
 1

The Layered Information System Test Pattern

Roberta Coelho Uirá Kulesza Arndt von Staa Carlos Lucena

Software Engineering Laboratory
Computer Science Department

Pontifical Catholic University of Rio de Janeiro - PUC-Rio - Brazil
{roberta, uira, arndt, lucena}@inf.puc-rio.br

Abstract

The object oriented application layer architecture [11, 4] allows the
distribution of classes into well defined layers, according to different
purposes (business, communication, data access, etc.). Elements from
different layers communicate only through interfaces.

While this architecture helps to address requirements of many applications,
it also creates many new challenges to software testing [2]. Developers must
look around for some techniques that help isolate bugs more quickly in this
architecture.

Test pattern is a technique that can improve the efficiency of the testing
process, since, it provides a means to share test construction experience.
While design patterns describe interactions between classes and determine
the specification of the classes that participate in the solution of a specific
design problem, a test pattern defines a configuration of objects needed to
test the interactions between classes. Both are intended to guide the
construction of a piece of software.

The Layered Information System Test Pattern documents a systematic way of
testing a layered information system which is based on exercising only the
interface defined by each layer.

Keywords Test Pattern, Layer Architecture.

Example This section presents an illustrative example of an information system that
supports the management of bank accounts. Figure 1 presents the object-
oriented architecture of this information system following the Layer
architectural pattern [11, 4]. According to this pattern, the elements from each
layer should communicate only through well defined layers` interfaces. The
purpose of a layer interface is to define the set of available operations - from
the perspective of interacting client layers - and to coordinate the layer
response to each operation.

Several design patterns have been proposed to refine each layer of this
architecture. Some of them are: the Service Layer Pattern[6], the Data Access
Object Pattern[8] and the Persistent Data Collections (PDC) [9].

 2

The example, presented in the Figure 1, focuses on the Business and Data
layers which are defined according to PDC pattern. Nevertheless, different
design patterns [8, 9] could be adopted to refine the information system
layers, according to the system requirements and the platform used by the
application. The Persistent Data Collections (PDC) design pattern [6] refines
each layer by filling them with specific classes and interfaces related to
business and data access concerns.

Figure 1. Object-Oriented Design for the Bank information system.

Following the guidelines defined in the PDC pattern, the Business layer
should provide a Facade [7] to the system functionality, a unique interface for

its services. In this example the Facade role is played by the Bank class. The

Business layer also specifies a set of business collection classes

(ClientRecord, AccountRecord) which defines business rules related to each

entity classes (Client, Account). The business collection classes are also

responsible for accessing the services of the Data layer in order to execute
persistence operations, such as, insertions, searches, updates, deletions.

The Data layer interface can be structured in one or more classes. In Figure 1,
the Data layer interface is structured in two modules one to each main

business entity defined in the business layer (IClientRepository,

IAccountRepository). These interfaces are implemented according to a

specific persistence platform, in Figure 1, ClientRepositoryJDBC and

Business Layer

Data Layer

ClientRepositoryJDBC

Client

id

name

getId()

getName()

Account

balance

idNumber

c redit()

withdraw()

AccountRepositoryJDBC

IClientRepository

insert()

search()

<<Interface>>

ClientRecord

insert()

search()

IAccountRepository

insert()

search()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

<<Interface>>

AccountRecord

insert()

credit()

search()

withdraw()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

Bank

insertAccount()

searchAccount()

credit()

insertClient()

withdraw()

searchClient()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

<<facade>>

 3

AccountRepositoryJDBC classes implement data access operations related to

a specific Entity class using the Java Database Connection (JDBC) API.

Due to the lack of well defined test patterns, developers and test engineers
have applied adhoc or not well defined test strategies during system testing.
Some examples of common test strategies which have been adopted during
system testing are the following:

(i) execution of adhoc manual tests in the user interface layer;
(ii) specification of unit tests to some classes of the system which are

chosen using no systematic strategy;
(iii) implementation of one test class to every class of the system (Test

Driven Development – Extreme Programming practice [1]).

Although, these test strategies can eventually help system debugging, there
are many disadvantages associated to such strategies, such as:

(i) the difficulty of finding the exact localization of the fault that causes
a system error; sometimes, during manual tests complex sequence
of actions are performed, which can not be repeated.

