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Abstract. Common bioinformatics approaches for protein function prediction
are based on sequence classification and annotation transfer from known
proteins to their closest homologous. These approaches are restricted to
homogeneous superfamilies and are not able to predict new activities.
Structural biology offers a new insight to overcome this problem by adding
protein structure information. Using a 3D modeling approach, we developed
a method to predict evolution of catalytic sites in superfamilies. We present
results obtained during a computational Grand Challenge on the 350 Tflops
CCRT French Supercomputing Facility that illustrate how high performance
computing provide new perspectives for understanding protein evolution and
function.

Resumo. As abordagens mais utilizadas para predicdo de funcdo de proteinas
sdo baseadas na classificacdo de sequéncias e na transferéncia de funcoes de
proteinas conhecidas para seus homologos mais proximos. Estas abordagens
sdo restritas as super-familias homogéneas e ndo sdo lteis na predicdo de
novas atividades. A biologia estrutural oferece novos meios de superar esta
limitacdo através da agregacdo da informagcdo sobre as estruturas de
proteinas. Neste trabalho, apresentamos os resultados do Grand Challenge,
um desafio do supercomputador francés CCRT de 350TFlopss que ilustra as
novas perspectivas que este tipo de tecnologia juntamente com as técnicas de
e-Science nos fazem vislumbrar rumo ao entendimento das fungoes e evolucdo
de proteinas.



1. Introduction

With the increasing number of genomes being sequenced, a critical challenge
concerns functional prediction of proteins encoded by these genes. Several methods are
widely used, including sequence and gene context analysis. While these methods are
efficient for closed homologous, they are limited to proteins sharing homologies with
known proteins. To overcome such problems, structural information can be used, in
combination with sequence data, in order to provide a more successful understanding of
protein function on molecular basis. To gather as much as possible structural
information, recent international initiatives are developing high throughput technologies
for experimental resolution of protein structures. However, costs and technical
difficulties still explain the huge gap between number of sequences and number of
structures available. Homology Modeling is a reliable approach to bridge this gap as
long as the target sequence has a minimum sequence similarity with at least one
experimentally solved protein structure [Tramontano ef al., 2001].

To evaluate the potential target of structural approach for annotation, we
examined PFAM database [Finn ef al., 2008] and estimated the size of data eligible to
modeling in addition to sequence analysis (table 1). Looking at PFAM v. 23.0 reveals
the high number of families without annotation, DUFs (Domain of Unknown Function)
and UPFs (Uncharacterized Protein Family) representing 21% of the overall database.
While the number of available structures represents only 10% of unknown families,
about 200 families are potentially tractable by structural analysis. To complete this
view, objectives of the PSI (Protein Structure Initiative) is to solve at least one protein
structure for all PFAM families.

Table 1. PFAM (v. 23.0) families lackingq annotation with structural information

Total PFAM entries DUF UPF DUF/UPF with PDB entries
10340 2156 92 208

Depending on the accuracy of the structural information, one can reach different
level of elucidation of the relationships between structure and function. At high level of
resolution, biochemical reaction may be predicted using molecular modeling and
substrate docking methods. At low-resolution level, fold assignment and 3D motif
searching can support functional annotation. For example, conserved structural cavities
in a protein family are an indicator of active sites. Residues in these cavities are subject
to different selective pressures so that multiple alignments can reveal conserved
profiles. Hidden Markov Models (HMMs) provide a coherent statistical theory for this
analysis.

In this study, we applied a recent developed methodology to 83 DUFs families
present in the Cloaca meta-genome data studied at Genoscope (1 million prokaryote
sequence proteins from Evry Waste Water Anaerobic Plant). The modelling of 60,000
sequences (1,000 models for each sequence) were obtained during a Computational
Grand Challenge proposed by the French Super-Computing Facility CCRT of the CEA
(Commissariat a 1’Energie Atomique et aux Energies Alternatives). The 60.10°
generated models are stored in a new structural database, integrating information on



sequence, structure and conserved pockets. Initial analysis of some families allowed the
identification of new enzymatic functions and specificities.

2. Active Site Modeling and Clustering

In a recent work [Melo-Minardi ef al., 2010], we developed ASMC (|Active Site
Modeling and Clustering), a methodology for analysis of residues of protein cavities to
detect determinant ones involved in catalytic or enzyme specificity. Briefly, the ASMC
method is an unsupervised method for the classification of protein sequences based on
structural information of protein pockets. ASMC combines homology modeling of
family members, structural alignment of modeled active sites and a subsequent
hierarchical conceptual classification. Comparison of profiles obtained from computed
clusters allows the identification of residues correlated to subfamily function
divergence, called specificity determining positions. Instead of using a global MSA, we
use structural alignments of the predicted cavity residues. From theses alignments, we
are able to divide the protein families into groups of similar profiles using conceptual
clustering [Fisher, 1987]. The analysis detects intra-family variations that can be
responsible for function and/or specificity.

The different steps of the ASMC method are summarized in figure 1:
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Figure 1. ASMC method diagram



3. Results

We scaled up the methodology to propose a systematic functional annotation of
new families, focusing on poorly annotated ones. From 208 families identified in
PFAM, we restricted our analysis to 83 families present in in-house data from the Evry
wastewater Metagenomics project, which are of specific interest for the study of
anaerobic prokaryote metabolism (main research project of Genoscope). For the 83
families, the 60.10° modelling jobs (Modeller v. 9.6) were run on the “Platine”
supercomputing facility at CEA/CCRT. Platine is a cluster of Novascale server
including 932 computing nodes and 26 administration or IO nodes. Each node is
composed of 4 1.6 Ghz bi-cores Intel® Itanium. Each node has a 24 Gb memory. The
Novascale servers, running linux, are interconnected by a Voltaire network (InfiniBand
DDR). The LSF batch system is provided by the Platform Computing company, and
use resources of Slurm®. The jobs were dispatched on 4000 processors for a total of
280,000 CPU hours. The results were obtained in 70 hours. From the computed models,
cavities were detected and conservation profiles were computed. Cavities’ key residues
were identified and families were clustered into subfamilies. All results are available at

(http://bioinfo.speed.dcc.ufmg.br/3dbio/raquelecm/dufs/index.jsp?idioma=ingles).

In order to illustrate perspectives opened by these results, we will present a
detailed study on a family for which a new enzymatic activity has been characterized
[Bellinzoni et al., 2011]. For this family, DUF849, data from structural modelling
provided key insights for enzymatic mechanism elucidation and for analysis of
evolution of the activity inside the protein superfamily. The main predicted clusters
(figure 2) were tested for enzymatic activities and presented different response.
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Figure 2. Mapping of catalytic site clusters and profiles on the evolutive tree of the
DUF 849 family.


http://bioinfo.speed.dcc.ufmg.br/3dbio/raquelcm/dufs/index.jsp?idioma=ingles

4. Conclusion

For the recent years, many efforts are provided to understand complex
molecular and cellular systems including new computations analysis, modelling and
simulation capabilities. This work presented an initiative to approximate two
computational disciplines of the biology, bioinformatics and chemo-informatics. While
bioinformatics focuses mainly to large scale and genomics sequence analysis,
traditional chemoinformatics works focused on specific molecular and enzymatic
aspects. Current development of informatics infrastructure and the development of
supercomputing facilities open new perspectives which combine both statistical and
data mining approaches to mathematical modelling approaches. Such approaches can
bring new impulses to biology by providing in silico tools able to predict de novo
biological functions.
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