of the basssiflars of the ARTIE and
MUSCLE models, we incorporate the features of the HPSO dlgurinto the PSO Stan-
dard 2007 [Bratton and Kennedy 2007], resulting in an impdoversion of the HPSO
algorithm, called from now onwards, the Improved HPSO (IS4H algorithm.

Letx;, € R? andv; € R be, respectively, the position and velocity vectors of the
i-th element in a swarm of particles, wheiés the number of variables of the problem.
Let alsop, € R? andpl, € R? be, respectively, the vectors of best historical individua
position of thei-th particle and the best historical position of the neighlbod*.

For a given objective functioffi(-), the I-HPSO algorithm is implemented accord-
ing the following steps for a total df 5o generations:

Step 1 Letm = 1 and dox;(0) = Xyin + Ximaz — Xmin)U,
Vi(0) = (Xmaz — Xmin)U — X;(0), p;,(0) = 0 andpl,(0) = O, whereU is ad-
dimensional random vector whose components are uniformslyilolted in the
interval[0, 1], 0is ad-dimensional null vector and,,... andx,,.;,, are, respectively,
the maximum and the minimum limits for the componentg;of

Step 2 Evaluate all the particles of the swarm. The ve@tdrn) of each particle receives
the current position, as well as its associated value foolijective function. The
vectorpl, (m) and its objective value receive the best position and thedigsc-
tive function among the particles of the neighborhéod

Step 3 Consideringk;(m) andv;(m) respectively as the position and velocity of the par-
ticle ¢ during the current iteratiom andk the neighborhood of theth particle,
calculate the following update equations:

Vi(m + 1) = x{vi(m) + cir1[p;(m) — X;(m)] + cara[pl.(m) — X;(m)]},  (8)

x;(m + 1) = %;(m) + vi(m + 1). 9)



wherey is the constriction factor;; andc, are positive constants called accel-
eration coefficients, while; andr, are independent random variables uniformly
distributed in the intervaD, 1.

Step 4 Evaluate all the particles of the swarm.

Step 5 For each particle, if f(x;(m)) > f(p,(m)), p;(m) is updated withx;(m).

Step 6 For each neighborhookl, letp, ~(m) = argmax(f(p;(m))) for all i referred
to particles within the considered neighborhood.f (b, (m)) > f(pl,(m)),
pl,(m) is updated with the solutiop,, (m).

Step 7 Randomly select a fraction of the neighborhoods and perfbentoical search step
based on SA in the solutioms, for each selected value éf

Step 8 Letm = m + 1. If m > Lpgo, stop and output the begt, (m) of all neighbor-
hoods as the best solution found. Otherwise, go to Step 3.

The local search step is performed only over a fraction ofsighborhoods (in
this paper only10%), randomly chosen, to speedup the search processl let) € R?
be the best solution found in titeth neighborhood until the generatienandp,, € [0, 1]
be the acceptance probability of a new solution. Let &lsg be a temperature parameter.
The local search is done according the following steps duhe generatiom of I-HPSO
algorithm for a total of.s 4 iterations:

Step 1 Don = 1 andpl}, = pl,(m).
Step 2 Generate a new solution using the following equation:

X/ = pI;g + nSA(XmaJ: - szn)N(Oa I)a (10)

whereng 4 is an incremental step,,... andx,,;, are, respectively, the maximum
and the minimum allowed values for the variables of a soluaadN(0,I) is
a d-dimensional Gaussian random vector with zero mean vecibitize identity
matrix as the covariance matrix.

Step 3 Calculate the acceptance probabijity= min {1, exp [%;)f(x)

Step 4 If p, > U(0,1), whereU(0, 1) is a random number uniformly distributed in the
interval [0, 1], dopl, = X'.
Step5Don =n+1.If n> Lga, stop and d@l,(m + 1) = pl, or else, go to Step 2.

The parametert is initiated with an empirical value [He and Wang 2007]:
t(0) = —% where f,,... and f,:.» are respectively the maximum and minimum
values for the objective function in the initial swarm. Atpthe generationg,is reduced

exponentially, i.et(m + 1) = At(m), where the annealing rafesatisfied) < A < 1.

