Agent motion planning with pull and push moves

Tadeu Zubaran, Marcus Ritt

Departamento de Informatica Teorica, Instituto de Informatica
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

Abstract. Agent motion planning is a common task in artificial intelligence.
One of the simplest scenarios considers the delivery of boxes to storage loca-
tions on a regular grid with obstacles. When the agent can only push boxes,
we obtain the well-known, PSPACE-hard Sokoban puzzle [Culberson 1997]. In
this paper we propose an exact solver for the scenario called Pukoban where the
agent can push and pull boxes. The solver is, to the best of our knowledge, the
first one proposed for Pukoban. It is based on the A* search algorithm with sev-
eral problem-specific improvements. We evaluate its efficiency on 100 instances
from the literature. Our algorithm is able to solve 30 instances exactly.

1. Introduction

Pukoban is a game on an integer grid, where an agent (the warehouse keeper or robot)
has to move boxes to designated storage locations. Each grid cell can contain a box, or an
unmovable obstacle (or wall), which neither the agent nor a box can occupy, or a storage
(or target) location, where a box must be placed to solve the game. Cells that do not
contain a wall nor a box form the free space. The agent can push or pull a box one cell
horizontally or vertically if the destination cell is free and he has enough space to do so.
When the agent succeeds in placing every box at a storage locations the puzzle is solved.
This simple set of rules can be deceiving as even a relatively small puzzle can be very
hard to solve for both computers and humans alike, requiring that we use clever strategies
to solve them. The goal of these puzzles is to study the solvability of abstract versions of
typical motion planning situations, e.g., in robotics [Dor and Zwick 1999].

The reader can find an instance of a Pukoban puzzle in Figure 1. It shows one of the
easiest and smallest test cases for our solver.
1.1. Other Versions of the Game

A slightly different and much more famous puzzle where the worker can only push the
boxes is known as Sokoban. Schaeffer and Junghanns present a study of techniques to
solve Sokoban puzzles [Schaeffer and Junghanns 2000] . When we attempt to solve a

@t

‘ Empty cell Target location

X
‘ o Box D Wall
DX >< A Agent

Figure 1. Example instance of Pukoban. The optimal solution needs 48 box move-
ments.

Pukoban game either with a computer or by hand the successful strategies tend to be
somewhat different from those successful in Sokoban, in spite of the striking similarities
in their rule set.

There are many other versions of Sokoban-like games. Such versions include, for ex-
ample, movable obstacles, allow the keeper to push up to k£ boxes, or even an unlimited
number, require boxes to slide until hitting the next obstacle, or include boxes which
occupy more than one cell. Most of these version have been proved to be NP-hard or
PSPACE-complete [Demaine et al. 2003]. The NP-hardness of the Pukoban puzzle is, to
the best of our knowledge, open.

While there is all this plethora of modifications of Sokoban there are other similar puzzles
that have being explored in the literature and provided some insight on how to solve
Pukoban puzzles such as Atomix [Hiiffner et al. 2001].

2. Exact solution of Pukoban

Solving Pukoban is equivalent to finding the shortest path from the initial state to some
solution state in the state graph. The vertices of this graph are the possible states of the
game. Two states are joined by an arc, if there is a move transforming the first into the
second one. In this work we define the number of box movements as the distance metric.
One might be interested in minimising the number of movements of the worker itself,
which is not considered by our approach.

2.1. Comparison with Sokoban

The rules for a Pukoban are quite similar to the Sokoban puzzle however they differ in
key characteristics making the process of automatically solving a Pukoban game quite
different from a Sokoban game.

First, and perhaps most importantly, a Sokoban search space graph is directed, making
deadlocks possible. This is particularly important in man-made maps where most of the
opening moves put the game in deadlock. Junghanns cleverly exploited this characteris-
tic using a deadlock table that drastically reduces the branching factor — the number of
possible moves in a given state, equal to the (out-)degree of the state in the state graph —
of his search tree [Schaeffer and Junghanns 2000]. In Pukoban every move is reversible,
and thus our search space graph is undirected and it is impossible to form a deadlock.

