Sistema de Apoio à Decisão Aplicado ao Diagnóstico da Doença de Alzheimer

Flávio L. Seixas¹, Bianca Zadrozny², Jerson Laks³, Débora C. M. Saade¹, Aura Conci¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) Rua Passo da Pátria, 156 – 24.210-240 – Niterói – RJ – Brasil

²IBM Research Brasil – Av. Pasteur, 138 – 22.296-903 – Rio de Janeiro – RJ - Brasil

³Instituto de Psiquiatria – Universidade Federal do Rio de Janeiro (UFRJ), Av. Venceslau Brás, 71 – 22.290-140 – Rio de Janeiro – RJ – Brasil

Abstract. This paper describes a clinical decision support system applied to Alzheimer's disease diagnosis. Such system includes: a Bayesian knowledge base, an ontology defined to represent uncertainty inherent in clinical knowledge, an inference engine and a Bayesian learning algorithm. The Bayesian network structure was based on clinical Alzheimer criteria published by NINCDS-ADRDA and DSM-IV. The parameters were obtained using a Bayesian learning algorithm known as Expectation Maximization (EM). As a training database, we used clinical items from about 1500 cases available in the CERAD database. Results were evaluated using a sensitivity analysis.

Resumo. Este artigo descreve um sistema de suporte à decisão clínica, aplicado ao diagnóstico da Doença de Alzheimer. Os principais componentes presentes no sistema são: um modelo de conhecimento baseado em rede bayesiana, uma ontologia para representação do conhecimento clínico e incertezas, um motor de inferência e aprendizagem computacional. A estrutura da rede bayesiana foi baseada nos critérios clínicos publicados pelo NINCDS-ADRDA e DSM-IV. Os parâmetros da rede foram definidos aplicando o algoritmo de aprendizagem computacional conhecido como Expectation Maximization (EM). A base de treinamento foi baseada em dados clínicos de cerca de 1500 indivíduos obtidos do CERAD. Os resultados foram avaliados através de uma análise de sensibilidade.

1. Introdução

A doença de Alzheimer é uma doença neurodegenerativa progressiva que leva à perda irreversível de neurônios e à demência. Conforme DSM-IV (Dementia Diagnostic and Statistical Manual for Mental Disorders), demência é definida como a verificação de múltiplos déficits cognitivos, incluindo prejuízos da memória e ao menos um dos seguintes distúrbios cognitivos: afasia, apraxia, agnosia ou funcionamento executivo [APA, 1994]. A doença de Alzheimer é classificada como um subtipo da demência, representando a principal causa de demência entre idosos. Em um levantamento envolvendo 1563 indivíduos idosos em uma comunidade de São Paulo, 12,9% foram

diagnosticados com algum tipo de demência, destes, a doença de Alzheimer representou 59,8% dos casos [Bottino *et al.*, 2008]. Em um relatório publicado pela *Alzheimer's Association* (2010), a doença de Alzheimer aparece na sétima posição de causa de todas as mortes nos Estados Unidos. Dentre as diversas formas de se estagiar o curso da doença, uma delas divide da doença de Alzheimer em dois estágios [Dubois *et al.*, 2007]: o estágio pré-demencial ou pré-clinico e o estágio demencial.

Para se chegar ao diagnóstico, o clínico primeiro avalia sinais e sintomas vinculados à demência utilizando como base os critérios publicados pela DSM-IV. Na suspeita da doença de Alzheimer, o paciente é avaliado aplicando critérios mais específicos. O critério mais utilizado para diagnóstico de provável Alzheimer é NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke - Alzheimer's Disease and Related Disorders) documentado em Mckann et al. (1984). Há outros critérios na literatura, dentre eles, os principais são os critérios do CERAD (Consortium to Establish a Registry for Alzheimer's Disease) encontrado em Mirra et al. (1991), e a revisão publicada por Dubois et al. (2007).