(ii) high cost and effort necessary to reexecute manual tests;
(iii) a great amount of resources and effort can be wasted due to the

codification of many unit tests that will not be effective during
system testing;

(iv) since the classes to be tested are chosen without good selection
criteria, important system functionalities may be forgotten during

testing.

There are many different kinds of test: unit tests, integration tests,
performance tests, stress tests, and so forth. This pattern will focus on
functional unit and integration tests.

Context Many information systems developed nowadays, define their architecture
based on the Layer architectural pattern [11, 4]. This architectural pattern
allows the distribution of classes into well defined layers according to different
concerns, such as user interface, communication, business and data access.
Also, several design patterns [8, 9, 6] have been proposed to refine each layer
of this architecture.
Despite those patterns have been widely used, the model for testing systems
structured according to this architectural pattern has received few attention
and has been few explored. Most tests are limited to test suites and test cases
using simple strategies [1,3]. Although those tests are useful, they fall short in
the role of a general organizational for automated testing. What is required is
a higher level of abstraction, a test pattern that can be reused wherever a
layered architecture is adopted.

Problem The development of an information system typically addresses different
concerns, such as, user interface, distribution, business and data access. The
lack of well defined strategies to test an information system can bring several
problems to system quality and additional costs to the software development.

A recurring problem in the context of layered information systems is how to

 4

define automatic functional tests in order to verify system services. The
following forces emerges from this problem:

• Separation of Concerns: Developers should focus on each specific layer when
testing the system. Besides, they should be able to test each layer
independent from the others.

• Test Class Modularity: Each test class should verify a well defined set of
functionalities provided by one specific layer.

• Test Robustness: The test classes should be resilient to internal changes in
the implementation of the layer classes.

• Cost Reduction: The solution should reduce the cost associated to test
activities without decreasing test quality.

• Proximity between Fail and Fault: Automatic tests should make it easier to
come across system failures as well as to localize the faults that had caused
them.

Solution

Create unit tests to exercise only the interface defined by each layer. Each test
class focuses on the test of specific concerns/features implemented by a layer.
Furthermore, the test code responsible for verifying all the services provided
by a layer can be modularized in one or more test classes.

To allow the test of one layer at a time, this pattern adopts auxiliary classes,
called mock objects [14]. A Mock Object is used by a test to replace a real
component (or a set of components) on which the system under test depends.
Typically, mock objects fakes the implementation either by returning hard
coded results or results that were pre-loaded by the test [14].

Since the tests defined by the Layered Information System Test Pattern
exercises only the interface of each layer, and there is not a one-to-one
relationship between the classes that comprises the interface and the test
classes, this pattern can be used to test any layered information system no
matter the design pattern or design strategy used to refine the layers.

Structure

Figure 2 illustrates the structure of the Layered Information System Test
Pattern. It has three participants:

• BusinessTest: this class contains all methods that test a set of
functionalities provided by the Business Layer Interface and are related
according to one specific criterion. This criterion can be a set of operations
related to a business entity or to a business service.

• BusinessRepositoryTest: implements test methods to all methods
provided by a Repository interface. The implementation of these test classes
focus on the testing of specific data repository functionality related to
insertion, searching, update and database operations. Each test method
implements a test case which verifies a successful or an error condition from a
specific repository method.

• MockRepository: this class fakes the implementation of a specific
BusinessRepository. Thus, this auxiliary class enables the unit test of the

 5

business layer.
.

Figure 2. The Static View of the Layered Information System Test Pattern.

All Business Layer`s operations can be structured in one single interface or a
set of interfaces [7]. The purpose of the BusinessTest classes is to modularize
the Business Layer tests according to each business entity manipulated by
its operations or according to each business services implemented by such
operations. For example, there can be one BusinessTest class to exercise the
set of operations related to a business entity or a business service.

The BusinessTest classes contain a test method to each successful and error
condition of each method from the Business Layer. Most of the time
developers focus on testing successful conditions and forget the error ones,
which are as important as the former. If we define only one class to test all
successful and error conditions of Business Layer methods, the resulting test
class will probably contain too many lines of code which can impact on test
maintainability.

The Data Layer will also be tested through a set of classes which exercises its
interface. Each Data Layer test class concerns with one specific business
repository accessible through the Data Layer`s interface. The
BusinessRepositoryTest classes, illustrated in Figure 2, are the ones
responsible for testing the each business repository.