In order to apply I-HPSO to parameter optimization, eachiglarof the swarm is
formed by a vector of values for the tunable parameters amdlfective functiory (-) is
chosen to be the accuracy obtained by the classifier with siljeset of parameters.

4. Simulations and Discussion

Tests with 10 real-world benchmarking datasets were chouge. We used 9 UCI datasets
(Balance, Breast-w, Dermatology, Glass, Heart, Sonar, \é&hwall-Following, Zoo)
[Frank and Asuncion 2010] and the vertebral column pathetglataset described in
[Rocha Neto and Barreto 2009], named henceforth VCP datasiet) vehavailable upon
request. A summary of the evaluated datasets are presentable 1.



Table 1. Summary of the benchmarking datasets.

Instances| Features| Classes
Balance 625 4 3
Breast-w 683 9 2
Dermatology 358 34 6
Glass 214 9 6
Heart 270 13 2
Sonar 208 60 2
VCP 310 6 3
Vehicle 846 18 4
Wall-Following 5456 2 4
Zoo 101 16 7
Table 2. Results from classification problems. The accuracy and standard devia-

tion are percentages.

Balance | Breast-w | Dermat. | Glass Heart Sonar VCP | Vehicle | Wall-F. Z00
ARTIE-C1 86.08 97.23 96.05 65.30 | 82.22 82.64 | 77.42 | 68.60 97.21 | 97.09
+5.22 +2.20 +3.64 +10.82 | +6.49 | +9.72 +6.27 | £6.24 +0.38 | +4.69
ARTIE-C2 86.09 96.35 98.11 73.71 80.0 88.0 80.65 73.78 99.95 96.09
+3.26 +2.57 +2.18 +8.39 | £8.76 | +7.53 | +£6.27 | £5.90 | +0.09 | £6.91
ARTIE-C3 84.66 97.09 97.20 73.87 83.70 84.5 83.87 | 71.44 99.87 | 94.09
+4.12 +2.72 +1.91 +5.12 | +5.84 | +11.17 | +5.89 | +6.16 +0.19 | £6.94
MUSCLE-C1 85.45 97.22 95.53 72.29 79.63 82.29 85.81 66.49 95.47 96.09
+3.42 +2.23 +4.07 +9.11 | £9.44 | £10.61 | £9.40 | +7.29 +0.52 | +£5.05
MUSCLE-C2 86.58 97.08 97.14 70.06 | 82.59 85.64 | 84.19 | 71.10 98.02 | 94.09
+3.98 +1.92 +3.01 +395 | £7.82 | +£7.83 | £6.71 | +5.35 +0.59 | +6.94
MUSCLE-C3 90.59 97.67 98.05 74.42 78.52 89.0 85.16 69.45 96.63 94.09
+3.36 +2.28 +1.91 +7.02 | £7.96 | £10.75 | £6.66 | +5.91 +0.61 | +£5.09
ELM ensemb. 89.96 96.80 96.96 66.72 82.59 77.71 | 84.84 | 72.27 94.74 | 92.09
+3.36 +2.71 +2.75 +8.44 | £856 | +7.28 | +£9.26 | +7.81 +1.11 | +6.30
EAM ensemb. 86.75 96.65 98.0 72.76 79.63 83.36 81.61 72.11 99.73 93.09
+3.15 +2.64 +2.35 +8.90 | +8.95| +6.36 | +8.61 | +6.13 | +0.28 | +£6.71

For each problem and base classifier a set of parameters wasided using
[-HPSO. The optimization process was realized with swarfr&0oparticles, a total of
25 generations and 10 iterations of local search. The othempeters of I-HPSO were
¢ = cg = 2.05, x = 0.72984, A = 0.94 andns4 = 0.001.

