
Semi-Supervised Learning in Complex Networks

Thiago C. Silva1 and Liang Zhao1

1Department of Computer Sciences, Institute of Mathematics
and Computer Science (ICMC), University of São Paulo (USP)

{thiagoch, zhao}@icmc.usp.br

Abstract. Semi-Supervised Learning (SSL) is a machine learning scheme which
is able to employ both labeled and unlabeled samples in the training process. In
this paper, we propose a semi-supervised classification model based on a com-
bined random-deterministic walk of particles in the network (graph) constructed
from the input data set. The particles of the same class cooperate among them,
while the particles of different classes compete with each other to propagate
class labels to the whole network. A rigorous definition of the model is pro-
vided. An interesting feature of the proposed model is that each particle only
visits a portion of nodes potentially belonging to it due to the competition mech-
anism. Thus, many long range, apparently meaningless visits are avoided. As a
result, the proposed model can achieve a good classification rate while exhibit-
ing low computational complexity order in comparison to other network-based
semi-supervised algorithms. Computer simulations carried out for synthetic and
real-world data sets show good performance of the model.

1. Introduction

Nowadays, information reaches us at a remarkable speed and the amount of data it brings
is unprecedented. In many situations only a small subset of data items can be effectively
labeled. This is because the labeling process is often expensive, time consuming, and re-
quires intensive human involvement. As a result, partially labeled data sets become more
frequently encountered. Traditional classifiers are constructed by supervised learning,
where only labeled data are considered in the training process and unlabeled examples
are simply ignored. On the other hand, there is no mechanism for unsupervised learning,
such as data clustering, to treat label information. In order to get a better characterization
of partially labeled data sets, semi-supervised classifiers are designed to learn from both
labeled and unlabeled data. It turned out to be a new topic of machine learning research
that has received increasing attention in the past years [Chapelle et al. 2006].

Semi-supervised methods include generative models [Fujino et al. 2005], cluster-
and-label techniques [Dara et al. 2002], co-training and tri-training techniques [Mitchell
1999], low-density separation models, like Transductive Support Vector Machines
(TSVM) [Vapnik 2008], and graph-based methods. Many SSL techniques, such as
TSVM, can identify data classes of well-defined forms, but usually fail to identify classes
of irregular forms. Thus, assumptions on class distributions have to be made. Unfortu-
nately, such information is usually unknown a priori. In order to overcome this problem,
graph based methods have been developed over the last years, like Local and Global Con-
sistency [Zhou et al. 2004], Local Learning Regularization [Wu and Schölkopf 2007],
Local and Global Regularization [Wang et al. 2008]. The main advantage of graph-based

methods is the ability of identifying classes of arbitrary distributions. However, most of
the graph-based methods share the regularization framework, differing only in the partic-
ular choice of the loss function and the regularizer [Belkin et al. 2005], and most of them
have cubic order of computational complexity (O(n3)). This factor makes their applica-
bility limited to small or middle-sized data sets [Zhu 2005]. As data sets get larger and
larger, the development of efficient semi-supervised learning methods is still necessary.

Competition is a natural process observed in nature and in social systems sharing
limited resources. Competitive learning is an important category of machine learning and
is widely implemented in artificial neural networks to realize unsupervised learning [Ko-
honen 1990, Jain et al. 2010]. Without a doubt, competitive learning neural networks
represent one of the main successes of neural network development. However, at least
two problems remain: 1) The constructed network is usually small. So competition oc-
curs among a small number of neurons. Consequently, the model may not exhibit high
robustness in data processing. 2) There is not a direct connection between the input data
and the trained competitive learning neural networks. When a large data set is mapped
to a network of a small number of neurons, it becomes hard to see the correspondence
between the original data and the trained neural networks. This is one of the reasons why
neural networks sometimes are considered as “black box” systems.