Since each layer delegates services to the lower layer the only way to test
Business Layer without the passing through Data Layer is to delegate data
services to the MockBusinessRepository class, which fakes the
implementation of a real BusinessRepository class either by returning hard

Test pattern
Data Layer

Business Layer

Bus inessTest

testSystemService()

MockBusinessRepository

IBusiness

systemService()

<<Interface>>

BusinessRepositoryTest

testRemove()

testUpdate()

testSearch()

test Insert ()

testBusinessSpecificOperat ion()

IBusinessRepository

remove()

update()

search()

insert()

businessSpecificOperation()

<<Interface>>

 6

coded results or results that were pre-loaded by the test.

The MockBusinessRepository classes allow the BusinessTest classes to
concentrate on testing Business Layer own code. Therefore, the integration
test of those two layers is performed when Business Layer delegates services
to the real repositories instead to the mock classes.

Dynamics This pattern allows the execution of three types of tests: Business Layer unit
test, Data Layer unit test, and integration test of Data and Business Layers.

 : BusinessRepositoryTest repository :

IBusinessRepository

2: create()

5: search()

8: insert()

4: setup()

9: search()

6: no element was found

method setup() should include all

configuration and inicalization that

is common to all tests methods.

3: testInsert()

1: new

7: assert()

10: assert()

assert method evaluates

an expression (returned

elements < 0) If the

expression is evaluated as

false, this method will

throw an exception.

Figure 3. Dynamic View of the Data Layer unit test.

 7

 Figure 3 illustrates the sequence of method calls performed during Data
Layer unit test. Firstly, an instance of BusinessRepository class is created

during the initialization of BusinessRepositoryTest class (steps 1 and 2),

Secondly, a test method is called, for example, testInsert() (step 3), then,

setup() method is called – a private method responsible for any

configuration and initialization common to all test methods (step 4). Finally,
BusinessRepository methods are called (steps 5, 8 and 9) and assert
operations are executed to compare expected results with returned results
(steps 7 and 10).

Figure 4 represents an integration test comprising the Business Layer and
the Data Layer. It illustrates the sequence of method calls performed when
the Business Layer is tested in collaboration with the Data Layer. Firstly, the

BusinessTest class creates the classes that implement the Business and

Data layers. In the Figure 4, this is illustrated through the instantiation of

classes that implement the IBusiness and IBusinessRepository interfaces

(steps 2 and 3). After that, different test methods can be executed in order to
exercise the functionalities implemented by the Business Layer. Figure 4, for

example, shows the execution of the testSystemService() method, which

calls a business method (step 6) and uses an assert() method (step 7) to to

compare returned results with expected results.

 : BusinessTest : IBusiness businRep :

BusinessRepository

3: create(businRep)

6: systemService()

2: businRep = create()

1: new

4: testSystemService()

5: setup()

7: assert()

Figure 4. Dynamic View of the integration test of the Data Layer and the Business Layer

 8

 Figure 5 illustrates the sequence of method calls performed when testing the
piece of functionality embedded in the Business Layer. This type of test, as
distinct to the integration test described previously, exercises a single layer.
Since Business layer depends on the services provided by Data Layer, those
services should be amulated by a fake implementation of such layer, a mock
object. In the Figure 5, the instantiation of Business Layer is represented by

the creation of the IBusiness object (step 3). As we can see, this IBusiness

object is configured with an instance of MockBusinessRepository (step 2),

which will be used to simulate the Data layer. Finally, the test methods are
executed the same way as described in Figure 5.

 : BusinessTest : IBusiness mockRep :

MockBusinessRepository

2: mockRep = create()

6: systemService()

3: create(mockRep)

1: new

4: testSystemService()

7: assert()

5: setup()

Figure 5. Dynamic View of Business Layer unit test.

Solved
Example

Figure 6 presents the use of the Layered Information System Test Pattern for
the bank information system illustrated previously. Two classes,

AccountRepositoryTest and ClientRepositoryTest, are specified to

enable the testing of the data access classes. These classes are implemented

based on the method signatures defined in the IAccountRepository and

IClienteRepository, respectively. This allows to reuse them in case the

system developers need to provide new data access classes to a different
persistency platform.

 9

Figure 6: An information system and its corresponding test classes.

The test of the Business Layer for the example of the bank information

system is supported by the AccountOperationsTest and

ClientOperationsTest classes. Each of these classes implements a set of

test methods related to a specific entity class. Also, as we can see in the
Figure 6, these classes are codified based only on the business methods

provided by the Bank facade class. Thus, internal changes in the

implementation of these services do not affect the test classes.

