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Abstract. We propose a method for segmentation and classification of breast 
cancer in digital mammograms using Independent Component Analysis (ICA), 
Texture Features and Multilayer Perceptron (MLP) Neural Networks. The 
method was tested for a mammogram set from MIAS database, resulting in 
90.15% success rate, with 92% of specificity and 88.3% of sensitivity. 

1. Introduction 

Breast cancer is the major cause of death by cancer in the female population [INCa, 
2010]. It is know that the best prevention method is early diagnosis, which lessens the 
mortality and enhances the treatment. Therefore, a great effort has been made to 
improve the early diagnosis techniques. Among them, the most used is the 
mammogram, for it is low cost and easy access. However, mammogram has a high error 
value for medical diagnosis, ranging from 10 to 25%, resulting in a great number of 
false-positives diagnostics, which causes unneeded biopsies, or false-negatives, which 
delays the cancer diagnosis. The analysis of digital mammography is a complex 
cognitive task that includes various aspects of medical expertise and conclusive clinical 
findings [Newsread, Baute, 1992], [Meyer et al, 1989]. The visual task of clinical 
evaluation and diagnosis, based on digital mammography, consists of a number of 
different factors in multiple scales and levels of decomposition [Sickles, 1989], [Bocchi 
et al, 1997]. The fine-scale organization of the informational content on the 
mammogram is a key factor in the detection of breast cancer, as it represents the nature, 
structure and the quality of biological tissues, as they are projected on the mammogram 
[Homer, 1987], [Homer,1985]. Similar textural features are also present in rare clinical 
cases, where direct inference on probably benignancy or malignancy is much more 
complex. 

These fine-scale structural details are realized as visual patterns in the image and they 
are often referred to as ‘‘texture’’ of the corresponding region. When the digital 
mammogram is obtained with adequate quality and resolution, these textural patterns 
can be identified, analyzed and classified with an aided of image processing and 



  

computational vision algorithms, combined with artificial intelligence for features 
extraction.Those algorithms are able to decrease the error and make the mammograms 
more reliable [Bick, 1996]. 

The CAD (computer-aided diagnosis) systems can aid radiologists by providing a 
second opinion and may be used in the first stage of examination. For this to occur, it is 
important to develop many techniques to detect and recognize suspicious lesions and 
also to analyze and discriminate them.  

Segmentation is an important task to identify regions suspicious of cancer in digital 
mammograms. After identified, each region must be classified as benign, malignant 
cancer or normal tissue. 
The principal objective of image classification is to assign all pixels in the image to 
particular classes or themes, based on some features, for example. This type of 
classification is called pattern recognition. 

Some methods of segmentation and classification of breast cancer in digital 
mammography have been reported. 

[Campos et al, 2007] used independent component analysis (ICA) and neural network 
multilayer perceptron to classify mamogramas in 3 class: normal, benign and malignant, 
with 98,7% of successful. [Braz et al, 2007] classified the regions of interest of 
screening mammogram using spatial statistics, with performance of 98.24% to 
discriminate Mass from Non-Mass elements. [Dominguez, Nandi, 2007] use enhanced 
multilevel thresholding segmentation and region selection based on rank mammogram 
segmentation. According the authors, this method had a better performance, with 80% 
of sensitivity. [Campos et al, 2008] use independent component analysis, feature 
extraction and K - means cluster to segment digital mammography. The proposed 
method obtained 86.6% of success.  

In this paper we propose to use the independent component analysis (ICA) to generate a 
data dependent filter bank for mammograms segmentation, and after generate a basis 
functions through the coefficients (features) extracted using ICA. Then, those features 
are used as input parameters to a Neural Network do the classification. 

We divide this work as follows. Into section 2 we show the techniques for segmentation 
and classification the mammograms. In section 3 we present the results and discuss 
about the application of the techniques under study. Finally, section 4 presents some 
concluding remarks. 

2. Methods 

The block diagram of the proposed method is shown in Figure 1. 



  

 
Figure 1: Block Diagram 

The method was divided in two steps. Step one basically consists on filtering an original 
image, using ICA filter bank, feature extraction using non–linear operators, and 
segmentation using K-means clustering. The step two consists of the extraction of 
features in the ROI using ICA, reduction of insignificants features using the forward-
selection technica and the classification of the tissue through neural networks. 