In order to heritage the interesting features and at the same time overcome the
problems of competitive learning neural networks, Quiles et. al. [Quiles et al. 2008]
proposed a particle walking model to realize the competitive learning mechanism. In
this paper, we propose a network-based semi-supervised learning model based on parti-
cle competition and cooperation in the network constructed from the input data set. This
model not only maintains the competition mechanism presented in Ref. [Quiles et al.
2008], but also introduces a cooperative mechanism. In this way, particles of the same
class proceed in the network in a cooperative manner to propagate their labels, while
particles of different classes compete with each other to determine the class borders. An-
other interesting feature of the proposed technique is that it has a local label spreading
fashion, i.e., at each time step, each particle spreads its label to a neighbor node chosen
by the combined random-deterministic rule. Due to the competition mechanism, each
particle only visits a portion of nodes potentially belonging to the current particle or its
teammates, while it is not allowed to visit those nodes definitely occupied by other teams
of particles. It can be roughly understood that our method has a “divide-and-conquer”
effect embedded in the competition-cooperation scheme. In this way, many long-range
redundant operations are avoided. As a result, the proposed method has a lower compu-
tational complexity order. Since the underlying network is constructed directly from the
input data set, the correspondence between the input data and the processing result (the
final network) is maintained. As a result, the “black box” effect can be avoided at a large
extent.

The remainder of the paper is organized as follows. The proposed model definition
is described in Sect. 2. In Sect. 3, computer simulations are performed to show how the
proposed model solves data classification by using artificial and real data sets. Finally,
Sect. 4 concludes the paper.

2. Model Description

Consider that we are given a graphG = 〈V , E〉, where V is the set of nodes and E ⊂ V×V
is the set of edges. In the competitive learning model, a set of particles K = {1, ..., K}
is inserted into the vertices of the network in a random manner. Each particle can be
thought of carrying a flag and its objective is to conquer new territories - represented
here by the vertices - while defending its owned territories. In this case, a competition
process will naturally take place amongst the particles. When a particle visits an arbitrary
vertex, it strengthens its own domination level on the vertex and simultaneously weakens
the domination levels of all other rival particles on the same vertex. It is expected to this
model, in a broad horizon of time, to end up uncovering the classes in the network in such
a way that each particle (or a team of particle through cooperation) dominates a class.
In the next sections, we will give detailed explanation on how to derive the competitive
dynamical system with the above-mentioned characteristics.

2.1. The Competitive Transition Matrix

Regarding the movement policy of each particle j ∈ K, it is basically composed of
two distinct types: 1) a random movement term, modeled by the matrix P(j)

rand, which
permits the particle to adventure through the network, without accounting for the de-
fense of the previously dominated vertices; 2) a deterministic movement term, modeled
by the matrix P(j)

det, which is responsible for inducing the particle to reinforce the ver-
tices that are owned by itself, i.e., the particle will prefer visiting its dominated ver-
tices, instead of a randomly selected one. In order to model such dynamics, consider
that p(t) = [p(1)(t), p(2)(t), ..., p(K)(t)] denotes the localization of the set of K particles
presented to the network, where the jth-entry, p(j)(t), indicates the location of the particle
j in the network at time t, i.e., p(j)(t) ∈ V , ∀j ∈ K. It is desired to find a transition ma-
trix that governs the probability distribution of the particles’ movement to the immediate
future state, p(t+ 1) = [p(1)(t+ 1), p(2)(t+ 1), ..., p(K)(t+ 1)].

With only those two types of movement behavior, it is possible that the owned ter-
ritory of each particle to be swapped between them. As there is no force that compels the
particles to regress to their owned territory time to time, the particles can be considered
free to travel anywhere in the network with no penalties; so, the aforementioned scenario
could happen a substantial number of times until the system comes to a stationary state.
On account of that, the number of steps that the system would require to converge is ex-
pected to be usually high with only these two movement behaviors. In order to overcome
that, we introduce energy levels for all particles and, with the aid of this measure, we ap-
ply some restrictions on all particles in the following manner: if a particle visits a vertex
that is being dominated by itself, then the corresponding energy of that particle increases.
Likewise, if a particle visits a vertex that is being dominated by a rival particle, then the
corresponding energy of that particle is drained. If the actual energy of a specific particle
reaches a certain minimum threshold, then it is said that the particle has died at that step.
In the subsequent step, that particle is automatically resurrected in a vertex that belongs to
it in a random manner. With this behavior, we expect that the particles will no longer wan-
der free in the network, possibly swapping territories with other particles several times.
Thus, this characteristic is expected to restrain the particles’ effective acting region. In
the semi-supervised version, which we will further detail in this section, it is guaranteed

that there will be at least one vertex that is being dominated by each particle, so that the
behavior of teleporting back to its territory can always be applied.