Solving Sokoban can be accelerated by using so-called tunnel macros. In Sokoban once
the agent starts to push the box through a tunnel of width one, no target cells are in the
tunnel, and there is no possibility to get to the other side of the tunnel, the agent must
push the box all the way through the tunnel. In Pukoban there is no such limitation and
the tunnel can conceivably be used as storage place for the box. Another key difference
is that, even without considering deadlocks, the branching factor of Pukoban is usually
bigger than that of Sokoban since there are more possibilities for the worker, leading to
considerably larger search trees, and thus making the puzzle harder to solve.

2.2. Pukoban-specific Strategies

Our approach is based on the A* algorithm [Hart et al. 1968] applied to the state graph of
the game to find a path of minimum cost from an origin state to a target state, along with

Algorithm 1 Pseudo code for the A* algorithm with closed set
open set contains only start node
closed set is empty
while open set is not empty do
current node is the node with the cheapest fotal cost in open set
remove current node from open set and put it in closed set
if current node is target node then
shortest path has been found: puzzle is solved
else
for each neighbour of current node do
if current neighbour is not in open set nor in closed set then
put neighbour in open set
end if
end for
end if
end while
target node is unreachable from the start node

several improvements. A* is a modification of Dijkstra’s shortest path algorithm using a
heuristic which estimates the distance to the target to guide the exploration of the search
space. A* has the same worst case complexity O(m + nlogn) as Dijkstra’s algorithm
(when implemented using a Fibonacci heap), where n and m are the number of vertices
and edges of the search graph. Observe that in our case the search graph has up to (Tbc)
vertices, for a map of dimension r x ¢ and b boxes, which is exponential in the size of the
input. Algorithm 1 shows the pseudo-code for the A* algorithm.

We call current cost of a node the cost to get from the start to the current node, heuristic
cost the cost predicted by the heuristic to get from the current node to the target node, and
total cost the sum of the current cost and the heuristic cost.

When we reach the target state, the current solution is guaranteed to be optimal for admis-
sible heuristics. To be admissible the estimated distance to the target can never exceed the
true distance. It is desirable that the heuristic is also monotone. A heuristic is monotone if
for every pari of states = and y we have h(x) < d(x,y)+ h(y) where h(z) is the estimated
distance of state z to the target state, d(z,y) is the actual distance to go from state z to
state y. This means that it is impossible to decrease the fotal cost of a path between two
nodes by adding another node in the path. As it will be seen in the following sections our
total cost never decreases so all our heuristics are monotone. This helps A* because once
A* visits a node (i.e. the node is the node with the lowest total cost) we can guarantee
there will be no cheaper path to it so we can use a closed set, the set of nodes that do not
need to be explored again improving the algorithm efficiency.

2.2.1. Distance Heuristic
We need a heuristic to guide the search of the A* algorithm. The quality of this heuristic

usually has a significant effect on the overall performance of the algorithm. A simplistic
yet computationally efficient approach is to compute the Manhattan distance of each box

()

Figure 2. (a) The Manhattan distance underestimates the cost. (b) A path without
enough space for the worker. (c) Multiple boxes concur for the same destination.

to the closest target cell. The sum of these values for all the boxes will give us a monotone,
admissible heuristic. It is monotone because we do not decrease the total cost, if we are
able to follow the path predicted by the heuristic. Otherwise the total cost will increase.
The same argument applies to the following heuristics. If we compute the distance of each
non-wall cell to its nearest target in a preprocessing step, we can compute the heuristic in
O(N), where N is the number of boxes.

We can improve the heuristic by taking into account the actual geometry of the map and
use the distance to the closest target in free space. In Figure 2(a) the Manhattan distance
to the target is two, yet the box can not be moved over the wall so a cost of four would
be much more accurate. This technique gives us a more accurate yet still admissible and
monotone heuristic. We introduce a small overhead in the preprocessing, but the cost of
dynamically computing the heuristic remains O(N).

Another improvement is to take into account that the box has to be either pushed or pulled
by the worker so we can only take paths where there is space for the worker itself. In
Figure 2(b) our previous heuristic would give us a cost of five for moving the box along
the dashed line. But this is an impossible route because there is no space for the worker
to move the box from A to B. Taking this into account we obtain a heuristic cost of nine
for the path indicated by a continuous line. Similar to our previous improvement this
introduces only a small overhead in the preprocessing but has no effect in the dynamic
computing of the heuristic cost. We call this the shortest distance heuristic. Notice that it
remains admissible and monotone, making it strictly better than the previous two.