O presente artigo apresenta um sistema de suporte à decisão clínica aplicado ao diagnóstico da doença de Alzheimer. Um sistema de apoio à decisão clínica é definido como um sistema computacional utilizado com o objetivo de buscar dados clínicos mais relevantes e prover a médicos e pacientes informações mais efetivas, conforme o contexto clínico presente [Sirajuddin *et al.*, 2009].

Shwe *et al.* (1991) utilizaram um modelo baseado em probabilidade e rede bayesiana para apoiar o diagnóstico clínico, mapeando aproximadamente 500 doenças e 4000 sintomas. Amaral *et al.* (1995) propuseram um sistema de apoio ao diagnóstico baseado em regras de produção, classificando 30 grupos e aproximadamente 300 categorias de doenças psiquiátricas. Em ambos os trabalhos, não houve relatos da implantação do sistema em uma rotina clínica: o desempenho foi medido em função de simulações e dados retrospectivos publicados na literatura científica. Lindgren (2007) mostrou um sistema de apoio à decisão baseado em regras de produção, visando apoiar o raciocínio clínico para o diagnóstico da demência e subtipos, incluindo Alzheimer. O estudo focou primeiramente no modelo de conhecimento, processo de raciocínio e a interface do sistema; o desempenho não foi apresentado devido a dificuldades de sua medida. Outros sistemas dão suporte ao processo de diagnóstico utilizando métodos de classificação dado um conjunto completo de dados clínicos, oriundos principalmente de exames de imagem [Mueller *et al.*, 2010].

Este artigo apresenta um sistema visando apoiar o raciocínio clínico, utilizando um modelo de conhecimento baseado em rede bayesiana [Korb e Nicholson, 2004]. Em contraste com os trabalhos relacionados, este modelo considera a causalidade de eventos e a representação de incertezas, bem como observações parciais da realidade, características presentes no contexto clínico. Este artigo está organizado da seguinte forma: na Seção 2, definimos os componentes da arquitetura do sistema de suporte à decisão clínica, mostramos a estrutura da rede bayesiana e o método de aprendizagem computacional para obtenção dos parâmetros da rede bayesiana a partir da base de treinamento. Na Seção 3, mostramos as ferramentas utilizadas na implementação e os resultados obtidos utilizando a análise de sensibilidade. As conclusões e próximos trabalhos são apresentados na Seção 4.

2. Sistema de suporte à decisão clínica

A Figura 1 mostra os principais componentes de um sistema de apoio à decisão clínica. O histórico e informações clínicas do paciente são armazenados no repositório de dados clínicos (Item 1 da Figura 1). Este repositório é consultado e atualizado pelo médico responsável pelo diagnóstico clínico através de uma interface de comunicação (Item 2). A interface de comunicação também é responsável pela correspondência dos itens clínicos observados do paciente ao motor de inferência (Item 3). O objetivo do motor de inferência é, através de um método iterativo, calcular a máxima probabilidade marginal a posteriori da variável aleatória ou nó da doença de interesse. O motor de inferência utiliza a base de conhecimento (Item 4) contendo os critérios de diagnóstico e conhecimentos clínicos acerca da doença. O módulo de aquisição do conhecimento (Item 5) é responsável pela atualização da base de conhecimento, normalmente, tarefa efetuada por especialistas daquele domínio de conhecimento. O modelo de conhecimento adotado é representado por uma rede bayesiana. A estrutura da rede bayesiana é representada graficamente por um grafo unidirecional acíclico. Cada componente do grafo indica a relação causal entre dois nós (ou duas variáveis aleatórias), o nó pai representando a causa e o nó filho o efeito. Os parâmetros se referem às tabelas de distribuição de probabilidades a priori e condicionais. O método de aprendizagem computacional tem por objetivo atualizar continuamente os parâmetros da rede bayesiana de acordo com a decisão clínica tomada pelo médico, dados os itens clínicos apresentados pelo paciente.

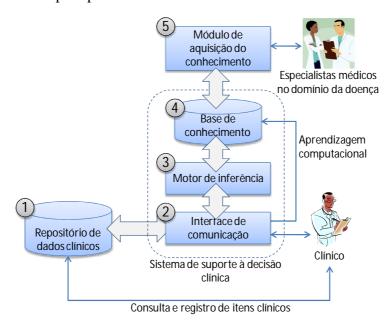


Figura 1. Componentes de um sistema de suporte à decisão clínica

Na Subseção 2.1 iremos detalhar os componentes estruturais da rede bayesiana.