2.1. Independent Component Analysis  
Let us assume that an image x  may be expressed as a linear combination of basis 

images 1 2, , , na a aL  pondered by mutually statistically independent 

coefficients 1 2, , , ns s sL  [Hyvärinen, 1997], such that 

In equation 1, only the variable x  is known, and from that we estimate the 
coefficients ia  and the independent componentsis . 

In the sequel, we represent an image as a column vector 
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by re-shaping the image matrix row-by-row into a single column. In this way we avoid 
using two-dimensional matrices in the ICA filtering, and an image may thus be 
represented using the standard ICA methodology. Mathematically, we express the model 
as, 
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Where x  is the image data, the basis functions, 1,2, ,ia i N= L , are the columns of the 

( )M N×  matrixA , and [ ]1 2, ,
T

Ns s s s= L  the independent components. 

The image model described here is illustrated in Fig. 2. 

 
Fig. 2: The ICA model. 
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2.2. FastICA Algorithm  
The data matrix X is considered to be a linear combination of non-Gaussian 

(independent) components i.e., X =A. S where columns of S contain the independent 
components and A is a linear mixing matrix. In short ICA attempts to “un-mix” the data 
by estimating an un-mixing matrix W, where X.W = S. 

Under this generative model the ICA, the measured in X will tend to be more 
Gaussian than the source components S. Thus, in order to extract the independent 
components we search for an un-mixing matrix W that maximizes the non-gaussianity 
of the sources. In FastICA, non-gaussianity is measured using approximations to 
negentropy (J) which are more robust than kurtosis based measures and fast to compute 
[Marchini et al, 2004]. The approximation takes the form 

{ } { } p
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Where v is a standartized Gaussian randon variable, y is assumed to be normalized to 
unit variance, and the exponent p=1,2 typically  (The  notation Jg do not be confused 
with notation on for negentropy , J). 

2.3. ICA Filter Bank 

For generate the ICA filter bank, we use the fastICA  algorithm applied to Regions on 
Interests (ROIs), containing textures of normal and abnormal tissues. We reduced the 
dimension of the ROIs at the Principal Components Analysis (PCA) step. 

The generation of training data includes the following computations: 
1. Select the ROI of an ensemble; 
2. Select how many patches to take per image; 
3. Select the given number of (m×m) sized patches from random locations; 
4. Subtract from each patch its mean value; 
5. Represent samples as columns, and store in a matrix consisting of training 

vectors. 
The computations described above result in an ensemble of training vectors which 

are presented to the FastICA algorithm [Marchini, 2004], after additional preprocessing 
by PCA. After convergence of the algorithm, matrix W  has been learned from the 
available training data. Matrix A  is obtained by finding the inverse (or pseudo inverse) 
of W . As a last step, the columnsA , are reshaped into size( )m m×  to constitute the 

basis functions. These are now the impulse responses of our filter bank. 
Each filter responds to specific frequency and orientation characteristics and specific 

texture properties. Thus, each filtered image will have high frequency in regions 
corresponding to textures which are tuned to the filter, and low energy corresponding to 
textures which are not tuned to that filter. If the banks consist of N filters, the result is N 
filtered images of the same size as the input image. 

2.4. Features Extraction 

Only filter outputs by default are not appropriate for identifying key texture features. 
The objective of the feature extraction using non-linear operators is to estimate the 
energy in a local region of the filter outputs [Jain, Farrokhnia, 2001], [Unser, Eden, 
1990]. 



  

A number of feature extraction methods were proposed to extract useful information 
from the filter outputs, however, the most commonly used non-linearities are: 
• Magnitude function; ( ) YyF =   

• Non-linear sigmoidal function; ( ) )tanh(YyF =  

• Square function. ( ) ( )2YYF =  

Where Y is a filtered image by ICA.  

The feature image obtained F(Y) has the variance disparities converting of into mean 
values differences, an essential step if standard clustering are to be employed. 

2.5. Clustering in the Feature Space 

At the end of the feature extraction step we are left with a set of feature images 
extracted from the filter outputs. Pixels that belong to the same texture region have the 
same texture characteristics, and should be close to each other in the feature space. The 
final step in unsupervised texture segmentation is to cluster the pixels into a number of 
clusters representing the original texture regions. Labeling each cluster yields the 
segmented image. 