We can further improve the heuristic taking into account that each target can be occupied
by at most one box. In Figure 2(c) our current heuristic is two, but obviously we need
at least four moves to bring both boxes to target positions. Thus the heuristic can be
improved by considering only matchings of boxes and target positions. We can not allow
an arbitrary matching since our heuristic can never overestimate the cost to guarantee its
admissibility. Therefore we compute the distance of each of the non-wall cells to each of
the targets. With that information we can compute the minimum matching of the distances
of the boxes to the targets. The sum of the costs of this matching can be safely used as
our heuristic keeping it monotone and admissible. We call this the matching heuristic.

A minimum matching in a bipartite graph (in our case the graph consisting of current and
target positions) can be found in polynomial time using, for example, the Hungarian (or
Kuhn-Munkres) algorithm [Kuhn 1955]. Like our previous improvements this introduces
a small overhead in the preprocessing since we now have to compute the distance of

each cell to each of the targets, but unlike our other improvements this also makes the
dynamic computing of the heuristic more expensive because the minimum matching has
to be calculated for each computed node of the search space.

2.2.2. Inertia

When a human solves an open map (either in a Sokoban or a Pukoban game) it is normal
to see the same box being moved several times in a row. We use this characteristic to
break ties between states of the same total cost, giving preference to states that keep the
agent moving the same box. This was discussed by [Schaeffer and Junghanns 2000] when
solving Sokoban puzzles and translates quite well to our case.

2.2.3. Choke Points

Several of the Sokoban specific maps have a room (a connected region of cells) where all
the targets are [Schaeffer and Junghanns 2000]. In such a situation further optimisations
are possible. We define a choke point as a cells that separates targets from boxes, i.e.,
when a choke point is blocked, no box can reach any target. If we find multiple choke
points we choose the one that minimises the size of the room containing the targets. We
call the choke point and all the cells beyond this point in the direction of the targets inside
the room and the other cells outside. Choke points can be found in a preprocessing step
by applying a direct test of the definition above. The following improvements are only
possible when we find a choke point.

Prefer Box Closest To Target An improvement based on the strategy that humans tend
to use when solving open maps is to attempt to move boxes that are already near a target
first. When there are nodes tied in cost, we prefer to explore first those at positions inside
the target room. If there is no such box accessible, we prefer the box closest to the choke
point. Both inertia and this improvement usually point to the same node to be explored
first. When they differ the box closest to the target has priority over inertia, since this may
help to remove obstacles for the later boxes.

Dynamic Computation of Minimum Matchings If we have a choke point sometimes
the minimum matching can be updated using the matching of the previous state. If we
move a box that was outside the target room at position ¢ in state s to position ¢’ in a state
s’ that still is outside, then the new heuristic is given by h(s’) = h(s) + d(¢) — d(c),
where h(x) is the heuristic cost of the state = and d(y) is the distance (as defined when
we calculate the heuristic) of the position y to the choke point. To show this we point out
that the heuristic cost of any box outside with regard to any of the targets ¢ € 7' is given
by di(a) = d.(a) + di(c), where d,.(y) is the heuristic distance from y to « and 7" the set
of all targets. By hypothesis the moved box was outside, so only d.(a) changes, meaning
the distance of the box to all the targets changes by the same amount, so the minimum
matching of the previous state is also the minimum matching of the new state, but with
a cost increased by d(c’) — d(c). Since most of the search is performed moving outside
boxes and we can compute the heuristic in constant time in such cases, this improves the
performance considerably.

X @®| <

30 []
x| (1]

(a) (b)

Figure 3. (a) Example of a clog: The worker has to move a box away from the
targets to be able to solve the puzzle. (b) Example of an ineffective clog: The
agent can not move when the condition of the clog is satisfied.

Clogs The state graph of a Pukoban game is bidirectional, therefore we do not have
deadlocks but during the process of solving the game sometimes we form some structures
that cannot be undone without increasing the total cost. We call these structures clogs.
Clogs can be formed by two or more boxes. Figure 3(a) gives an example of a two-box
clog.

Most clogs depend on the position of the worker as well as the position of the boxes that
form the clog. In the example above we would not have a clog (meaning we would not
underestimate the heuristic with certainty) if the worker was inside the room with the
targets. A clog is completely defined by the position of the boxes that form the clog and
a set of positions where the worker can be. We can calculate clogs in the preprocessing
stage by attempting to solve the Pukoban puzzle with a limited number of boxes without
increasing the heuristic.