With the intent of modeling such dynamics, we introduce the following random
quantity S(t) = [S(1)(t), . . . , S(K)(t)], where the jth-entry, S(j)(t) ∈ {0, 1}, indicates
whether the particle j is dead or alive at time t. Specifically, if S(j)(t) = 1, then particle
j is said to be dead. Likewise, when S(j)(t) = 0, the particle is said to be alive. Thus,
if S(j)(t) = 0, the particle navigates in the network according to a combined behavior of
randomness and determinism. However, if S(j)(t) = 1, the particle switches its movement
policy to a new transition matrix, here entitled P(j)

res(t), which is responsible for taking the
particle back to its owned territory (“safe ground”). In brief terms, S(t) acts as a switch
that determines the movement policy of all particles at time t. With all this information in
mind, we are able to define the transition matrix associated to the particle j as:

P(j)
transition(t) , (1− S(j)(t))

[
λP(j)

det(t) + (1− λ)P(j)
rand(t)

]
+ S(j)(t)P(j)

res(t) (1)

where λ ∈ [0, 1] indicates the desired fraction of deterministic movement that all particles
in the network will perform, P(j)

det(t) portrays the transition matrix with a probability dis-
tribution according to the deterministic behavior described above and, likewise, P(j)

rand(t)
describes the random behavior, S(j)(t) indicates whether particle j is alive or dead, and
P(j)

res(t) is responsible for the particle resurrection behavior. It is worth noting that Eq. (1)
is a convex combination of two transition matrices (the first term is itself a combination
of two transition matrices, too), since the sum of the coefficients is unitary, therefore, the
resulting matrix is guaranteed to be another transition matrix. Now we proceed to define
each matrix that appears in Eq. (1) in a detailed manner.

The derivation of the random movement matrix is straightforward, since this ma-
trix is only dependent on the adjacency matrix of the graph, which is previously known.
Then, each entry (i, k) ∈ V × V of the matrix P(j)

rand(t) is given by:

P(j)
rand(i, k) ,

ai,k∑V
u=1 ai,u

(2)

where ai,k denotes the (i, k)th-entry of the adjacency matrix A of the graph. Note that
Eq. (2) resembles the traditional Markovian matrix for a single random walker, here
symbolized as a particle. Also note that matrix P(j)

rand(t) is time-invariant and is the same
for every particle in the network, therefore, we will drop the independent variable t and the
superscript j whenever the situation makes it clear. In short terms, the probability of an
adjacent neighbor to be visited using only the random movement behavior is proportional
to the edge weight linking the vertex that a specific particle is visiting and that neighbor
vertex.

In order to assist in the calculation of the matrix associated to the deterministic
movement term, P(j)

det(t), for a given particle j ∈ K, we introduce the following random
quantity: Ni(t) , [N

(1)
i (t), N

(2)
i (t), ..., N

(K)
i (t)], where dim(Ni(t)) = 1 ×K and Ni(t)

stands for the absolute number of visits that vertex i has received until the time t, including
t, by all the particles scattered throughout the network. Specifically, the jth-entry,N (j)

i (t),
indicates the number of visits made by the particle j to vertex i up to time t. We now
simply extend this notation to all vertices in the network, defining the global matrix that
maintains the number of visits made by every particle in the network to all the vertices as:
N(t) , [N1, N2, . . . , NV]T , where dim(N(t)) = V ×K.