2.1. Estrutura da rede bayesiana

Utilizamos uma estrutura da rede bayesiana multinível, com variáveis aleatórias distribuídas de forma discreta ou multinomial, conforme mostra a Figura 2. O primeiro nível abriga variáveis aleatórias B_i (Background information) representando os fatores de pré-disposição ou de exclusão da doença. O segundo representa a doença de interesse

D (*Disease*) formado por um único nó central. O terceiro nível contém as variáveis aleatórias F_i (*Findings*) representando os efeitos da doença (sintomas, sinais, resultados de exames psico-neurológicos, e outros).

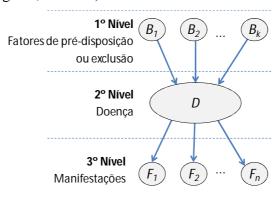


Figura 2. Estrutura da rede bayesiana multinível e multinomial.

O objetivo do motor de inferência é calcular a probabilidade marginal ou *a posteriori* do nó central ou variável aleatória que representa a doença de interesse. A base do motor de inferência é o teorema de Bayes, conforme mostra a Equação 1.

$$Pr(h \mid e) = \frac{Pr(e \mid h) \cdot Pr(h)}{Pr(e)} \tag{1}$$

onde $\Pr(e/h)$ é a função densidade probabilidade condicional das evidências dadas as hipóteses, $\Pr(h)$ a função densidade probabilidade das hipóteses e $\Pr(e)$ a função densidade probabilidade das evidências. O teorema de Bayes relaciona, dadas as evidências ou itens clínicos, qual a função probabilidade da hipótese, no caso, o acometimento do paciente com a doença de Alzheimer, obtido pela função probabilidade condicional $\Pr(h/e)$.

As variáveis aleatórias foram definidas com base nos critérios de diagnóstico de provável doença de Alzheimer, e posicionadas no nível da rede bayesiana correspondente. Quanto à natureza, todas as variáveis aleatórias são discretas, podendo ser binomiais (ex.: presente/ausente), ou multinomiais, indicando, por exemplo, a gravidade ou intensidade de uma manifestação (ex.: suave/moderada/grave). Algumas variáveis aleatórias podem contribuir ou refutar o grau de crença da doença. A Tabela 1 mostra uma listagem das principais variáveis aleatórias obtidas conforme os critérios de diagnóstico da doença de Alzheimer e sua respectiva classe ou nível na rede bayesiana. No total, foram mapeados 15 fatores de pré-disposição/exclusão e 43 manifestações, considerando principalmente os critérios publicados em NINCDS-ADRDA, DSM-IV e outras publicações.

Os parâmetros da rede bayesiana foram obtidos através de um método de aprendizagem computacional conhecido por *Expectation Maximization* [Friedman, 1997], com base em uma amostra de dados clínicos observados parcialmente de uma amostra reunindo pacientes e indivíduos de controle normal. Este tema será detalhado na próxima subseção.

Tabela 1. Fatores de pré-disposição ou exclusão, e manifestações relacionados ao diagnóstico da doença de Alzheimer

Classe (Nível)	Itens
Fatores de pré- disposição ou exclusão	Comprometimento social e ocupacional, doença cerebrovascular, doença de Parkinson, doença de Huntigton, hematoma subdural, hidrocefalia de pressão normal, tumor cerebral, hipotireoidismo, deficiência de niacina, hipercalcemia, neurossífilis, infecção com HIV, histórico familiar de Alzheimer.
Manifestações	Déficit de memória, afasia, apraxia, agnosia, perturbação do funcionamento executivo, declínio cognitivo significativo e contínuo, depressão, insônia, delírios, ilusões, alucinações, explosões catastróficas, verbais, emocionais ou físicas, distúrbios sexuais, perda de peso, hipertonia, mioclonia, distúrbio de marcha, crises convulsivas, hemiparesia, perda sensorial, Mini-Exame de Estado Mental (MMSE), escala de demência de Blessed, punção lombar normal, EEG, atrofia de amígdala com progressão, atrofia de hipocampo com progressão, e testes psico-neurológicos aplicados pelo CERAD.