Observe that since the matching of a subset of the boxes to the targets in the optimal
solution is unknown, we can not just compute the minimal matching of the boxes to the
targets to decide if they form a clog. However, in the common situation that there exists a
choke point, and the candidate boxes are outside the target room, the matching of boxes to
targets is irrelevant, and we can safely identify clogs. We further limit the preprocessing
to computing clogs with a small number of boxes since computing all clogs with the any
number of boxes would mean solving the original Pukoban problem (along with several
others), rendering this process useless.

We can increase the heuristic cost when we detect a clog in some state. We choose a
conservative approach of increasing the heuristic by the minimal possible increase of two,
if we find at least one clog. The process of using clogs to improve the heuristic introduces
an overhead to find the clogs when preprocessing and during the execution of the A*,
because we need to test if any clogs are present at each new state. This is true even if we
use the choke point optimisation where we can use the previous heuristic to compute the
new heuristic faster since any move of a box may form or destroy a clog.

We chose to look for two-box clogs only. This is already a costly preprocessing and
usually yields between ten and 500 clogs. We further trim the types of clogs we will be
looking for by eliminating those that either limit the position of the worker too much (i.e.
the worker can not move more than a few cells) or consist of very distant boxes, since
such patterns are very uncommon. Figure 3(b) shows an example of the former situation.
Since the agent can not move if we satisfy the condition of the clog, we can remove it
without increasing the cost of the search.

3. Notes on the Implementation

A small memory footprint of the nodes is important for a good performance of the A*
search. We store the static geometry of the maze (i.e. position of walls, targets and free
spaces) only once in a two-dimensional array. The worker’s position is stored as a pair of
16-bit integers, while the position of the boxes and the targets is stored as a set of such
pairs. The program also computes and stores the cells reachable by the agent without
moving a box in a bitmap. Using this representation a node in the search space occupies
only 2(n + 1) 4+ rc¢/8 bytes, for n boxes and a map of size r x c.

If the map contains a choke point, we store another bitmap indicating the cells inside
the target room and position of the choke point. The clogs found during preprocessing
are stored in a list. Each element of the list contains the set of the boxes forming the
clog and a bitmap of the agent’s positions that make the clog effective. If we use the
heuristic without the minimum matching we store the distance of each position to the
closest target in a two-dimensional array; if we use the minimum matching then we store
a three-dimensional array with the distance between every cell and every target.

The open and the closed set are two key data structures of A* that must be implemented
efficiently (see Algorithm 1). The closed set has to support addition of a new element
and a test if some element is already contained. We chose a hash table to represent the
open set, since it can execute both operations in amortised constant time provided we
have a collision-free hash function. Due to the large number of states, computing such a
function can be very expensive so we made a compromise between the number of hash
conflicts and the cost to compute the hash function. The function is given by H(s) =
> i<ienTn2¢; + ir; for n boxes at positions (r;,¢;), 1 < i < n. The open set can be
implemented as a priority queue, which supports the removal of the element with the
lowest total cost and the update of the distance of an element already contained in the
queue, when we have found a shorter path to the node in question. Our implementation
combines the priority queue with an additional hash table to efficiently find the states
already stored in the queue. This way an update has cost logarithmic in the number of
open states, the extraction of the smallest element has constant amortized time.

4. Experimental Results

We have implemented our algorithm in C++. (A preliminary version of the solver im-
plemented by our group is available at [Jurkovski 2010].) It has been compiled using the
GNU C++ 4.4.1 compiler with the “-O3” option. We used a PC with an Intel Core 17 930
processor with 12 GB of main memory for the experiments. The time limit for each test
was 3600 seconds. All times are wall clock time.

We tested our algorithm on two quite distinct sets of test cases. The first set consists
of small, densely populated maps designed specifically for the Pukoban game [Clercq].
Humans tend to have difficulty solving these maps, while computers can solve them with
relative ease since the search space tends to be small. The second set of maps consists of
much bigger maps, which were designed for Sokoban and tend to have much more free
space between the boxes. Humans typically solve Pukoban games of these maps with
relative ease close to optimality. The search space grows rapidly with the size of the map,
and the free space leads to lots of equivalent moves, so these are challenging maps for a
solver.