Different approaches were taken for the clustering process [Jain, Farrokhnia, 2001]. In 
this paper we use the basic K-means clustering algorithm for simplicity. 

K-means [Moore, 2001] is one of the most used unsupervised learning algorithms that 
solve the clustering problem. The procedure follows a simple and easy way to classify a 
given data set through a certain number of k clusters fixed a priori. 

The main idea is to define k centroids, one for each cluster. These centroids shoud be 
placed in a cunning way because of different location causes different result. So, the 
better choice is to place them as much as possible far away from each other. 

The next step is to take each point belonging to a given data set and associate it to the 
nearest centroid. When no point is pending, the first step is completed and an early 
groupage is done. At this point we need to re-calculate k new centroids as barycenters of 
the clusters resulting from the previous step. 

After we have these k new centroids, a new binding has to be done between the same 
data set points and the nearest new centroid. A loop has been generated. As a result of 
this loop we may notice that the k centroids change their location step by step until no 
more changes are done. In other words centroids do not move any more. 

Finally, this algorithm aims at minimizing an objective function, in this case a squared 
error function. The objective function is:  

 

 

(5) 
 

where is a chosen distance measure between a data point and the cluster 

centre , is an indicator of the distance of the n data points from their respective cluster 



  

centers. When clustering is done, each pixel is labeled with its respective cluster, finally 
producing the segmented image. 

2.6. Multilayer Perceptron Neural Networks 

The Multilayer Perceptron (MLP), a feed-forward back-propagation network, is the 
most frequently used neural network technique in pattern recognition [Duda, Hart, 
1973], [Bishop, 1999]. Briefly, MLPs are supervised learning classifiers that consist of 
an input layer, an output layer, and one or more hidden layers that extract useful 
information during learning and assign modifiable weighting coefficients to components 
of the input layers. In the first (forward) pass, weights assigned to the input units and the 
nodes in the hidden layers and between the nodes in the hidden layer and the output, 
determine the output. The output is compared with the target output. An error signal is 
then back propagated and the connection weights are adjusted correspondingly. During 
training, MLPs construct a multidimensional space, defined by the activation of the 
hidden nodes, so that the three classes (malignant, benign and normal tissue) are as 
separable as possible. The separating surface adapts to the data. 

2.7. Selection of Most Significant Features 

Our main objective to identify the effectiveness of a feature or a combination of 
features when applied to a neural network. Thus, the choice of features to be extracted is 
important. 

Forward selection is a method to find the “best” combination of features (variables) 
by starting with a single feature, and increasing the number of used features, step by step 
[Funukaga, 1990]. In this approach, one adds features to the model one at a time. At 
each step, each feature that is not already in the model is tested for inclusion in the 
model. The most significant of these feature is added to the model, so long as  P-value is 
below some pre-selected level. 

2.8. Evaluation of Classification Methods 

Sensitivity and specificity are the most widely used statistics to describe a diagnostic 
test. Sensitivity is the proportion of true positives that are correctly identified by the test 
and is defined by S = TP/(TP+FN) . Specificity is the proportion of true negatives that 
are correctly identified by the test and is defined by TN/(TN+FP). Where FN is false-
negative, FP is false-positive, TN is true negative and TP is true positive diagnosis. 

3. Experimental Results and Discussion 
Here are describe the results obtained using the method proposed in the previous 

section. 

3.1. Mammogram Database 

The database used in this work is the Mammographic Institute Society Analysis 
(MIAS) [Sucking et al, 1994]. The mammograms have a size of 1024x1024 pixels, and 
resolution of 200 micron. This database is composed of 332 mammograms of right and 
left breast, from 161 patients, where 53 were diagnosed as being malignant, 69 benign 
and 206 normal. The abnormalities are classified by the kind of found abnormality 



  

(calcification, circumscribed masses, architectural distortions asymmetries, and other ill-
defined masses).  

For the segmentation, to generate the ICA filter bank, we selected 150 ROI from this 
database: 25 benign, 25 malignant and 100 normal tissues of the mammograms. The 
ROIs was found through of xy images coordinates of centre of abnormality contained in 
file list of MIAS database. To the normal tissue, only pectoral muscle wasn’t considered 
as a possible ROI, but tissue and fat tissue were. 