2.2. Aprendizagem dos parâmetros da rede bayesiana

Com a estrutura definida e fixada, aplicamos métodos de aprendizagem computacional para obter os parâmetros da rede bayesiana. Utilizamos os dados clínicos disponibilizados pela base CERAD (http://cerad.mc.duke.edu/) como base de treinamento. O CERAD foi fundado pelo *National Institute on Aging* em 1986 com o objetivo de desenvolver medidas e padrões utilizados para o diagnóstico da doença de Alzheimer. Suas principais contribuições ao longo de 20 anos de pesquisa foram: proposição de baterias de testes clínicos, neuropsicológicos, neuropatológicos, protocolos de avaliação de neuroimagens, definição de escalas e procedimentos para diagnóstico e avaliação do estágio da doença, incluindo a confirmação por exames *postmortem*, abrangendo pacientes e indivíduos de controle normal [Fillenbaum *et al.*, 2008]. Os dados de cada bateria de testes e avaliações clínicas foram coletados através de formulários e disponibilizados eletronicamente em uma base de dados relacional.

A base de treinamento envolveu 1557 indivíduos (1094 pacientes e 463 controles). Para cada variável aleatória da rede bayesiana, procuramos identificar uma ou mais correspondências com atributos na base de treinamento. A Tabela 2 mostra um exemplo do trabalho de correspondência da variável aleatória "Déficit de memória". O primeiro passo é selecionar os atributos da base de treinamento que possuem correspondência semântica com a variável aleatória em questão. Se mais de um atributo for selecionado, é necessário aplicar uma função de priorização, definindo, por exemplo, como evidência da variável aleatória, o estado do primeiro atributo que aparecer preenchido na base de treinamento.

Para os atributos numéricos (ex.: MMSE), é necessário aplicar algum método de discretização. Foi adotado o método de discretização supervisionado proposto por Fayyad e Irani (1993), utilizando como classe o atributo CDR (Clinical Dementia Rating). O CDR foi inicialmente proposto pela Escola de Medicina da Universidade de Washington com objetivo de avaliar o estágio da demência. Representa uma escala de

zero a três, zero indicando sem demência ou controle normal, e três, demência severa, sendo utilizado principalmente para avaliação do estágio da doença de Alzheimer devido a sua forte correlação com o diagnóstico da doença [Maia *et al.*, 2006]. Ainda na etapa de treinamento, consideramos o critério exposto na Equação 2 para representação da variável aleatória *D*. Atribuímos o valor zero à variável aleatória do diagnóstico negativo da doença de Alzheimer, e valor um ao diagnóstico positivo.

$$\begin{cases} D = 0, \text{ se CDR} < 1; \\ D = 1, \text{ caso contrário}; \end{cases}$$
 (2)

Tabela 2. Exemplo de correspondência de uma variável aleatória da rede bayesiana com os dados presentes na base CERAD

Variável aleatória	Nome do formulário na	Atributos identificados na base com		
(VA) avaliada	base	correspondência semântica		
Déficit de memória	Histórico clínico	Problemas com memória		
		Problemas com memória com		
		prejuízos para atividades da rotina		
		diária		
	Observações clínicas	Comprometimento de memória por		
		mais de 12 meses		
	Observações clínicas	Déficit de memória		
	quanto às funções cognitivas	Outros déficits de memória		

Aproximadamente 49% dos dados da base de treinamento estão ausentes ou não avaliados. Foi identificada a correspondência de 80% das variáveis aleatórias da rede bayesiana em relação aos atributos da base de treinamento, 11 fatores de pré-disposição e 31 sintomas, sinais e testes. Adotamos o algoritmo EM (*Expectation Maximization*) como método de aprendizagem dos parâmetros da rede bayesiana.