We tested the shortest distance heuristic and the matching heuristic with three groups of
improvements: a basic set consisting only of box ordering, a medium set adding inertia,
choke points and giving preference to boxes closer to the destination, and a complete set
further adding clogs. Due to space limitations, we present only five of the 12 experiments.
Table 1 presents the results for the Pukoban instances with the shortest distance heuristic
with basic improvements, and the matching heuristic with complete improvements, re-
spectively. Tables 2, 3, and 4 present the results for the XSokoban instances using the
matching heuristic and basic, medium, and complete improvements. In all tables column
“M” reports the number of moves if an optimal solution has been found or “-”” otherwise,
column “T” reports the execution time in seconds, column “V” reports the number of vis-
ited nodes, column “Nodes” reports the total number of nodes, and column “BF” reports
the branching factor.

The branching factor depends on the characteristics of the instance (e.g. the number
and placement of obstacles) and varies between 3 and 30. We can observe small fluc-
tuations for different heuristics, which can explained by the different order in which
states are explored. The larger instances have an average branching factor of about
12.3, which is larger than the typical branching factor of 10 for Sokoban and 7 for
Atomix [Hiiffner et al. 2001], showing that we have to explore more states to find an
optimal solution.

All ten of the smaller Pukoban instances can solved in less than five seconds even with the
simplest heuristic. Actually, the better heuristic almost doubles the execution time, since
it is not able to amortize its higher computational cost by pruning reducing the already
small search space. Looking at the XSokoban instances, we can see positive effects of
better heuristics. In our experiments, the simple distance heuristics could not solve any
instance. Using the matching heuristic, but only box ordering, we are able to solve 15
of the 90 XSokoban instances. Adding inertia and choke points the solution time for the
already solved puzzles drops significantly, but we are able to solve only two more puzzles.

Finally, when adding clogs, the number of solved instances increases to 20. Of all the
improvements, clogs have the most significant impact on the solution of the puzzle, except
the quality of the heuristic. When introducing clogs, the number of visited nodes and the
execution time drops by 10% for puzzles already solved with medium improvements. To
evaluate the quality of the our solver, we can compare it to Sokoban where the currently
best implementation is able to solve 57 of 90 instances [Schaeffer and Junghanns 2000].

5. Conclusions and Future Work

We have proposed an exact solver for Pukoban puzzles. It is able to solve 30 of 100
challenging instances. The most important characteristics which make this possible are a
precise distance heuristic, which can be computed efficiently, and the detection of patterns
of boxes which increase the estimated distance. We are currently evaluating the quality of
the proposed algorithm as an approximate solver, since the heuristic usually is very close
to the optimal solution, and most of the time is spent in proving optimality of a solution
found early in the search.

Since the implementation has a low memory footprint there was no need to use more so-
phisticated algorithms to save memory such as IDA* [Korf 1985]. We intend to study the
behaviour of IDA* to solve the larger instances. Other future improvements are more effi-

Table 1. Results for Pukoban instances. Left: Shortest distance heuristic. Right:
Matching heuristic, box ordering, inertia, choke points and clogs.

Map M T V ~ Nodes BF Map M T V ~ Nodes BF
1 48 0 433 1255 29 1 48 0.01 431 1247 29
2 51 0.03 1056 3464 33 2 51 003 1014 3367 3.3
3 51 002 1028 3332 3.2 3 51 0.04 879 2822 3.2
4 62 001 1176 3473 3.0 4 62 003 1127 3352 3.0
5 59 0.02 850 2742 3.2 5 59 0.02 802 2608 3.3
6 80 027 11808 37431 3.2 6 80 059 11642 37040 3.2
7 7
8 8
9 9
0 10

114 0.17 8865 26544 3.0 114 038 8792 26338 3.0
8 0.14 6645 21200 3.2 8 037 6637 21188 3.2
94 1.22 31632 99005 3.1 94 2.63 31610 98961 3.1

173 1.82 41797 130804 3.1 173 4.03 41746 130721 3.1

cient data structures, such as the data structure proposed by Hiiffner [Hiiffner et al. 2001]
for a better priority queue management, and the evaluation of other search space pruning
techniques. Pukoban has a lot of potential for new discoveries applying domain knowl-
edge for finding and exploring patterns such as clogs, which can improve the distance
estimate to the solution in specific situations. As an example, we may be able to improve
the heuristic in the presence of multiple clogs.