Let us also formally define the domination level vector of vertex i, N̄i(t), ac-
cording to the following random variable: N̄i(t) , [N̄

(1)
i (t), N̄

(2)
i (t), ..., N̄

(K)
i (t)], where

dim(N̄i(t)) = 1 ×K and N̄i(t) denotes the relative frequency of visits of all particles in
the network to vertex i until the time t, including t. Particularly, the jth-entry, N̄ (j)

i (t),
indicates the relative frequency of visits performed by particle j to vertex i up to time
t. Similarly to the previous case, we extend this notion to all vertices in the network,
defining the domination level matrix that sustains all the domination levels imposed by
every particle in the network to all the vertices as: N̄(t) , [N̄1, N̄2, . . . , N̄V]T , where
dim(N(t)) = V ×K. Mathematically, we define each entry of N̄ (j)

i (t) as:

N̄
(j)
i (t) ,

N
(j)
i (t)∑K

p=1N
(p)
i (t)

(3)

In view of that, we can define the (i,k)th-entry of the matrix responsible for the
deterministic movement behavior of a single particle j ∈ K, denoted here by P(j)

det(t), at
time t, as following:

P(j)
det(i, k, t) ,

ai,kN̄
(j)
k (t)∑V

u=1 ai,uN̄
(j)
u (t)

(4)

Clearly, from Eq. (4), it can be observed that each particle has a different transition
matrix associated to its deterministic movement and that, unlike the matrix associated to
the random movement, this matrix is time-variant with dependence on the domination
levels of all the vertices (N̄(t)) in the network at the time t. It is worth remarking that
the approach taken here to characterize the deterministic movement of the particles is the
visiting frequency of each particle to a specific vertex, in such a way that as more visits
are performed from a specific particle to an arbitrary vertex, the higher the chance will
be of the same particle to come back visiting the same vertex again and again. Also it is
important to emphasize that Eq. (4) produces two distinct features presented by a natural
competition model: 1) the strengthening of the domination level of the visiting particle to
a vertex; 2) the consequent weakening of the domination levels of all other particles on
that same vertex. This behavior is naturally represented by the model due to the frequency
approach taken.

Now we define each entry of P(j)
res(t) that is accounted for teleporting a dead parti-

cle j ∈ K back to its owned territory as:

P(j)
res(i, k, t) ,

1{
max
m∈K

(
N̄

(m)

p(j)(t)
(t)

)
=j

}N̄ (j)
k (t)∑V

u=0 1
{

max
m∈K

(
N̄

(m)
u (t)

)
=j

}N̄ (j)
u (t)

(5)

where max
m∈K

(.) returns the index m which maximizes the argument and 1{.} is the indicator

functions that yields 1 if the argument is logically true and 0, otherwise. Indeed, a careful
analysis of the expression in Eq. (5) shows that the denominator term sums over all
dominations levels of all the vertices that are being dominated by particle j, i.e., vertices
that are dominated by rival particles do not have their values considered. With that in
mind, Eq. (5) only results in non-zero transition probabilities for vertices k that are being
dominated by particle j, regardless of the existence of a connection between i and k in
the adjacency matrix. In essence, once the particle is dead, the switch is enabled, which
in turn compels the particle j to return to its previously owned territory, no matter if there
is a physical connection or not in the adjacency matrix.

Now we proceed to the development of the particle’s energy update rule. Firstly,
it is useful to introduce the random variable E(t) = [E(1)(t), . . . , E(K)(t)], where the
jth-entry, E(j)(t) ∈ [ωmin, ωmax], ωmax ≥ ωmin, denotes the energy level of particle j at
time t, whose update rule is given by:

E(j)(t) =

{
min(ωmax, E

(j)(t− 1) + ∆), if owner(j, t)

max(ωmin, E
(j)(t− 1)−∆), if � owner(j, t)

(6)

where owner(j, t) =

(
max
m∈K

(
N̄

(m)

p(j)(t)
(t)
)

= j

)
is a logical expression that essentially

yields true if the vertex that particle j visits at time t (vertex p(j)(t)) is being dominated
by the visiting particle, and false otherwise; dim(E(t)) = 1×K; ∆ > 0 symbolizes the
increment or decrement of energy that each particle will receive at time t. Indeed, the first
expression in Eq. (6) represents the increment of the particle’s energy and occurs when the
particle j visits a vertex p(j)(t) which is dominated by itself, i.e., max

m∈K

(
N̄

(m)

p(j)(t)
(t)
)

= j.