Finally, two mock auxiliary classes, MockAccountRepository and

ClientAccountRepository, are presented in the Figure 6. They represent

alternative implementations of the data access classes. They are used when
it is required to test the Business layer functionality individually.

Consequences The Layered Information System (LIS) Test Pattern maintains the following
consequences:

• Separation of Concerns. The pattern defines an individual test to each

Business Layer

ClientRepositoryJDBC

Client

id

name

getId()

getName()

ClientOpetationsTest

testInsertClient()

testSearchClient()

MockAccountRepository

Account

balance

idNumber

credit()

withdraw()

ClientRepositoryTest

testInsert()

testSearch()

MockClientRepository

AccountRepositoryTest

testInsert()

testSearch()

testSearchNegativeBalanceAccounts()

testSeatchTop10AccountsByBalance()

AccountRepositoryJDBC

IClientRepository

insert()

search()

<<Interface>>

ClientRecord

insert()

search()

Bank

insertAccount()

searchAccount()

credit()

insertClient()

withdraw()

searchClient()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

<<facade>>

IAccountRepositor y

insert()

search()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

<<Interface>>

AccountRecord

insert()

credit()

search()

withdraw()

searchNegativeBalanceAccounts()

searchTop10AccountsbyBalance()

AccountOpetarionsTest

testInsertAccount()

testCredit()

testWithdraw()

testSearchAccount()

Data Layer

 10

layer of an information system. LIS test pattern focus on the testing of
individual services.

• Test Class Modularity. The testing code is modularized using different
test classes. Each test class focus on the verification of a well defined
and limited set of functionalities provided by a specific layer. It
improves the readability and maintainability of the test classes.

• Test Robustness. Since test classes depend only on the layer
interface, they are no effected due to implementation changes inside a
layer.

• Cost Reduction. Although there is a cost associated to the
implementation of the layered information system test pattern, the
systematization of the test activity can reduce its cost if compared
with other approaches, such as, adhoc tests and unit test of every
class. Code generation tools can even reduce test costs since they can
generate the overall structure of many test classes.

• Proximity between Failure and Fault. LIS test pattern defines
individual test to each layer which make it easier to find system
errors as well as to localize the faults that caused them.

• Increase in the number of classes. A negative consequence of this
testing solution is the increase in the number of classes to be
maintained. However, this Test Pattern allows the execution of
automated tests along the iterations which would require high cost
and effort to be reexecuted manually. Although this pattern suggests
fewer test classes than Test Driven Development (TDD) agile practice
(one unit test per class) it is as effective as TDD. Since the classes to
be tested are chosen according to a specific criterion, important
system functionalities is not forgotten during testing.

 11

Known Uses The Layered Information System Test Pattern has been used during the
development of two Java information systems in Recife, Brazil. A general
description of these systems is given below.

• A system for managing real estate. This system allows the register of real
estate and the management of tax charging related to them. It was
implemented in the J2EE platform.

• A system that supports the management of market activities. The system
allows the register of market activities and the management of tax
charging related. It was also implemented in the J2EE platform, including
the use of the Enterprise Java Bean technology.

See Also

Just a few test patterns have already been proposed. Gerard Meszaros [12,
13] has proposed two Test Pattern languages, one for setting up XUnit test
features - which describes key techniques for addressing the issues around
test fixture management, and the other for automating testing of indirect
inputs and outputs using XUnit.

Some design patterns for using Mock Objects have been proposed as well,
some of them are the following:

- Mock Object: a basic mock pattern that allows for testing a unit in
isolation by “faking” the communication between collaborating objects.

- Mock Object Factory: a way of creating mock objects using existing factory
methods.

- Mock Object via Delegator: a pattern that creates a mock implementation
of a collaborating interface in the test class or mock object.

ImplementationWe describe below some guidelines for implementing the Layered
Information System (LIS) Test Pattern. The following code examples are
related to an information system for managing bank accounts presented in
previous sections. They are written using the Java programming language
and the JUnit test framework [10]. However, the LIS Test Pattern can
implemented in other platforms, since the guidelines presented here are
followed.

Step 1: How to prepare the Entity classes to help the codification of

test classes?