References
Clercq, D. D. Pukoban. http://puzzles.net23.net/pukoban.htm.

Culberson, J. C. (1997). Sokoban is PSPACE-complete. Technical report, University of
Alberta, 97-02.

Demaine, E. D., Demaine, M. L., Hoffmann, M., and O’Rourke, J. (2003). Pushing blocks
is hard. Computational Geometry, 26:21-36.

Dor, D. and Zwick, U. (1999). Sokoban and other motion planning problems. Computa-
tional Geometry, 13:215-228.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. [EEE Transactions on Systems Science and
Cybernetics, 4(2):100-107.

Hiiffner, F., Edelkamp, S., Fernau, H., and Niedermeier, R. (2001). Finding optimal
solutions to Atomix. In Advances in artifical intelligence, volume LNCS 2174, pages
229-243,

Jurkovski, B. (2010). Pukoban solver. Available: https://github.com/
bjurkovski/PukobanSolver.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97-109.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research
Logistic Quarterly, 2:83-97.

Schaeffer, J. and Junghanns, A. (2000). Sokoban: Enhanceing general single-agent search
methods using domain knowledge. Artificial Intelligence, 129(1-2):219-251.

Table 2. Results for Xsokoban instances, using the matching heuristic and iner-

tia.

Map M T A% Nodes BF |[Map M T v Nodes BF
1 87 0 125 1053 84 46 - + 324987 6272285 193
2 117 2 6900 44840 6.5 47 - + 413292 4143255 10.0
3 128 148 161348 1558977 9.7 48 - + 245623 3317753 13.5
4 - + 747745 4650435 6.2 49 - + 420263 4485298 10.7
5 131 821 411147 4047201 9.8 50 - + 452012 5359271 11.9
6 - + 753529 5951821 7.9 51 - + 564492 9591362 17.0
7 78 0 97 1328 13.7 52 - + 404374 4507530 11.1
8 210 1 296 6242 21.1 53 - + 677418 10060146 14.9
9 - + 794601 8924617 11.2 54 - + 434991 5077483 11.7

10 - + 171838 2536990 14.8 55 - + 677916 7932238 11.7
11 - + 558184 7100514 127 56 179 45 40727 460398 11.3
12 - + 247054 6862772 27.8 57 - + 305656 6121244 20.0
13 - + 438962 4910516 11.2 58 - + 901254 6503799 7.2
14 - + 306240 4010911 13.1 59 - + 490509 5963677 12.2
15 - + 427873 5460235 12.8 60 - + 369231 6853194 18.6
16 - + 580914 5332977 9.2 61 - 4+ 399899 5121082 12.8
17 - + 1498085 11911426 8.0 62 - + 310049 4681194 15.1
18 - + 447757 4940984 11.0 63 - + 447377 7489930 16.7
19 - + 624368 8875012 14.2 64 - + 390168 4629855 11.9
20 - + 406655 5086489 12.5 65 - + 486078 5495624 11.3
21 - + 589015 7340251 12.5 66 - + 797247 7643583 9.6
22 - + 274599 2905952 10.6 67 - + 870596 8129591 9.3
23 - + 779940 6421782 8.2 68 - + 503990 6613114 13.1
24 - + 130118 2042980 15.7 69 - + 731776 7651692 10.5
25 - + 288138 4554366 15.8 70 - + 578488 7525758 13.0
26 - + 598874 5528350 9.2 71 - + 587682 6803117 11.6
27 - + 292889 3129733 10.7 72 - 4+ 600192 6305527 10.5
28 - + 380271 5047256 13.3 73 - + 1130097 13838485 12.2
29 - + 1248308 5169734 4.1 74 - + 758917 8324322 11.0
30 - + 688126 4320733 6.3 75 - + 463823 4273020 9.2
31 - + 413349 3839136 9.3 76 - + 364254 4775723 13.1
32 - + 303835 4152244 13.7 77 - + 645304 5506194 8.5
33 - + 715774 5966822 8.3 78 126 0 131 2233 17.0
34 - + 410182 7671479 18.7 79 164 0 166 2994 18.0
35 - + 293196 3789752 129 80 - + 941829 7539384 8.0
36 345 3311 968816 9929790 10.2 81 167 0 179 2967 16.6
37 - + 462132 3888028 8.4 82 133 28 33199 361712 109
38 29 0 361 3631 10.1 83 194 3578 1379790 13222972 9.6
39 - + 318771 4015157 12.6 84 141 0 201 3901 194
40 - + 538140 8134070 15.1 85 - + 270608 5128451 19.0
41 - + 1148548 6977961 6.1 86 - + 681512 8624364 12.7
42 - + 207050 3971964 19.2 87 - + 704518 7947805 11.3
43 - + 844737 9124619 10.8 88 - + 244461 3510997 144
44 - + 1003579 9559526 9.5 89 - + 371842 4316562 11.6
45 - + 473525 5203336 11.0 90 - + 611637 4573388 7.5
M : Moves. A “-” indicates that the optimal solution has not been found.