Similarly, the second expression in Eq. (6) portrays the decrement of the particle’s energy
and occurs when particle j visits a vertex p(j)(t) which is not dominated by itself, i.e.,
there is a domination level on that vertex that is higher than the one imposed by particle
j. Hence, in this model, particles will be given a penalty if they are wandering in rival
territory, so as to minimize aimless navigation of the particles in the network which would
only reduce the speed of convergence of the dynamical system. By the same reasons, we
expect this behavior to improve the final classification rate of the algorithm.

Now we advance to the update rule that governs S(t), which is responsible for
determining the movement policy of each particle. As we have stated, an arbitrary particle
j will be transported back to its domain only if its energy drops to a threshold ωmin. With
that in mind, it is natural that each entry of S(j)(t) has to monitor the current energy value
of its corresponding particle, i.e., if it ever drop to the given threshold, the switch must

be enabled; analogously, if the particle still has an energy value greater than this lower
threshold, then the switch should be disabled. Mathematically, the jth-entry of S(t) can
be precisely written as:

S(j)(t) = 1{E(j)(t)=ωmin} (7)

where dim(S(t)) = 1 ×K. Specifically, S(j)(t) = 1 if E(j)(t) = ωmin and 0, otherwise.
As there is an upper limit for the random variable E(j)(t), it is clear that if particle j
frequently visits vertices owned by rival particles, its energy will decrease in such a way
that it could reach the minimum energy ωmin and, hence, die. The upper limit, ωmax,
was established to prevent any particle in the network to keep increasing its energy to
an undesirably high value (by constantly visiting vertices in its territory), and, once this
energy is high enough, it could go far away from its territory and visit a substantial number
of vertices belonging to rival particles before dying, thus, considerably decreasing the
convergence time and classification rate of the dynamical system.

Having defined each matrix associated to each particle, we couple all these ma-
trices into a representative transition matrix Ptransition(t) using the following fact: when
a specific particle is alive, the movement of each particle is independent of all the other
rival particles, because at each time step the next vertex to be visited by a specific particle
depends solely on a convex combination of randomness - directly proportional to the edge
weight of the neighbor vertices, see Eq. (2) - and determinism - in this case, is a function
of the domination levels of all the vertices in the neighborhood, see Eq. (4). Due to that,
the location of the other particles causes no influence over the action of choosing the next
vertex to be visited by a given particle. The same idea can be applied when a specific
particle is dead. In virtue of this property, we can describe the full matrix associated to
the transition p(t) to p(t+ 1), i.e., for all particles in the network, as:

Ptransition(t) = P(1)
transition(t)⊗ . . .⊗ P(K)

transition(t) (8)

where ⊗ denotes the Kronecker tensor product operator. In this way, Eq. (8) completely
specifies the transition distribution matrix for all the particles in the network and not only
one particle as is expressed in Eq. (1).

Essentially, p(t+1) can be seen as a discrete stochastic process whose probability
distribution is given by the row indicated by the scalar form of p(t) (to be defined) of
matrix Ptransition(t), which strictly depends on N(t) for its construction. Upon doing so,
we need to enumerate the states of the particle localization p(t) such as to be feasible the
usage of the transition matrix, because, for K ≥ 2, p(t) will be a vector and we would
no longer be able to conventionally define row p(t) of Ptransition(t). For that, we simply
enumerate the state p(t) = [p(1)(t), p(2)(t), ..., p(K)(t)] to a scalar form, respecting the
natural ordering of the tuples, i.e., p(t) = [1, 1, ..., 1, 1] (all particles at vertex 1) denotes
the first state; p(t) = [1, 1, ..., 1, 2] (all particles at vertex 1, except the last particle, which
is at vertex 2) is the second state; and so on, up to the scalar state V K .

2.2. The Semi-Supervised Competitive Learning Model
In light of all we have obtained in the previous section, we are ready to enunciate the
proposed dynamical system which models the competition of particles in a given net-
work. The internal state of the dynamical system has been chosen to be: X(t) =
[N(t) p(t) E(t) S(t)]T and the proposed competitive dynamical system is given by:

φ :


N

(j)
i (t+ 1) = N

(j)
i (t) + 1{p(j)(t+1)=i}

E(j)(t+ 1) =

{
min(ωmax, E

(j)(t) + ∆), if owner(j, t)

max(ωmin, E
(j)(t)−∆), if � owner(j, t)