3.2. ICA Application, in Segmentation of mammograms 

 For generate the matrix x of equation 3, were randomly selected patches of size 12 x 
12 of the 95 ROIs, and each patches generate de vector of size 1 x 144. It was generate 
30000 training vectors that were used as input to fastICA algorithm. 

In order to reduce the dimensionality of the filters, we made a preprocessing using 
principal component analysis. ICA was then performed successively on the 8 most 
significant filters. 

Each row of matrix A, of size 1 x 144, was reshaped in windows, of size 12 x 12. 
Each window was used as a filter, localized in spatial frequency, and orientation. 

3.3. Extracting Features 

 For feature extraction of filtered images by ICA, we used the magnitude 
function, combined with a square function: 

                                                  ( ) ( )2||YYF =                                                                  (6) 

In order to carry out the tests, we selected 60 mammograms: 35 malignant and 25 
benign diagnoses. These mammograms that do not used to generate the ICA filter bank. 

If the 60 mammograms, the algorithm detected 186 regions suspicious. Based in MIAS 
Database, can affirm that 186 regions founded, 60 regions have cancer, and 126 haven’t. 
Figure 3 shows a comparison between the original mammograms and the segmented 
mammograms using K-means clustering, with 8 filters. 

 

 

 

 

 

 

Fig.3: Comparison between: Original mammograms and mammogram 
segmented. The circumscribed  regions indicate suspicious regions. 

3.3. Classification of Regions Suspicious 

The 186 suspicious regions, the ROI were manually selected, containing a lesion, in 
the case of abnormal mammograms. The ROI’s was found using the informations 
through of xy images coordinates of centre of abnormality, contained in file list of MIAS 



  

database, and the segmentation response. In the case of regions where not founded 
cancer, was extracted regions based only in segmentation response.  

 If the tissues had different sizes, it was rescaled each ROI. Therefore, they were 
resized to 24x24 pixels. Figure 4 exemplifies the ROI selection of a mammogram. 

 
Fig. 4:  Chosen tissue of mammogram 

3.4. ICA Application for Classification of Mammograms 

X of Equation 2 was represented using the chosen ROIs. 

The images with ROI were rescaled and transformed into a one-dimensional vector 

                                                      P= Px x Py                                                             (6) 

 Where Px is a rows and Py is a columns of P and P has dimension 1x 576. 

 Each sample represents one row of the mixture matrix. The matrix X is 
represented by the samples into the dimension of P, that is, 1x576. Thus, each row of 
the matrix A corresponds to a ROI, and each column corresponds to an attributed weight 
to a base image, i.e., an input parameter to the neural network [Christoyanni, 2002]. 

 Using the FastICA algorithm and the matrix X, we obtain the basis function 
matrix A, which contains the features of each sample. 

3.5. Multilayer Perceptron Neural Networks 

Using the forward-selection algorithm, 21 basis functions were selected as being the 
most significant features. The chosen features (ai) are the input to the MLP Network. 
The best result was obtained using one input layer (21 neurons), one hidden layer (2 
neurons) and one output layer (2 Neurons).  

In order to realize the tests, we divided a sample into 186 ROI: 93 for training and 93 for 
tests. 

4. Results 
Table I shows the performance of application of the ICA technique and MLP network 

to each regions suspicious. 
 
 



  

Table I: Classification of cancer and not cancer in regions suspicious. The lines and 
columns show the database and algorithm classification, respectively. 

 

  Cancer Not Cancer 

Cancer 53 10 

Not  Cancer 7 116 

Success (%) 88.3 92 

Based on Table I, the method obtained a success rate of 90.15%, for discriminating 
normal (not cancer) and abnormal (cancer) tissues. The specificity was 92 %, and 
sensitivity was 88.3%.  The method obtained 53 true positives, 116 true negatives. 10 
false positives and 7 false negatives. 

5. Conclusions 

The presented results demonstrated that Independent Component Analysis, texture 
features and MLP Neural Networks were good techniques to Segment and classify 
Digital Mammograms, discriminating cancer and not cancer tissue. 

Furthermore, the best performance was found using 8 ICA filters segmented those 
mammograms, and after MLP Neural Networks to classification, with a success rate of 
90.15%. It can decrease the number of unneeded biopsies and late cancer diagnosis. 

Nevertheless, there is the need to perform tests with a larger database and more complex 
cases in order to obtain a more precise behavior pattern. 
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