For all simulations, ARTIE-Ci and MUSCLE-Ci, i =1, 2, aryd are comprised
of L = 10 base classifiers. The 10 base classifiers are constrainedbft a single
supervision strategy (C1, C2 or C3). This was done in order te havetter idea of the
influence of the type of supervision strategy on the EL pentoice.

For the sake of completeness, performance comparisoneéetthhe proposed
models and ensembles of ELM and FAM networks are carried Dloe. ELM/FAM en-
sembles also usefl = 10 classifiers and were trained through the Bagging method.
Decisions were also made through the majority voting rule.

The performance evaluation procedure follows the appraacbmmended by
Salzberg [Salzberg 1997], which applies 10-fold crossdasibn and McNemar’s test
[Everitt 1977] for comparing the resulting models. The fesior each evaluated dataset
are shown in the columns of Table 2, where the best valuesghédhted in bold.

It is worth noting that ARTIE and MUSCLE presented the bestltssfor all
datasets in comparison with ensembles of ELM/FAM classifiedindeed, the best
among the proposed ARTIE/MUSCLE models performed alwaytebéte ensembles



Table 3. McNemar's test for « = 0.05. Results are in units of datasets. Winners
are in bold. Ties are broken evaluating the best results in Ta ble 2.

Classifier A Classifier B Ax~B | A>B | A<B
ELM ensemb. | ARTIE-C1 7 2 1
ELM ensemb. | ARTIE-C2
ELM ensemb. | ARTIE-C3
ELM ensemb. | MUSCLE-C1
ELM ensemb. | MUSCLE-C2
ELM ensemb. | MUSCLE-C3
FAM ensemb. | ARTIE-C1
FAM ensemb. | ARTIE-C2
FAM ensemb. | ARTIE-C3
FAM ensemb. | MUSCLE-C1
FAM ensemb. | MUSCLE-C2
FAM ensemb. | MUSCLE-C3
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of ELM/FAM classifiers. The ARTIE-C2 and MUSCLE-C3 achieved thest overall
performances, presenting best accuracy in 30% and 40% dftiasets, respectively.

As a final evaluation, we applied the McNemar's statistiest tas described in
[Dietterich 1998] for comparing the performances of thessifiers, taken in pairs. The
objective is to estimate the probabiliyof two given classifiers being equivalent (null
hypothesis) from a score calculated with the McNemar’s test. For a significance value
of a = 0.05, if p < «a it is unlikely that two classifiers are equivalent, i.e. thdln
hypothesis is rejected. In this case, the classifier wittebetean accuracy is considered
the best for that dataset. Results are summarized in Table 3.

ARTIE-C2, ARTIE-C3 and MUSCLE-C3 models performed better inggahthan
both ELM- and FAM-based ensembles. ARTIE-C1 was the onlyavarihat presented
poor results. It is worth mentioning, however, that McNemgest only claims that two
algorithms are different when one of them almost outperfoime other [Dietterich 1998].
Thus, when it suggests that the two classifiers are similarrecommended to evaluate
the performance metrics shown in Table 2 to choose the best on

5. Conclusion and Further Work

Although both FA and SOM networks are originally unsupezdisompetitive learning
algorithms, three different techniques were describetl #ie goal of converting them
into supervised learning methods. With the supervisedagsiof the FA and SOM net-
works at hand, one can build ensemble classifiers with thérmggrise to the ARTIE
and MUSCLE models, respectively. In addition, the problentlebosing the appro-
priate parameters for training base classifiers, for eaassilcation task, was tackled
using a metaheuristic approach, which led to the developofehe I-HPSO algorithm.
A comprehensive performance evaluation was then carriefbo@0 different real-world
datasets in order to compare the ARTIE and MUSCLE variants esembles built from
standard supervised classifiers, such as ELM and FAM neswvditke obtained results in-
dicates the superior performances of the proposed ARTIBVABECLE models.

In this paper we have developed ensembles built using aessuglervised variant
of the FA and SOM networks. Further work will evaluate theerof diversity of the
base classifiers in building efficient ARTIE and MUSCLE modélfe goal is to build
ensembles whose base classifiers are different variaritg &% and SOM networks.
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