S(j)(t+ 1) = 1{E(j)(t+1)=ωmin}

(9)

where, by the considerations that we have previously stated, dim(N(t)) = V × K,
dim(p(t)) = 1 × K, dim(E(t)) = 1 × K, and dim(S(t)) = 1 × K, resulting that
dim(X(t)) = (V + 3) × K, with N

(j)
i (t) ∈ [1,∞), (i, j) ∈ S, where S is the space

spawned by V × K. Observe that p(t + 1) has no closed form because it is qualified as
a distribution with dependence on p(t) and N(t), therefore its acquisition is merely by
random number generation. Succinctly, the internal state of system φ, X(t), carries the
current total number of visits made by each particle to each vertex in the network, the
current localization of all particles in the network, the current energy that each particle
holds, and the information about each particle whether it is current alive or dead. The
first equation of system φ is responsible for updating the number of visits at vertex i by
particle j up to time t; the second equation is used to maintain the current energy levels
of all the particles inserted in the network; and the third equation is used to trigger the
particle dead or alive, depending on its actual energy level. It is valuable to emphasize
that the first expression of system φ must be used for every (i, j) ∈ S and the second and
third expressions must be performed for every j ∈ K with the intention of one properly
derive the full state X(t) of the system φ.

2.3. The Initial Conditions of the System
In order to run system φ, we need a set of initial conditions. Firstly, the initial position
p(0) of the particles is user-controllable. Additionally, consider a set of classes C and a set
of pre-labeled examples VL ⊂ V . Let L denote the set that indicates the pair of a labeled
node and its corresponding class, i.e., L = {(v1, c1), ..., (v|VL|, c|VL|)}, where vi ∈ VL, and
ci ∈ C, 0 ≤ i ≤ |L| = |VL|. Then, we have that each entry of N(0) is given by:

N
(j)
i (0) =

{
∞, if particle j represents node i

1 + 1{p(j)(0)=i}, otherwise
(10)

where we apply Eq. (10) to every (i, j) ∈ S. Note that the scalar 1 was used in the second
expression of Eq. (10) in order to unlabeled and not visited vertices at time 0 to have their
calculation well-defined, according to Eq. (3). Regarding the initial condition of E(0),
we desire a fair competition amongst the particles, so we place isonomy in their initial
energy values, i.e., all particles j ∈ K start out with the same energy level given by:

E(j)(0) = ωmin +

(
ωmax − ωmin

K

)
(11)

Lastly, the variable that accounts for indicating whether the particle j is dead or
alive at the initial step, S(j)(0), ∀j ∈ K, is given by S(j)(0) = 0, i.e., we deliberately set
alive all particles in the network in the beginning of the process.

3. Computer Simulations
In this section, we present simulation results in order to show the effectiveness of the
proposed competitive model. Specifically, in Subsect. 3.1 we analysis the behavior of the
dynamical system φ by using a simple artificial network; in Subsect. 3.2, we provide re-
sults of semi-supervised learning on real data sets as well as a comparison against several
well-known semi-supervised learning techniques.

3.1. Simulations on Synthetic Data Sets

In order to facilitate the understanding of how the proposed technique works, we design a
synthetic data set of two simple classes, each of which with 50 vertices. We have inserted
into the network 2 particles, each one representing a class. With this simple data set, we
are able to closely observe the behavior of our proposed algorithm working on synthetic
data. Figure 1a shows the initial configuration of the network, where the colored dots
symbolize labeled samples. The black dots denote unlabeled data. The ownership of any
vertex is given by the particle which has the highest domination level over that vertex.
According to Eq. (10), the vertices that are initially labeled have their ownership fixed to
its corresponding representative particle. For this simulation, we fix λ = 0.6, ∆ = 0.05,
ωmin = 0, and ωmax = 1. As the dynamical system evolves, the particles will visit the
vertices of the network in agreement with the probability distribution given by the matrix
Ptransition(t). Figure 1b shows the ownership of each vertex after 300 iterations, Fig. 1c
depicts the ownership state after 600 iterations, and Fig. 1d reveals the stationary owner-
ship state of the algorithm N̄(t), which is reached after 3000 iterations. We now take a
closer look at the evolutional behavior of the average domination level of the vertices that
belong to the same class. Figure 2a provides the average domination level imposed by the
particle representing the initially blue labeled vertex on the vertices 1 to 50 (blue class)
and 51 to 100 (red class), whereas Fig. 2b displays the same information for the particle
representing the initially red labeled vertex. Clearly, as time progresses, one can see that
the classes are unmistakeably separated by the competitive system.