Every test method needs to evaluate the data sent or received from the
methods being tested. In the context of information systems, the information
manipulated are, typically, the content embedded in entity classes. Thus,
before starting the implementation of test classes, it is important to define a
way to compare two instances of the same Entity class. A well known way to

compare two instances of a class is through the a method equals() that

receives an instance of the same class and returns true if the argument
contains the same attributes values as the class being called or false
otherwise.

 12

In the information system for the management of bank accounts, for

example, the Account class must define its equals() method in order to

compare its attributes idNumber and balance with the same attributes of

other instance.

public class Account {

private long idNumber;

private double balance;

public Account(long idNumber, double balance){

this.idNumber = idNumber;

this.balance = balance;

}

...

public boolean equals(Object anotherInstance){

 Account anotherAccount = (Account) anotherInstance;

 if (this.idNumber == anotherAccount.idNumber &&

 this.balance == anotherAccount.balance){

 return true;

 }else {

 return false;

 }

}

}

Step 2: How to define a BusinessRepositoryTest class?

A BusinessRepositoryTest class must define test methods to verify the

functionality provided by a data access class (or data repository class) which
are specified in the business repositories interfaces.

As mentioned in the Structure Section, a BusinessRepositoryTest class

has many responsibilities, such as: (i) to create an instance of a data access
class to be tested; (ii) to define a method that performs every configuration
and initialization necessary to run the test; and (iii) to specify different test
methods to each method provided by the data access class to be tested.

Each BusinessRepositoryTest class must define different test methods to

each existent method of the data access classes. These test methods must
verify the successful and error conditions, using different argument types
and values and handling different types of exceptions.

In order to minimize effort, the search methods - of the data access classes -
can be used to support the test of the other methods. For example, the test
method of insert operations can, previously, search the object be inserted to
verify if it does not already exist in the repository. Also, the test methods of
delete and update operations should use the search method whenever they
need.

Below, we present the partial code of a BusinessRepositoryTest class in

the context of the banking system, responsible to test the functionality of an

IAccountRepository instance.

 13

import junit.framework.TestCase;

public class AccountRepositoryTest extends TestCase {

private IAccountRepository accountRepository;

public AccountRepositoryTest(String name){

 this.accountRepository = new AccountRepositoryJDBC();

 // Additional common configurations before to execute all the test

 // methods

 ...

}

// JUnit standard method to be executed before every test method

protected void setUp() {

 ...

}

public void testInsertAccount() {

 try {

 Account account = new Account(123, 500);

 accountRepository.inserir(account);

 Account accountSearched = accountRepository.search(123);

 assertEquals(account, accountSearched);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

 public void testInsertAlreadyExistentAccount() {

 try {

 Account account = new Account(123, 500);

 accountRepository.inserir(account);

 fail(“System did not throw exception!!!”);

 Account accountSearched = accountRepository.search(123);

 assertEquals(account, accountSearched);

 } catch (AlreadyExistsObjectException e) {

 System.out.println(“OK: Exception expected!!!”);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

...

}

Step 3: How to define a MockBusinessRepository class?

The MockBusinessRepository classes simulate the behavior of

BusinessRepository classes in order to allow the unit test of the Business
Layer.

In order to fake the behavior of a real repository the

MockBusinessRepository classes can use an internal data structure (like a

hash table or a vector) that is able to store the business objects. The Mock
classes must implement the data access interfaces. Each method described
in these interfaces uses the internal data structure.

 14

A partial code of the MockAccountRepository class is presented below. It

uses a hash table to store the business objects manipulated by the mock.

public class MockAccountRepository implements IAccountRepository {

 private Map accounts;

 public MockAccountRepository(){

 this.accounts = new Hashtable();

 }

 public void insert(Account account)

 throws AlreadyExistentObjectException, ... {

 if (this.accounts.containsKey(new Long(account.getIdNumber()))){

 throw new AlreadyExistsObjectException ("Object already exists");

 }else {

 this.accounts.put(new Long(account.getIdNumber()), account);

 }

 }

 public Account search(long idNumber) throws InexistentObjectException {

 Account account = null;

 if (this.accounts.containsKey(new Long(idNumber))){

 account = (Account) this.accounts.get(new Long(idNumber));

 }else {

 throw new InexistentObjectException "Object does not exist");

 }

 return account;

 }

 ...

}

Step 4: How to define a BusinessTest class?

A BusinessTest class verifies the functionality provided by Business Layer.
Different BusinessTest classes should be defined for each system.