T: Time in seconds. A “+4” indicates a time exceeding 3600.
V: Number of visited nodes.
BF: Branching factor.

Table 3. Results for Xsokoban instances, using the matching heuristic, box or-
dering, inertia and choke points.

Map M T A% Nodes BF |Map M T v Nodes BF
1 87 0 125 1101 8.8 46 - + 325529 6281460 19.3
2 117 0 2166 25571 11.8 47 - + 414447 4153623 10.0
3 - + 984518 10759268 10.9 48 - + 245533 3316770 13.5
4 - + 738609 10178233 13.8 49 - + 423930 4526595 10.7
5 131 2 14042 80189 5.7 50 - + 449481 5324368 11.8
6 - + 901610 8641494 9.6 51 - + 565276 9602237 17.0
7 78 0 97 1328 13.7 52 - + 679712 9532711 14.0
8 210 1 296 6242 21.1 53 - + 679179 10090817 14.9
9 - + 998126 11646397 11.7 54 - + 436405 5094118 11.7

10 - + 177113 2631903 14.9 55 - + 678934 7942215 11.7
11 191 1 4726 48610 10.3 56 179 43 40727 460398 11.3
12 - + 267024 7448642 279 57 - + 312557 6246182 20.0
13 - + 455884 5074505 11.1 58 - 4+ 928279 6684635 7.2
14 - + 323762 4229232 13.1 59 - + 520410 6418169 12.3
15 - + 470328 6042569 12.8 60 - + 373725 6941073 18.6
16 - + 584752 5360521 9.2 61 - + 412022 5232583 12.7
17 - + 1508163 11996694 8.0 62 235 0 242 3691 153
18 - + 450441 4978555 11.1 63 - + 456934 7697593 16.8
19 - + 634292 8983881 14.2 64 - + 387411 5628970 14.5
20 - + 413107 5166390 12.5 65 - + 494145 5589309 11.3
21 - + 586851 7310533 125 66 - + 815513 7818883 9.6
22 - + 278067 2949167 10.6 67 - + 898367 8327960 9.3
23 272 3 8264 71927 8.7 68 - + 517425 6768557 13.1
24 - + 129292 2031646 15.7 69 - + 743286 7775347 10.5
25 - + 224291 2915515 13.0 70 - + 585291 7622824 13.0
26 - + 683708 6254966 9.1 71 - + 596014 6919532 11.6
27 - + 653057 4767663 7.3 72 - + 605611 6365504 10.5
28 - + 396800 5182789 13.1 73 - + 1156948 14141886 12.2
29 - + 1238633 5130540 4.1 74 - + 770812 8442975 11.0
30 - + 685263 4302399 6.3 75 - + 457082 4201340 9.2
31 - + 414745 3854533 93 76 - + 350637 4581203 13.1
32 - + 308531 4236095 13.7 77 - + 633572 5374093 8.5
33 - + 718333 5990458 8.3 78 126 0 131 2233 17.0
34 - + 413940 7734000 18.7 79 164 0 166 2994 18.0
35 - + 294234 3807764 12.9 80 - + 1278263 9673825 7.6
36 345 3288 968816 9929790 10.2 81 167 0 179 2967 16.6
37 - + 464060 3906289 8.4 82 133 3 12149 114172 94
38 29 0 361 3631 10.1 83 194 1145 648937 5599484 8.6
39 - + 447187 5768782 129 84 141 0 201 3901 194
40 - + 419124 5144530 12.3 85 - + 268697 5088022 18.9
41 - + 1036220 11304848 10.9 86 - + 767727 10232581 13.3
42 - + 207027 3971594 19.2 87 - + 709049 7995999 11.3
43 - + 845884 9136733 10.8 88 - + 242607 3484913 144
44 - + 1005276 9580484 9.5 89 - + 369655 4292151 11.6
45 - + 591382 6713599 114 90 - + 616302 4602935 7.5
M : Moves. A “-” indicates that the optimal solution has not been found.