3.2. Simulations on Benchmark Data Sets

In order to measure the performance of the proposed method, we have applied it to 7 stan-
dard semi-supervised data sets. For a detailed description of the data set, refer to [Chapelle
et al. 2006]. For each data set in the benchmark, it is provided 12 benchmark partitions,

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1(a)

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1(b)

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1(c)

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1(d)

Figure 1. Illustration of an artificial classification process through compet-
itive particle walking. The total number of nodes is V = 100. (a) A snap-
shot of the initial configuration: there are two previously labeled nodes
(red and blue nodes) and K = 2 particles, each one representing a labeled
node. The black dots represent unlabeled data. The particles have been
spawned at their representative labeled node. (b) A snapshot at iteration
300. (c) A snapshot at iteration 600. (d) A snapshot at iteration 3000.

300 600 900 1200 1500 1800 2100 2400 2700 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

Vertices 1 to 50
Vertices 51 to 100

(a)

300 600 900 1200 1500 1800 2100 2400 2700 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

Vertices 1 to 50
Vertices 51 to 100

(b)

Figure 2. Evolutional behavior of the average class domination level im-
posed by the particles in the network. (a) Average class domination level
imposed by particle 1. (b) Average class domination level imposed by par-
ticle 2.

each of which having 10 distinct non-biased labeled vertices. In this partition composi-
tion, it is ensured that exists at least 1 labeled node for each class in the database. For com-
parison matters, we have conducted experiments against a selected set of semi-supervised
techniques, whose simulations results were performed under optimal conditions and were
integrally taken from [Chapelle et al. 2006]. For comparison purposes, we have used
the kNN graph formation technique with optimized k in the interval 1 ≤ k < 30 and
have also optimized the algorithm parameters in the intervals: 0 ≤ λ ≤ 1, 0 < ∆ < 1,
0 < ωmax < 5 with ωmin = 0 fixed. The optimization is realized by using the genetic
algorithm available in the Global Optimization Toolbox of MATLAB with its default pa-

Table 1. Test errors (%) with 10 labeled training points and the corresponding
average rank of each technique.

Technique g241c g241d Digit1 USPS COIL BCI Text Avg. Rank

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12 9.86

Support Vector Machines 47.32 46.66 30.60 20.03 68.36 49.85 45.37 14.14

Maximum Variance Unfolding 47.15 45.56 14.42 23.34 62.62 47.95 45.32 9.86

Laplacian Eigenmaps 44.05 43.22 23.47 19.82 65.91 48.74 39.44 10.00

Quadratic Criterion and Class Mass Regularization 39.96 46.55 9.80 13.61 59.63 50.36 40.79 7.86

Discrete Regularization 49.59 49.05 12.64 16.07 63.38 49.51 40.37 10.86

Transductive Support Vector Machines 24.71 50.08 17.77 25.20 67.50 49.15 31.21 10.86

Spectral Graph Transducer 22.76 18.64 8.92 25.36 - 49.59 29.02 6.50

Cluster Kernels 48.28 42.05 18.73 19.41 67.32 48.31 42.72 10.86

Data-Dependent Regularization 41.25 45.89 12.49 17.96 63.65 50.21 - 9.83

Low-Density Separation 28.85 50.63 15.63 17.57 61.90 49.27 27.15 8.43

Laplacian Regularized Least Squares 43.95 45.68 5.44 18.99 54.54 48.97 33.68 6.14