This class contains all methods related to a business entity or to a business
service. In this example each test class must focus on the testing of all
Facade operations related to a business entity. Moreover, each test method
defined must verify different execution conditions of the method under test,
such as: (i) the correct execution of business rules; and (ii) the incorrect
execution which throws business exceptions.

In the example presented in Solved Example Section two different
BusinessTest classes were be specified: one responsible for testing the

functionalities related to the Account class and the other responsible for

testing the functionalities related to Client class. Below we present the

AccountOperationsTest class, responsible for testing the methods in the

Bank facade class related to the Account business class. We can also

observe that the AccountOperationTest class constructor allows two

different configurations depending on the kind of test that will be executed:
(i) in case we want to perform integration tests, the Data layer will use the

 15

system data access classes; and (ii) in case we want to perform unit tests in
the Business Layer, the Data layer should be replaced by a mock object in
the test method. In a more realistic implementation of
BusinessRepositoryTest classes, the parameter integrationTest should be
loaded from a configuration file.

import junit.framework.TestCase;

public class AccountOperationsTest extends TestCase {

private Bank bank;

private boolean integrationTest = true;

public AccountOperationTest(String name){

 this.bank = Bank.getInstance();

 AccountRecord accountRecord = null;

 ClientRecord = clientRecord = null;

 if (integrationTest){

 accountRecord = new AccountRecord(

 new AccountRepositoryJDBC());

 ...

 } else {

 accountRecord = new AccountRecord(

 new MockAccountRepository());

 ...

 }

 this.bank.setAcccountRecord(accountRecord);

 ...

}

// JUnit standard method to be executed before every test method

protected void setUp() {

 ...

}

public void testCreditAccount() {

 try {

 Account account = new Account(123, 500);

 bank.insertAccount(account);

 bank.credit(123, 200);

 Account accountSearched = bank.searchAccount(123);

 assertEquals(new Account(123, 700), accountSearched);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

 public void testWithdrawAccount() {

 try {

 Account account = new Account(456, 500);

 bank. insertAccount(account);

 bank.withdraw(456, 200);

 Account accountSearched = bank.searchAccount(456);

 assertEquals(new Account(456, 300), accountSearched);

 } catch (Exception e) {

 fail("Exception not expected:" + e);

 }

 }

...

 16

}

Acknowledgments

We would like to give special thanks to Carlo Giovano, our shepherd, for
his important comments, helping us to improve our pattern. This work
has been partially supported by CNPq under grant No. 150678/2004-7
for Roberta de Souza Coelho and grant No. 140252/2003-7 for Uirá
Kulesza. The authors are also supported by the PRONEX Project under
grant 7697102900, and by ESSMA under grant 552068/2002-0 and by
the art. 1st of Decree number 3.800, of 04.20.2001.

References

[1] K. Beck, Extreme Programming Explained, Addison-Wesley, 2000
[2] M. Donat, Debugging in an Asynchronous World, ACM Queue 1(6), 2003, pp. 23-30.
[3] M. Fowler, A UML Testing Framework. Software Development Magazine. April, 1999
[4] S. Ambler. Building Object Applications that Work. Cambridge University Press and

Sigs Books, 1998.
[5] S. Ambler. The Object Primer. Cambridge University Press, 2001.
[6] T. Massoni, Vander Alves, Sergio Soares, and Paulo Borba. PDC: Persistent Data

Collections pattern. In First Latin American Conference on Pattern Languages
Programming SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ Magazine:
Special Issue on Software Patterns.

[7] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995..

[8] M. Fowler, et al. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

[9] D. Alur, D. Malks, J. Crupi. Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, 2nd edition, 2003.

[10] JUnit Framework, http://www.junit.org.
[11] F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns.

John Wiley Sons, 1996.
[12] G. Meszaros. A Pattern Language for Setting up XUnit Test Fixtures. Proc. of the 11th

Conference on Pattern Languages of Programs (PLoP2004), September 2004,
Monticello, USA.

[13] G. Meszaros. A Pattern Language for Automated Testing of Indirect Inputs and
Outputs using XUnit, Proc. of the 11th Conference on Pattern Languages of
Programs (PLoP2004), September 2004, Monticello, USA.

[14] M. Brown and E. Tapolcsanyi, Mock Object Patterns, Proceeding of the PLOP 2003,
September 2003, Monticello, USA.

[15] C. Szyperski, Component Software: Beyond Object-Oriented Programming. New York,
NY: ACM Press and Addison-Wesley, 1998.