T: Time in seconds. A “4” indicates a time exceeding 3600.

V: Number of visited nodes.
BF: Branching factor.

Table 4. Results for Xsokoban instances, using the matching heuristic, box or-
dering, inertia, choke points and clogs.

Map M T A% Nodes BF |Map M T v Nodes BF
1 87 0 88 849 9.6 46 - + 511667 7546028 14.7
2 117 1 2089 25493 12.2 47 - 4+ 370019 3446207 9.3
3 128 1 12072 58747 49 48 - + 223040 3136806 14.1
4 327 0 328 9823 299 49 - + 405296 4513823 11.1
5 131 2 13728 78143 5.7 50 - + 417800 5075133 12.1
6 - + 557734 6802452 122 51 - + 559787 9527692 17.0
7 78 0 97 1328 13.7 52 - + 664429 9578048 144
8 210 1 296 6242 21.1 53 - + 685347 10207725 14.9
9 - + 533730 5579917 10.5 54 - + 430857 5035762 11.7

10 - + 172697 2549974 14.8 55 - + 676478 7918272 11.7
11 191 1 4555 47490 104 56 179 43 40727 460398 11.3
12 - + 258335 7186237 27.8 57 - + 311050 6210172 20.0
13 - + 427501 4803970 11.2 58 - + 904296 6527903 7.2
14 - + 308726 4037505 13.0 59 - + 484496 5882935 12.1
15 - + 441718 5663094 12.8 60 - + 362076 6716824 18.6
16 - + 562795 5180993 9.2 61 - + 344446 4495913 13.1
17 - + 1502845 11944752 7.9 62 235 0 236 3662 15.5
18 - + 452349 5004612 11.1 63 - + 440801 7333880 16.6
19 - + 613026 8772684 14.3 64 - + 377204 5486005 14.5
20 - + 414637 5184949 125 65 - + 491234 5552317 11.3
21 - + 602391 7550315 12.5 66 - + 814817 7811358 9.6
22 - + 271109 2868611 10.6 67 - + 898984 8331686 9.3
23 272 3 7739 68856 8.9 68 - + 518070 6777196 13.1
24 - + 131117 2057483 15.7 69 - + 745022 7789062 10.5
25 - + 247855 3235373 13.1 70 - + 585147 7620891 13.0
26 - + 666969 7893205 11.8 71 - + 593326 6880524 11.6
27 - + 443317 3781240 8.5 72 - + 604484 6349325 10.5
28 - + 403603 5241978 13.0 73 - + 1153156 14099720 12.2
29 - + 1258655 5210841 4.1 74 - + 769904 8433590 11.0
30 - + 713702 4482867 6.3 75 - + 465790 4295976 9.2
31 - + 412396 4044442 9.8 76 - + 365590 4796145 13.1
32 - + 306827 4204944 13.7 77 - + 652735 5585089 8.6
33 - + 696681 5845747 84 78 126 0 131 2233 17.0
34 - + 404778 7582671 18.7 79 164 0 166 2994 18.0
35 - 4+ 270892 3281111 12.1 80 219 3278 936075 7492699 8.0
36 345 3105 897979 9493586 10.6 81 167 0 178 2963 16.6
37 - + 459437 3921612 8.5 82 133 1 4585 41826 9.1
38 29 0 359 3623 10.1 83 194 16 74091 583068 7.9
39 - + 450074 5802580 12.9 84 141 0 157 3508 22.3
40 - + 415672 5097355 123 85 - + 277516 5266711 19.0
41 - + 1042130 11366048 10.9 86 - + 740512 10172732 13.7
42 - + 222883 4736412 21.3 87 - + 717532 8108724 11.3
43 - + 782197 9579875 12.2 88 - + 252170 3628606 14.4
44 - + 921674 9321561 10.1 89 - + 380273 4399666 11.6
45 - + 335943 3580918 10.7 90 - + 636812 4729089 74
M : Moves. A “-” indicates that the optimal solution has not been found.

T: Time in seconds. A “4” indicates a time exceeding 3600.

V: Number of visited nodes.
BF: Branching factor.