O algoritmo EM, descrito primeiramente por Dempster *et al.* (1977), é utilizado quando há dados faltantes ou observações parciais na base de treinamento. Dado o modelo estatístico consistindo em um conjunto X de dados observados, um conjunto Z de dados latentes, e um vetor θ de parâmetros desconhecidos, juntamente com a função verossimilhança $L(\theta;X,Z) = \Pr(X,Z \mid \theta)$, a estimativa de máxima verossimilhança dos parâmetros desconhecidos é determinada pela probabilidade marginal dos dados observados, conforme mostra Equação 3.

$$L(\theta; X) = \Pr(X \mid \theta) = \sum_{Z} \Pr(X, Z \mid \theta)$$
(3)

Por tratar-se de uma função complexa, o algoritmo EM busca iterativamente o ponto de máximo da função aplicando dois passos. O primeiro é o passo E (*Expectation*): consiste em calcular o valor esperado do logaritmo da função probabilidade condicional da distribuição de Z dado X, sobre as estimativas atuais dos parâmetros $\theta^{(t)}$, conforme mostra a Equação 4.

$$Q(\theta \mid \theta^{(t)}) = E_{Z[X,\theta^{(t)}]}[\log L(\theta; X, Z)]$$
(4)

A Equação 4 também é denominada *log-likelihood*. O passo M (*Maximization*) busca os parâmetros que maximizam a Equação 5.

$$\theta^{(t+1)} = \arg\max_{\alpha} Q(\theta \mid \theta^{(t)}) \tag{5}$$

O passo E é repetido n vezes, os valores de Z recalculados para obtenção de uma melhor estimativa dos parâmetros θ , até atingir a convergência do vetor θ ou o número máximo de iterações.

3. Implementação e resultados

Todas as funções relacionadas à rede bayesiana, bem como o algoritmo de aprendizagem, EM, foram implementadas utilizando a biblioteca BNT (*Bayes Network Toolbox*), disponibilizada para o ambiente Mathworks MATLAB[®] [Murphy, 2001]. O método de discretização dos atributos numéricos foi implementado pelo aplicativo WEKA da Universidade de Waikato (http://www.cs.waikato.ac.nz/ml/weka/).

Os parâmetros da rede bayesiana foram representados em tabelas de distribuição de probabilidades condicionais. As probabilidades *a priori* da rede bayesiana foram definidas considerando a distribuição de Dirichlet [Gopalan e Berry, 1998]. A distribuição Dirichlet refere-se à família de distribuições de probabilidade multivariadas, parametrizadas pelo vetor α . Sua função densidade de probabilidade retorna a probabilidade de K eventos x_i , dado que cada item foi observado α_i -I vezes.

O algoritmo EM foi inicializado considerando distribuição uniforme das variáveis aleatórias. O algoritmo atingiu o critério de convergência em 18 iterações. A Figura 3 mostra a curva de aprendizagem, o valor esperado do vetor da função logaritmo da probabilidade condicional dos parâmetros, ou *log-likelihood*.

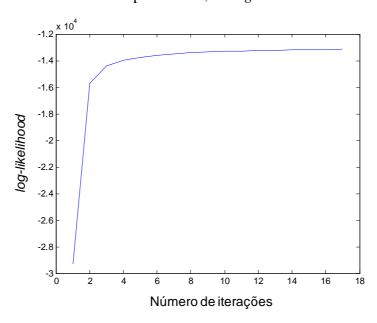


Figura 3. Curva de aprendizagem obtida do algoritmo EM (Expectation Maximization)

Para avaliação dos resultados, foram utilizadas a entropia como métrica e análise de sensibilidade [Korb e Nicholson, 2004]. A entropia foi utilizada como medida de incerteza. A entropia é obtida conforme Equação 6, onde H(X) representa a entropia, $Pr(x_i)$ a probabilidade de ocorrência de x_i . Uma medida próxima de 1 significa grau de

incerteza máximo; ao contrário, próximo de zero, grau de incerteza mínimo. A expectativa é que, dada uma combinação de evidências, a entropia obtida no nó de consulta ou variável aleatória da doença de Alzheimer seja reduzida.