Conditional Harmonic Mixing 39.03 43.01 14.86 20.53 - 46.90 - 7.20

Local and Global Consistency 45.82 44.09 9.89 9.03 63.45 47.09 45.50 7.29

Label Propagation 42.61 41.93 11.31 14.83 55.82 46.37 49.53 5.57

Linear Neighborhood Propagation 47.82 46.24 8.58 17.87 55.50 47.65 41.06 7.43

Proposed Method 43.89 46.47 8.10 15.69 54.18 48.00 34.84 5.29

rameters. The values obtained for the proposed method are averaged by 100 realizations
on each of the 12 subsets. The results obtained from these techniques against the afore-
mentioned databases are reported in Table 1. From the same table, we can conclude that
our technique had a satisfactory result in comparison to the other techniques. With only a
few nodes, our technique was able to correctly spread the labels to the vicinity of nodes
with the aid of the competitive mechanism provided by the algorithm. This is an attractive
characteristic, since the task of vertex labeling is often expensive and cumbersome, which
generally involves the work of a human expert. In order to statistically verify whether the
algorithms presented in Table 1 have significant difference to each other, we apply the
Friedman Test with a significance level of 0.05. See [Demšar 2006] for details. We get
that the critical statistical descriptor is lower than the quantity provided by the data itself,
therefore, the null hypothesis is rejected and we confirm that the algorithms under anal-
ysis present significant difference. Specifically, we can see that our algorithm is superior
to the others for the set of databases that we have conducted our tests.

4. Conclusions

This paper proposes a nonlinear and stochastic mathematical model for competitive learn-
ing in complex networks, biologically inspired by the competition process taking place
in many nature and social systems. In this model, several particles, each of which repre-
senting a class, navigate in the network to explore their territory and, at the same time,
attempt to defend its dominion against rival particles. If several particles propagate the
same class label, then a team is formed, and a cooperation process amongst these parti-
cles occurs. A confinement mechanism was proposed in order to prevent the particles to

wander free in the network, possibly reducing the overall classification rate of the algo-
rithm and its speed of convergence. Consequently, the proposed technique spreads labels
in a local fashion, instead of the traditional semi-supervised techniques which propagates
labels in a global fashion. Simulations were carried out with the purpose of quantifying
the robustness of the proposed technique on synthetic and real-world data sets for the task
of data classification and reasonable results have been obtained. More importantly, this
work is an attempt to provide an alternative way to the study of competitive learning.

References
Belkin, M., P., N., and Sindhwani, V. (2005). On manifold regularization. In Proceedings

of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTAT
2005), pages 17–24, New Jersey. Society for Artificial Intelligence and Statistics.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-supervised Learning.
Adaptive computation and machine learning. MIT Press, Cambridge, MA, USA.

Dara, R., Kremer, S., and Stacey, D. (2002). Clustering unlabeled data with SOMs im-
proves classification of labeled real-world data. In Proceedings of the World Congress
on Computational Intelligence (WCCI), pages 2237–2242.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30.

Fujino, A., Ueda, N., and Saito, K. (2005). A hybrid generative/discriminative approach to
semi-supervised classifier design. In AAAI-05, Proceedings of the Twentieth National
Conference on Artificial Intelligence, pages 764–769.

Jain, L. C., Lazzerini, B., and (eds.), U. H. (2010). Innovations in ART Neural Networks
(Studies in Fuzziness and Soft Computing). Physica-Verlag, Heidelberg.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480.

Mitchell, T. M. (1999). The role of unlabeled data in supervised learning. In Proceedings
of the Sixth International Colloquium on Cognitive Science.

Quiles, M. G., Zhao, L., Alonso, R. L., and Romero, R. A. F. (2008). Particle competition
for complex network community detection. Chaos, 18(3):033107.

Vapnik, V. N. (2008). Statistical Learning Theory. Wiley-Interscience, New York.

Wang, F., Li, T., Wang, G., and Zhang, C. (2008). Semi-supervised classification using
local and global regularization. In AAAI’08: Proceedings of the 23rd national confer-
ence on Artificial intelligence, pages 726–731. AAAI Press.

Wu, M. and Schölkopf, B. (2007). Transductive classification via local learning regu-
larization. In 11th International Conference on Artificial Intelligence and Statistics,
pages 628–635. Microtome.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2004). Learning with
local and global consistency. In Advances in Neural Information Processing Systems,
volume 16, pages 321–328. MIT Press.

Zhu, X. (2005). Semi-supervised learning literature survey. Technical Report 1530, Com-
puter Sciences, University of Wisconsin-Madison.