$$H(X) = -\sum_{i=1}^{n} \Pr(x_i) \cdot \log_n \Pr(x_i), \ H(X) \in [0;1]$$
 (6)

A técnica de análise de sensibilidade é utilizada para identificar quais evidências mais reduzem as medidas de entropia. Em um sistema de suporte à decisão clínica, esta análise pode ser utilizada para indicar ao clínico quais observações devem ser coletadas do paciente naquele momento, de modo a obter maior redução da entropia e, assim, o grau de incerteza do diagnóstico clínico. Neste trabalho, o principal propósito da análise de sensibilidade é simular as evidências, mostrando uma validação e desempenho da rede bayesiana.

A Tabela 3 mostra 17 evidências ordenadas de forma decrescente pela redução da medida de entropia. As evidências foram filtradas considerando um percentual de dados faltantes na base de treinamento menor ou igual a 50%. A entropia é avaliada pontualmente na variável aleatória que representa a doença de Alzheimer. A redução da entropia é obtida calculando a diferença com e sem a identificação da evidência. Assim, decorrida a aprendizagem dos parâmetros da rede bayesiana, notamos que a identificação de crises convulsivas produz a maior redução da medida de incerteza. Após a 17ª posição, obtivemos redução da entropia menor que 0,001.

Tabela 3. Evidências em ordem decrescente pela redução da entropia

Posição	Variável aleatória presente na rede bayesiana	Redução da entropia	% de dados faltantes
1	Crises convulsivas	0,634	27,87
2	Insônia	0,433	12,40
3	Doença cerebrovascular	0,044	50,10
4	Déficit de campo visual	0,035	12,59
5	Teste de Nomeação de Boston	0,029	11,30
6	Depressão	0,027	17,92
7	Teste: Word List Memory (CERAD)	0,022	13,42
8	Mini-Exame de Estado Mental (MMSE)	0,020	1,03
9	Perda de peso	0,009	27,36
10	Escala de demência de Blessed	0,007	1,48
11	Neurossífilis	0,006	46,82
12	Déficit de memória	0,006	0,90
13	Convulsões e distúrbios de marcha	0,005	22,61
14	Teste: Constructional Praxis (CERAD)	0,003	13,23
15	Afasia	0,001	50,42
16	Teste: Word List Recall (CERAD)	0,001	14,45
17	Teste de fluência verbal semântica	0,001	12,72

4. Conclusões

Este artigo descreveu um sistema de apoio à decisão clínica com o modelo de conhecimento baseado em rede bayesiana, com aplicações para o diagnóstico da doença de Alzheimer. A base de treinamento contém 1557 instâncias (pacientes). Contudo, há muitos dados faltantes, conforme mencionado em parágrafos anteriores. Esse fato dificulta uma conclusão mais efetiva do desempenho da rede bayesiana. A melhor validação do sistema de apoio à decisão é a sua implantação em uma rotina clínica controlada, monitorando o grau de acerto ou relevância, dado o contexto clínico apresentado.

As principais contribuições do artigo foram: (1) a aplicação do modelo probabilístico e causal para representação do conhecimento clínico; (2) formalização dos critérios clínicos da doença de Alzheimer em uma estrutura computacional; (3) verificação das observações ou evidências a serem coletadas mais relevantes, resultante da aprendizagem utilizando uma base de treinamento.

Como trabalho futuro pretende-se: desenvolver ou aplicar um método de atualização da rede bayesiana dada indicação de novas evidências e a decisão tomada pelo clínico; incorporar ao processo de aprendizagem uma base de treinamento mais completa, com menor percentual de dados faltantes; implantar o sistema na rotina clínica.

Agradecimentos

Este trabalho foi parcialmente financiado por CNPQ, FAPERJ e INCT-MACC.

Referências

- APA (1994). Diagnostic and Statistical Manual of Mental Disorders DSM-IV. Washington, DC, American Psychiatric Association.
- Bottino, C. M. C., D. Azevedo, M. Tatsch, S. R. Hototian, M. A. Moscoso, J. Folquitto, A. Z. Scalco, M. C. Bazzarella, M. A. Lopes and J. Litvoc (2008). "Estimate of dementia prevalence in a community sample from São Paulo." Dementia and Geriatric Cognitive Disorders 26(4): 291-299.
- Dempster, A. P., N. M. Laird and D. B. Rubin (1977). "Maximum likelihood from incomplete data via the EM algorithm." Journal of the Royal Statistical Society. Series B (Methodological) 39(1): 1-38.
- do Amaral, M. B., Y. Satomura, M. Honda and T. Sato (1995). "A psychiatric diagnostic system integrating probabilistic and categorical reasoning." Methods Inf Med 34(3): 232-243.
- Dubois, B., H. H. Feldman, C. Jacova, S. T. DeKosky, P. Barberger-Gateau, J. Cummings, A. Delacourte, D. Galasko, S. Gauthier, K. Meguro, J. O'Brien, F. Pasquier, P. Robert, M. Rossor, S. Salloway, Y. Stern, P. J. Visser and P. Scheltens (2007). "Research criteria for the diagnosis of Alzheimer's Disease: revising the NINCDS-ADRDA criteria." Lancet Neurology 6: 734-746.
- Fayyad, U. M. and K. B. Irani (1993). Multi-interval discretisation of continuous-valued attributes for classification. Proceedings of the Thirteenth Internatinal Joint Conference on Artificial Intelligence, San Fracisco CA, Morgan Kaufmann.

- Fillenbaum, G. G., G. van Belle, J. C. Morris, R. C. Mohs, S. S. Mirra, P. C. Davis, P. N. Tariot, J. M. Silverman, C. M. Clark and K. A. Welsh-Bohmer (2008). "Consortium to Establish a Registry for Alzheimer's Disease (CERAD): The first twenty years." Alzheimer's & dementia: the journal of the Alzheimer's Association 4(2): 96-109.
- Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variables. Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco CA, Morgan Kaufmann.
- Gopalan, R. and D. A. Berry (1998). "Bayesian multiple comparisons using Dirichlet process priors." Journal of the American Statistical Association 93(443): 1130-1139.
- Korb, K. and A. Nicholson (2004). Bayesian artificial intelligence. Clayton, Victoria, Australia, Chapman & Hall/CRC.
- Lindgren, H. (2007). Decision support in dementia care: developing systems for interactive reasoning, Umeå University, Faculty of Science and Technology, Computing Science.
- Maia, A. L. G., C. Godinho, E. D. Ferreira, V. Almeida, A. Schuh, J. Kaye and M. L. F. Chaves (2006). "Application of the Brazilian version of the CDR scale in samples of dementia patients." Arquivos de Neuro-Psiquiatria 64(2B): 485-489.
- McKhann, G., D. Drachman, M. Folstein, R. Katzman, D. Price and E. M. Stadlan (1984). "Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease." Neurology 34(7): 939-944.
- Mirra, S. S., A. Heyman, D. McKeel, S. M. Sumi, B. J. Crain, L. M. Brownlee, F. S. Vogel, J. P. Hughes, G. van Belle and L. Berg (1991). "The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease." Neurology 41(4): 479-486.
- Mueller, S. G., N. Schuff, K. Yaffe, C. Madison, B. Miller and M. W. Weiner (2010). "Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease." Hum Brain Mapp 31(9): 1339-1347.
- Murphy, K. (2001). "The bayes net toolbox for matlab." Computing science and statistics 33(2): 1024-1034.
- Shwe, M. A., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann and G. Cooper (1991). "Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base." Methods of information in medicine 30(4): 241-255.
- Sirajuddin, A. M., J. A. Osheroff, D. F. Sittig, J. Chuo, F. Velasco and D. A. Collins (2009). "Implementation pearls from a new guidebook on improving medication use and outcomes with clinical decision support. Effective CDS is essential for addressing healthcare performance improvement imperatives." J Healthc Inf Manag 23(4): 38-45.